JPH07260621A - Apparatus for reducing interference of wind tunnel wall - Google Patents

Apparatus for reducing interference of wind tunnel wall

Info

Publication number
JPH07260621A
JPH07260621A JP5375694A JP5375694A JPH07260621A JP H07260621 A JPH07260621 A JP H07260621A JP 5375694 A JP5375694 A JP 5375694A JP 5375694 A JP5375694 A JP 5375694A JP H07260621 A JPH07260621 A JP H07260621A
Authority
JP
Japan
Prior art keywords
wind tunnel
model
measurement model
pressure
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5375694A
Other languages
Japanese (ja)
Inventor
Kiichi Fukumoto
喜一 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5375694A priority Critical patent/JPH07260621A/en
Publication of JPH07260621A publication Critical patent/JPH07260621A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To realize aerodynamic characteristics close to those of an aircraft flying in the atmosphere by suppressing the asymmetry of upper and lower air flows of a measuring model set in a wind tunnel when the attitude angle thereof is varied. CONSTITUTION:In order to vary the attitude angle of a measuring model 4 set in a wind tunnel, a plurality of pressure measuring holes 6 are made through opposing wind tunnel walls 1, 2 on the operating side and the pressure distribution on the wind tunnel wall surface is determined when an attitude angle is imparted to the measuring model 4. The model 4 is shifted to one wind tunnel wall face side until the pressure distribution is substantially equalized between both wind tunnel walls 1 and 2. This structure brings about a state where the model 4 is substantially set in the atmosphere and a data close to that of an aircraft flying in the atmosphere can be obtained from the model 4. Consequently, the aerodynamic characteristics of an actual aircraft can be estimated accurately based on the measurement data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、風洞に設置される計測
模型の姿勢角変更によって生じる、計測模型の変角方
向、両側に生じる非対称流を小さくして、計測精度を向
上できるようにした、風洞壁干渉量減少装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can improve the measurement accuracy by reducing the asymmetrical flow occurring in the angle changing direction of the measurement model and both sides caused by changing the attitude angle of the measurement model installed in the wind tunnel. The present invention relates to a wind tunnel wall interference amount reduction device.

【0002】[0002]

【従来の技術】風洞の気流方向に対する姿勢角を種々変
化させて、各姿勢角における計測模型の空力特性を計測
する風洞試験が、従来から行われている。姿勢角の変化
は、計測模型の迎角、又は偏揺れ角を変えて行う場合
等、種々あり、また、姿勢角を変える方法としては、図
5に示すように、計測模型01の後方に連結したスティ
ング02の後端を、上下動装置03によって上下させる
ことにより、後端より若干前方に設けた、回転中心点ま
わりに、スティング02の傾きを変えることによって行
っている。さらに、この場合、計測模型01は常時風洞
の風路中心に保持されるようにしている。
2. Description of the Related Art A wind tunnel test has been conventionally performed in which the aerodynamic characteristics of a measurement model in each posture angle are measured by changing the posture angle of the wind tunnel in various directions. There are various changes in the posture angle, such as when the angle of attack or yaw angle of the measurement model is changed, and as a method of changing the posture angle, as shown in FIG. The rear end of the sting 02 is moved up and down by the vertical movement device 03 to change the inclination of the sting 02 around the center of rotation provided slightly forward of the rear end. Furthermore, in this case, the measurement model 01 is always held at the center of the wind path of the wind tunnel.

【0003】一方、計測模型は航空機の場合を例に取る
までもなく、前方と後方とは形状が異なっており、非対
称であるのが通常であり、風路の中心において計測模型
の姿勢角を変えるにも拘わらず、計測模型の上方側と風
洞壁との間の気流状態(以下、上部気流状態という)
と、計測模型の下方側と、風洞壁との間の気流状態は
(以下、下部気流状態という)、風洞壁の影響を受けて
異なってくる。
On the other hand, the measurement model, which is not limited to the case of an aircraft, is usually asymmetric because the shape is different between the front and the rear, and the attitude angle of the measurement model is at the center of the wind passage. Despite the change, the airflow condition between the upper side of the measurement model and the wind tunnel wall (hereinafter referred to as the upper airflow condition)
The airflow condition between the lower side of the measurement model and the wind tunnel wall (hereinafter referred to as the lower airflow condition) is affected by the wind tunnel wall and is different.

【0004】さらに、遷音速、又は超音速流中で計測模
型の空力特性を計測する場合は、計測模型から発生する
衝撃波、および攪乱波の角度は計測模型の形状によって
変わり、姿勢角の変化によって急激に変動し、風洞壁と
の干渉によって、上部気流状態と下部気流状態はかなり
異なったものとなり、大気中(飛行状態)の気流状態を
模擬することが困難となる。
Further, when measuring the aerodynamic characteristics of a measurement model in a transonic or supersonic flow, the angles of the shock wave and the disturbance wave generated from the measurement model change depending on the shape of the measurement model and the attitude angle changes. Due to abrupt fluctuations and interference with the wind tunnel wall, the upper airflow state and the lower airflow state become quite different, making it difficult to simulate the airflow state in the atmosphere (flying state).

【0005】従って、風洞壁が固定壁で形成され、か
つ、計測模型の姿勢角を変化させる従来の風洞試験で
は、大気中と異なる非対称流れが風洞壁により生成さ
れ、この壁干渉によって、実機の空力特性推算が正確に
出来ず、航空機の設計に支障を来すことがあった。
Therefore, in a conventional wind tunnel test in which the wind tunnel wall is formed of a fixed wall and the attitude angle of the measurement model is changed, an asymmetric flow different from the atmosphere is generated by the wind tunnel wall, and this wall interference causes a disturbance of the actual machine. The aerodynamic characteristics could not be estimated accurately, which sometimes hindered the design of the aircraft.

【0006】このため、図5に示すように風洞壁を可撓
壁04で構成して、計測模型の姿勢角に応じて、可撓壁
用アクチュエータ05により風洞壁自体を動かし、大気
中と同じ状態の上部気流状態、下部気流状態を作り出す
発想が従来からあるが、装置が非常に複雑となるととも
に、上,下気流状態を、同一にする形状の可撓壁04を
形成するための制御がむずかしいこと、および、この様
な風洞建設に膨大な費用がかかることから、諸外国にお
いても実現例がなく、研究段階にあるのが現状である。
Therefore, as shown in FIG. 5, the wind tunnel wall is constituted by the flexible wall 04, and the wind tunnel wall itself is moved by the flexible wall actuator 05 according to the posture angle of the measurement model, and the same as in the atmosphere. Although there is a conventional idea of creating an upper airflow state and a lower airflow state, the device becomes very complicated, and control for forming a flexible wall 04 having the same shape for the upper and lower airflow states is performed. Due to the difficulty and the enormous cost of constructing such a wind tunnel, there are no real cases in other countries, and it is currently in the research stage.

【0007】[0007]

【発明が解決しようとする課題】本発明は、簡単な装置
で、膨大な費用をかけることなく、平易な制御により計
測模型の変角時の上部気流状態、および下部気流状態を
略同じにでき、大気中と略同じ対称流れ状態の中に、計
測模型を設置した状態にし、略実機の空力特性に近い計
測データを得ることのできる風洞壁干渉量減少装置を提
供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention is a simple device, which can make the upper airflow state and the lower airflow state at the time of bending of the measurement model substantially the same by simple control without enormous cost. It is an object of the present invention to provide a wind tunnel wall interference reduction device that can obtain measurement data that is close to the aerodynamic characteristics of a real machine by placing a measurement model in a symmetrical flow state that is substantially the same as in the atmosphere.

【0008】[0008]

【課題を解決するための手段】このため、本発明の風洞
壁干渉量減少装置は、次の手段とした。 (1)風洞中に設置された計測模型の姿勢角を変更する
側に、対向する風洞の固定壁両面の、対称な位置に圧力
計測孔を複数個配設した。 (2)対向する固定壁両面の圧力計測孔で計測された風
洞壁両面の、圧力分布を比較する比較演算器を設けた。 (3)比較演算器からの信号により、対向する固定壁両
面の圧力分布の差が許容された値以内になり、略同じ圧
力分布が固定壁両面で形成される位置まで姿勢角を変え
た計測模型を、そのまま平行に、対向する一方の固定壁
方向に、移動させる移動装置を設けた。
Therefore, the wind tunnel wall interference amount reducing device of the present invention has the following means. (1) A plurality of pressure measurement holes were arranged at symmetrical positions on both sides of the fixed wall of the facing wind tunnel on the side where the posture angle of the measurement model installed in the wind tunnel was changed. (2) A comparison calculator for comparing pressure distributions on both sides of the wind tunnel wall measured by the pressure measurement holes on both sides of the fixed wall facing each other is provided. (3) Measurement by changing the attitude angle to a position where the difference in pressure distribution on both surfaces of the fixed wall facing each other is within an allowable value due to the signal from the comparison calculator and substantially the same pressure distribution is formed on both surfaces of the fixed wall. A moving device for moving the model in parallel to one of the opposing fixed walls was provided.

【0009】[0009]

【作用】本発明の風洞壁干渉量減少装置は、上述の手段
により、姿勢角を変えた計測模型の上部気流状態と、下
部気流状態を略同じにでき、計測模型を略大気中に設置
した状態に近づけることができ、計測模型から得られる
計測データは、大気中を飛行する実機に略近いものにな
り、計測データからの実機の空力特性推算が正確にでき
るようになる。
According to the wind tunnel wall interference amount reducing device of the present invention, the upper airflow state and the lower airflow state of the measurement model whose posture angle is changed can be made substantially the same by the above-mentioned means, and the measurement model is installed in substantially the atmosphere. The measurement data obtained from the measurement model can be approximated to that of the actual aircraft flying in the atmosphere, and the aerodynamic characteristics of the actual aircraft can be accurately estimated from the measurement data.

【0010】[0010]

【実施例】以下、本発明の風洞壁干渉量減少装置の実施
例を、図面にもとづき説明する。図1は、本発明の風洞
壁干渉量減少装置の一実施例を示す側面図、図2は平面
図、図3は正面図、図4は制御ブロック図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the wind tunnel wall interference amount reducing device of the present invention will be described below with reference to the drawings. 1 is a side view showing an embodiment of the wind tunnel wall interference amount reducing device of the present invention, FIG. 2 is a plan view, FIG. 3 is a front view, and FIG. 4 is a control block diagram.

【0011】図に示すように、上方固定壁1、下方固定
壁2および左,右の固定壁3からなる風洞壁で形成され
る風洞には、計測窓15が具えられた計測部に、計測模
型4が試験要求に応じ、変角装置5により模型姿勢角θ
に設定できるようにして配設されている。
As shown in the figure, in the wind tunnel formed by the wind tunnel wall consisting of the upper fixed wall 1, the lower fixed wall 2 and the left and right fixed walls 3, the measurement section provided with the measurement window 15 measures The model 4 responds to the test request by using the bending device 5 to adjust the model posture angle θ.
It is arranged so that it can be set to.

【0012】上記固定壁1〜3のうち、計測模型4の姿
勢変角のために計測模型4を作動する側にある固定壁、
本実施例では上,下方向に計測模型4が傾斜するよう
に、計測模型4を作動して、姿勢変角を行っているの
で、上方固定壁1、および下方固定壁2には、制御用に
使用する圧力計測孔6が最低でも20個、図2のように
配列して、上方固定壁1、および下方固定壁2に対称に
穿設されている。
Of the fixed walls 1 to 3, the fixed wall on the side where the measurement model 4 is operated due to the change in posture of the measurement model 4,
In the present embodiment, the measurement model 4 is operated so that the measurement model 4 is tilted upward and downward, and the posture is changed. Therefore, the upper fixed wall 1 and the lower fixed wall 2 are controlled by There are at least 20 pressure measurement holes 6 used in the above, arranged as shown in FIG. 2, and symmetrically formed in the upper fixed wall 1 and the lower fixed wall 2.

【0013】この圧力計測孔6から、上方固定壁1、お
よび下方固定壁2の内面の圧力(静圧)が、図示しない
計測装置によって計測され、各圧力計測孔6の圧力計測
値から、各壁面における圧力分布を求めることができ
る。なお、圧力計測孔6の配列位置は、図1に示すよう
に、超音速計測時においては計測模型4の表面から発生
する衝撃波7、および攪乱波の影響を受けない位置にす
る必要がある。
The pressure (static pressure) on the inner surfaces of the upper fixed wall 1 and the lower fixed wall 2 is measured from the pressure measuring hole 6 by a measuring device (not shown). The pressure distribution on the wall surface can be obtained. It should be noted that, as shown in FIG. 1, the array position of the pressure measurement holes 6 needs to be a position that is not affected by the shock wave 7 and the disturbance wave generated from the surface of the measurement model 4 during supersonic measurement.

【0014】前述したように、設定された計測模型4
は、計測模型4にかかる空気力を計測する、計測模型4
に内蔵された天秤の後端に連結したスティング8の後端
が枢着された上下移動装置9を、上・下動することによ
り、枢着点より前方に設けられた回転中心まわりスティ
ング8が回動して、傾斜し、図1の鎖線で示す無変角状
態から実線で示す変角状態に姿勢角θが変えられ、設定
される。この計測模型4の姿勢角θの設定により、計測
模型4の上,下には図1の10で示すような非対称な
上,下気流が生じる。これは、上方、および下方の固定
壁1,2により気流が拘束されて生じる非対称流であ
り、大気中を飛行する気流の状態と異なるものである。
従って、この状態で計測模型4に加わる空力荷重を、上
記天秤によって計測しても、その計測データは大気中と
飛行する実機のものとは異なるものとなる。
As described above, the set measurement model 4
Is a measurement model 4 that measures the aerodynamic force applied to the measurement model 4.
By moving up and down the vertical movement device 9 having the rear end of the sting 8 connected to the rear end of the balance, which is pivotally attached, the sting 8 around the rotation center provided in front of the pivot point is The posture angle θ is rotated and tilted, and the posture angle θ is changed and set from the non-variable angle state shown by the chain line in FIG. 1 to the variable angle state shown by the solid line. By setting the posture angle θ of the measurement model 4, asymmetrical up and down air flows are generated above and below the measurement model 4 as indicated by 10 in FIG. This is an asymmetrical flow generated when the airflow is constrained by the upper and lower fixed walls 1 and 2, and is different from the state of the airflow flying in the atmosphere.
Therefore, even if the aerodynamic load applied to the measurement model 4 in this state is measured by the balance, the measurement data will be different from that of the actual aircraft that is flying in the atmosphere.

【0015】従って、本実施例では、次の手順により非
対称流を対称流にするようにした。
Therefore, in this embodiment, the asymmetric flow is made to be a symmetric flow by the following procedure.

【0016】まず、非対称の流れに伴う圧力を、圧力計
測孔6によって計測し、この圧力計測値を使って上方固
定壁1面上、および下方固定壁2面上の圧力分布パター
ンをヒッティングし正規化する。
First, the pressure associated with the asymmetrical flow is measured by the pressure measuring hole 6, and the pressure distribution pattern on the upper fixed wall 1 surface and the lower fixed wall 2 surface is hit by using this pressure measured value. Normalize.

【0017】次いでこの結果を演算処理し、上方固定壁
1面上の圧力分布と、下方固定壁2面上の圧力分布の違
いを求め、差分が許容値内に入るよう模型上下移動装置
9をコントロールし、計測模型4の姿勢角を保持したま
ま、模型上下移動方向11に平行移動を行なう、差分の
極性によりこの上昇/下降操作が繰り返されることによ
り、最終的に差分はあらかじめ定められた許容範囲に収
まる。なお、この制御系の設計においては、圧力検出か
らフィードバックをかけ、計測模型の上昇/下降操作コ
ントロールを行い、上方固定壁1面の圧力分布と、下方
固定壁2面の圧力分布を許容範囲に収める操作を、短時
間に行うことが重要となるが、本実施例では、圧力検出
を2〜3m sec の短時間で行い、10m sec 範囲内で模
型位置を制御することができ、一連のコントロール時間
は10〜20m sec で行えるように、全てコンピュータ
により演算、制御できるようにした。
Next, this result is arithmetically processed to find the difference between the pressure distribution on the upper fixed wall 1 surface and the pressure distribution on the lower fixed wall 2 surface, and the model vertical moving device 9 is set so that the difference falls within the allowable value. By controlling and performing parallel movement in the model up-and-down movement direction 11 while maintaining the posture angle of the measurement model 4, by repeating this ascending / descending operation depending on the polarity of the difference, the difference finally becomes a predetermined allowance. Fits in range. In the design of this control system, feedback is applied from the pressure detection to control the up / down operation of the measurement model so that the pressure distribution on the upper fixed wall 1 surface and the lower fixed wall 2 surface are within the allowable range. Although it is important to carry out the operation for storing in a short time, in this embodiment, pressure detection can be performed in a short time of 2 to 3 msec, and the model position can be controlled within a range of 10 msec. Everything can be operated and controlled by a computer so that the time can be 10 to 20 msec.

【0018】また、壁干渉量については計測模型の上下
移動量をパラメータとし、(この時、差分の許容値は各
々コンピュータのインプットにより可変とする。)移動
量に対する空力荷重を求め、演算する。この場合、風洞
が固定壁である限界は当然あり得るので、完全大気中の
データを求めることは所詮無理であるが、移動量〜空力
荷重の関係よりコンピュータにより外挿し、求めること
はできる。
With respect to the wall interference amount, the vertical movement amount of the measurement model is used as a parameter (at this time, the allowable value of the difference is variable by the input of the computer), and the aerodynamic load with respect to the movement amount is obtained and calculated. In this case, it is naturally possible that there is a limit that the wind tunnel is a fixed wall, so it is impossible to obtain data in the complete atmosphere, but it can be obtained by extrapolation by a computer from the relationship between the movement amount and aerodynamic load.

【0019】次に、図4により本実施例の風洞壁干渉量
減少装置の制御について説明する。計測模型4の姿勢角
θを設定するため、コンピュータにより模型姿勢角指令
を出力し、模型姿勢角変角装置によって、計測模型4を
所要の角度θに、連続的、又は段階的に設定する。姿勢
角θは姿勢角検出器であるポテンショメータ、あるいは
エンコーダで検出される。模型姿勢角変角装置からの信
号により、計測模型4を装着しているスティング8によ
る変角装置5が、計測模型4と共に、信号に基づく姿勢
角に変化すると、風洞の一様流状態は計測模型4の上下
で、状態が異なって来る。これが所謂、気流攪乱であ
る。この気流攪乱は、上方固定壁1、および下方固定壁
2に設けた圧力計測孔で感知され、各々の圧力計測孔6
における圧力として計測される。
Next, the control of the wind tunnel wall interference amount reducing device of this embodiment will be described with reference to FIG. In order to set the attitude angle θ of the measurement model 4, a model attitude angle command is output from the computer, and the measurement model 4 is set to the required angle θ continuously or stepwise by the model attitude angle changing device. The attitude angle θ is detected by a potentiometer, which is an attitude angle detector, or an encoder. When the bending device 5 by the sting 8 wearing the measurement model 4 changes the attitude angle based on the signal together with the measurement model 4 by the signal from the model attitude angle changing device, the uniform flow state of the wind tunnel is measured. The state is different between the top and bottom of the model 4. This is the so-called air flow disturbance. This air flow disturbance is detected by the pressure measuring holes provided on the upper fixed wall 1 and the lower fixed wall 2, and the pressure measuring holes 6 are respectively detected.
Is measured as the pressure at.

【0020】この計測された圧力信号はコンピュータへ
伝達され、圧力分布パターンに正規化される。また、こ
の上方固定壁1面上の圧力分布と、下方固定壁2面上の
圧力分布は比較演算器により、この両者の圧力差が算出
され、予めインプット等により設定した圧力分布差分許
容値と比較され、許容値以内の場合は、特に計測模型4
の上下移動は行なわないが、許容値内にない場合は、上
下移動指令が上下移動装置9に出され、圧力差が許容値
内に入るまで上下移動装置9を制御し、最適差までもっ
ていく。上下移動量については、移動量検出器(通常リ
ニアポテンショメータ)で検出し、移動リミット内であ
ることを監視し続ける。この一連の制御により、計測模
型4の上下の流れの非一様流を緩和し、精度の高い空力
データが取得可能となる。
This measured pressure signal is transmitted to a computer and is normalized into a pressure distribution pattern. A pressure difference between the pressure distribution on the upper fixed wall 1 surface and the pressure distribution on the lower fixed wall 2 surface is calculated by a comparison calculator, and the pressure distribution difference allowable value set in advance by input or the like is used. When compared and within the allowable value, especially measurement model 4
However, if it is not within the allowable value, a vertical movement command is issued to the vertical moving device 9 and the vertical moving device 9 is controlled until the pressure difference falls within the allowable value to bring the optimum difference. . The vertical movement amount is detected by a movement amount detector (normally a linear potentiometer), and it is continuously monitored that it is within the movement limit. With this series of controls, the non-uniform flow of the flow above and below the measurement model 4 is mitigated, and highly accurate aerodynamic data can be acquired.

【0021】このように、本実施例においては、風洞の
計測模型4を変角する側の両固定壁1,2上に圧力計測
孔6を多数設け、計測模型4の姿勢角を変えた場合、計
測模型4上下を、大気中で飛行する気流状態に、出来る
だけ近づけるため、両固定壁1,2上の圧力分布を検出
し、上下の流れがバランスするよう、計測模型4の位置
を姿勢角を保持したまま変更し、バランスした位置に
て、計測模型4に加わる空力荷重を計測する。これによ
り、非対称流れ中の誤差を含んだ計測値を使って算出し
ていた、精度の悪い空力特性推算値を改良することがで
きる。
As described above, in the present embodiment, when a large number of pressure measurement holes 6 are provided on both the fixed walls 1 and 2 on the side where the measurement model 4 of the wind tunnel is bent and the posture angle of the measurement model 4 is changed. , In order to bring the upper and lower sides of the measurement model 4 as close as possible to the state of airflow flying in the atmosphere, the pressure distribution on both fixed walls 1 and 2 is detected, and the position of the measurement model 4 is adjusted so that the upper and lower flows are balanced. The angle is changed while being held, and the aerodynamic load applied to the measurement model 4 is measured at the balanced position. As a result, it is possible to improve the inaccurate aerodynamic characteristic estimated value calculated using the measured value including the error in the asymmetrical flow.

【0022】なお、上記実施例においては、風洞の上下
方向に計測模型4を作動させたが、本実発明は、これに
限定されるものでない。但し、圧力計測孔6は計測模型
4を作動させる側の両固定壁に設置されることは、実施
例と同様である。
Although the measurement model 4 is operated in the vertical direction of the wind tunnel in the above embodiment, the present invention is not limited to this. However, the pressure measurement holes 6 are installed on both fixed walls on the side where the measurement model 4 is operated, as in the embodiment.

【0023】[0023]

【発明の効果】本発明の風洞壁干渉量減少装置によれ
ば、特許請求の範囲に示す構成により (1)、計測模型の姿勢角変化によって生じる、計測模
型上下に生じる非対称流を、対称流に近づけることによ
り、壁干渉量を減少させることができる。さらに、装置
も複雑なものとならず、制御も容易に行うことができ
る。また、風洞の改修も、軽微な圧力計測孔の設置、お
よび上下移動装置の制御回路の一部手直しで済み、膨大
な費用が発生することもない。 (2)また、計測模型上下移動量と、空力荷重計測値と
の関係から、壁干渉量を算出し、風洞試験で計測された
空力荷重に補正をかけることにより、大気飛行中での空
力荷重推算精度を向上することが可能となる。
According to the wind tunnel wall interference amount reducing device of the present invention, the asymmetrical flow generated by the change of the attitude angle of the measurement model, which occurs due to the change of the attitude angle of the measurement model, is a symmetrical flow due to the configuration described in the claims. The amount of wall interference can be reduced by approaching to. Further, the device is not complicated and the control can be easily performed. Further, the repair of the wind tunnel can be achieved by installing a slight pressure measuring hole and modifying a part of the control circuit of the up-and-down moving device, so that an enormous cost is not generated. (2) In addition, the wall interference amount is calculated from the relationship between the vertical movement amount of the measurement model and the aerodynamic load measurement value, and the aerodynamic load measured in the wind tunnel test is corrected to obtain the aerodynamic load during atmospheric flight. It is possible to improve the estimation accuracy.

【0024】従って、本発明の風洞壁干渉量減少装置
は、航空機の設計上、不可欠な安全設計に資することが
できる。
Therefore, the wind tunnel wall interference amount reducing device of the present invention can contribute to an indispensable safety design in designing an aircraft.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の風洞壁干渉量減少装置の一実施例を示
す側面図。
FIG. 1 is a side view showing an embodiment of a wind tunnel wall interference amount reducing device of the present invention.

【図2】図1に示す実施例の平面図。FIG. 2 is a plan view of the embodiment shown in FIG.

【図3】図1に示す実施例の正面図。FIG. 3 is a front view of the embodiment shown in FIG.

【図4】図1に示す実施例の制御系統図。FIG. 4 is a control system diagram of the embodiment shown in FIG.

【図5】従来の可撓壁の例を示す側面図である。FIG. 5 is a side view showing an example of a conventional flexible wall.

【符号の説明】[Explanation of symbols]

1 上方固定壁 2 下方固定壁 3 左,右固定壁 4 計測模型 5 変角装置 6 圧力計測孔 7 衝撃波 8 スティング 9 上下移動装置 10 気流 15 計測窓 1 Upper fixed wall 2 Lower fixed wall 3 Left and right fixed wall 4 Measurement model 5 Bending device 6 Pressure measuring hole 7 Shock wave 8 Sting 9 Vertical moving device 10 Airflow 15 Measurement window

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 風洞内に設置された、計測模型の変角方
向の固定壁両面に、対称に配置された複数の圧力計測
孔、前記圧力計測孔で計測された前記固定壁両面の圧力
分布を比較する比較演算器、前記比較演算器からの信号
に基づき、前記固定壁両面の圧力分布を許容値内にする
位置へ前記計測模型を前記固定壁の一方の方向へ平行移
動させる移動装置からなることを特徴とする風洞壁干渉
量減少装置。
1. A plurality of pressure measurement holes symmetrically arranged on both sides of a fixed wall of a measurement model in a bending direction installed in a wind tunnel, and pressure distributions on both sides of the fixed wall measured by the pressure measurement holes. From a moving device that translates the measurement model in one direction of the fixed wall to a position where the pressure distribution on both surfaces of the fixed wall is within an allowable value, based on a signal from the comparison operator that compares A wind tunnel wall interference reduction device.
JP5375694A 1994-03-24 1994-03-24 Apparatus for reducing interference of wind tunnel wall Withdrawn JPH07260621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5375694A JPH07260621A (en) 1994-03-24 1994-03-24 Apparatus for reducing interference of wind tunnel wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5375694A JPH07260621A (en) 1994-03-24 1994-03-24 Apparatus for reducing interference of wind tunnel wall

Publications (1)

Publication Number Publication Date
JPH07260621A true JPH07260621A (en) 1995-10-13

Family

ID=12951669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5375694A Withdrawn JPH07260621A (en) 1994-03-24 1994-03-24 Apparatus for reducing interference of wind tunnel wall

Country Status (1)

Country Link
JP (1) JPH07260621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228749A (en) * 2016-03-25 2017-10-03 哈尔滨飞机工业集团有限责任公司 A kind of axial varied angle mechanism of wind tunnel model small size
CN110044570A (en) * 2019-04-16 2019-07-23 沈阳航空航天大学 A kind of body of revolution fuselage surveys compacting and tests the error correcting method that pneumatically trembles
CN110207927A (en) * 2019-06-17 2019-09-06 西北工业大学 A kind of wind tunnel wall interference correction correction method of airfoil wind tunnel test
CN112798217A (en) * 2021-03-23 2021-05-14 中国空气动力研究与发展中心高速空气动力研究所 Follow-up compensation mechanism for wind tunnel test with continuously variable sideslip angle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228749A (en) * 2016-03-25 2017-10-03 哈尔滨飞机工业集团有限责任公司 A kind of axial varied angle mechanism of wind tunnel model small size
CN107228749B (en) * 2016-03-25 2019-05-14 哈尔滨飞机工业集团有限责任公司 A kind of wind tunnel model small size axial direction varied angle mechanism
CN110044570A (en) * 2019-04-16 2019-07-23 沈阳航空航天大学 A kind of body of revolution fuselage surveys compacting and tests the error correcting method that pneumatically trembles
CN110207927A (en) * 2019-06-17 2019-09-06 西北工业大学 A kind of wind tunnel wall interference correction correction method of airfoil wind tunnel test
CN112798217A (en) * 2021-03-23 2021-05-14 中国空气动力研究与发展中心高速空气动力研究所 Follow-up compensation mechanism for wind tunnel test with continuously variable sideslip angle
CN112798217B (en) * 2021-03-23 2021-06-22 中国空气动力研究与发展中心高速空气动力研究所 Follow-up compensation mechanism for wind tunnel test with continuously variable sideslip angle

Similar Documents

Publication Publication Date Title
EP2974955B1 (en) Closed loop control of aircraft control surfaces
JP6818052B2 (en) Wind generation means and wind test facility equipped with this
US4723214A (en) Automatic camber control
Waszak Modeling the benchmark active control technology wind-tunnel model for application to flutter suppression
US8000845B2 (en) Method and device for dynamically alleviating loads generated on an airplane
US6922618B2 (en) System and method for kinematic consistency processing
US6332105B1 (en) Neural network based automatic limit prediction and avoidance system and method
US20090125165A1 (en) Method and device for piloting a pitching aircraft
JP2000131186A (en) Wind tunnel simulation device and method for designing airframe using the same
US20110004361A1 (en) Method and device for estimating the forces exerted on a control surface of an aircraft
CN112744363B (en) Low-Reynolds-number lower-layer flow separation control drag reduction design method, wing and aircraft
CN113138090A (en) Method and system for testing performance of flight control surface system
JPH07260621A (en) Apparatus for reducing interference of wind tunnel wall
WO2022145759A1 (en) Method and device for improving accuracy of six-degree-of-freedom flight simulation by using flight test data
CN111427267A (en) High-speed aircraft attack angle tracking method adopting force and moment adaptive estimation
JPH09203685A (en) Model support method in wind tunnel test and apparatus for the method
Smith et al. Application of the concept of dynamic trim control to automatic landing of carrier aircraft
US20110040534A1 (en) Real-time simulation procedure for a helicopter rotor
US20110295568A1 (en) Method for determining a vortex geometry
KR101201818B1 (en) Apparatus for measuring the freeplay of control surface of an airplane
KR100934860B1 (en) External wind tunnel calibration device
JPH06300660A (en) Wind tunnel
JP2004361091A (en) Wind tunnel test method and wind tunnel testing device
JPH10221202A (en) Ground surface device for wind tunnel test
CN110619160B (en) Implicit solution method based on accompanying residual sorting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605