JPH0725891A - New isomaltooligosaccharide and enzyme for producing the same and method therefor - Google Patents

New isomaltooligosaccharide and enzyme for producing the same and method therefor

Info

Publication number
JPH0725891A
JPH0725891A JP5193881A JP19388193A JPH0725891A JP H0725891 A JPH0725891 A JP H0725891A JP 5193881 A JP5193881 A JP 5193881A JP 19388193 A JP19388193 A JP 19388193A JP H0725891 A JPH0725891 A JP H0725891A
Authority
JP
Japan
Prior art keywords
pullulan
panose
isomaltooligosaccharide
enzyme
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5193881A
Other languages
Japanese (ja)
Other versions
JP3537464B2 (en
Inventor
Yoshiyuki Sakano
好幸 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Corn Starch Co Ltd
Original Assignee
Oji Corn Starch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Corn Starch Co Ltd filed Critical Oji Corn Starch Co Ltd
Priority to JP19388193A priority Critical patent/JP3537464B2/en
Publication of JPH0725891A publication Critical patent/JPH0725891A/en
Application granted granted Critical
Publication of JP3537464B2 publication Critical patent/JP3537464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a new isomaltooligasaccharide excellent in functionalities such as low sweetness, low calorific value, nonfermentability and bifidus growth factor, thus useful as a health food material. CONSTITUTION:The objective isomaltooligosaccharide; which can be obtained by making (A) an enzyme capable of hydrolyzing alpha-1,4-glucoside linkage in the presence of glucose (pref. an alpha-amylase capable of producing panose from pullulan) act on (B) pullulan or panose.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機能性の優れた食品素
材として産業上有用である新規イソマルトオリゴ糖並び
にそれを製造するための酵素及び方法に関する。
FIELD OF THE INVENTION The present invention relates to a novel isomaltooligosaccharide industrially useful as a highly functional food material, and an enzyme and a method for producing the same.

【0002】[0002]

【従来の技術】α−1, 4−グルコシド結合のみからな
るマルトオリゴ糖に対して、α−1,6−グルコシド結
合を有するイソマルトオリゴ糖は分岐糖と称されてお
り、近年、機能性食品として注目されている糖質であ
る。本来、糖質は甘味源や栄養源として利用されてきた
が、低甘味、低カロリー、非発酵性、ビフィズス菌増殖
因子、難う蝕性等の機能性を有する糖が開発され、健康
食品素材として利用されている。特に、イソマルトース
やパノース (イソマルトシルグルコース、イソマルトト
リオース) 、イソマルトシルマルトース (イソマルトテ
トラオース) 等のイソマルトオリゴ糖は機能性に優れた
オリゴ糖として注目されている。
2. Description of the Related Art In contrast to maltooligosaccharides consisting only of α-1,4-glucoside bonds, isomaltooligosaccharides having α-1,6-glucoside bonds are called branched sugars, and in recent years, as functional foods. It is a sugar that has been drawing attention. Originally, sugars have been used as a sweetening source and a nutritional source, but sugars having functionalities such as low sweetness, low calories, non-fermentability, bifidobacterial growth factor, and difficult caries have been developed and used as a health food material. It's being used. Particularly, isomaltooligosaccharides such as isomaltose, panose (isomaltosyl glucose, isomaltotriose) and isomaltosyl maltose (isomaltotetraose) have been attracting attention as oligosaccharides having excellent functionality.

【0003】現在までに、イソマルトオリゴ糖としては
イソマルトース、パノース、イソマルトシルマルトース
等が知られている。これらのイソマルトオリゴ糖は澱粉
を通常のα−アミラーゼでα−1, 4−グルコシド結合
を加水分解した時、アミロペクチン由来のα−1, 6−
グルコシド結合が加水分解を受けにくいため、α−1,
6−グルコシド結合が残って生成する。あるいは、グル
コアミラーゼの逆反応によってイソマルトース等が生成
する。
To date, isomaltose, panose, isomaltosylmaltose and the like are known as isomaltooligosaccharides. These isomaltooligosaccharides are α-1,6-derived from amylopectin when starch is hydrolyzed with α-1,4-glucoside bonds by a usual α-amylase.
Since the glucoside bond is less susceptible to hydrolysis, α-1,
6-Glucoside bonds remain and are generated. Alternatively, isomaltose or the like is produced by the reverse reaction of glucoamylase.

【0004】しかしながら、本発明の新規イソマルトオ
リゴ糖(イソマルトシルイソマルトース、以下「IMI
M」という。)のように、イソマルトース2個がα−
1, 4−グルコシド結合で結ばれたオリゴ糖は全く知ら
れていない。
However, the novel isomaltooligosaccharide of the present invention (isomaltosyl isomaltose, hereinafter referred to as "IMI"
M ”. ), Two isomaltose are α-
No oligosaccharides linked by 1,4-glucoside bonds are known at all.

【0005】[0005]

【発明が解決しようとする課題】本発明者は、アミラー
ゼの酵素作用を詳細に検討している中で、α−1, 6−
グルコシド結合を2個有する4個のグルコースからなる
ホモオリゴ糖であり、新規なイソマルトオリゴ糖である
IMIMを得ることに成功し、本発明を完成するに至っ
た。
DISCLOSURE OF THE INVENTION The present inventor has studied in detail the enzymatic action of amylase, and found that α-1, 6-
The present inventors have succeeded in obtaining IMIM, which is a novel isomalto-oligosaccharide, which is a homo-oligosaccharide composed of four glucoses having two glucoside bonds, and completed the present invention.

【0006】即ち、本発明は、機能性が重要視される食
品産業において注目されているオリゴ糖の中で、特に優
れた機能性を示すことが知られるイソマルトオリゴ糖に
おいて、2個のα−1, 6−グルコシド結合を有する4
個のグルコースからなる新規なイソマルトオリゴ糖であ
るIMIM、及び新規α−アミラーゼ、並びに加水分解
酵素を利用した該新規イソマルトオリゴ糖の製造法を提
供することを目的とする。
That is, according to the present invention, among the oligosaccharides attracting attention in the food industry where functionality is important, isomalt oligosaccharides, which are known to show particularly excellent functionality, have two α- 4 having a 1,6-glucoside bond
It is an object of the present invention to provide IMIM, which is a novel isomaltooligosaccharide consisting of individual glucose, and novel α-amylase, and a method for producing the novel isomaltooligosaccharide using a hydrolase.

【0007】[0007]

【課題を解決するための手段】本発明は、下記の発明を
包含する。 (1)次式(I):
The present invention includes the following inventions. (1) The following formula (I):

【0008】[0008]

【化4】 [Chemical 4]

【0009】で示される新規イソマルトオリゴ糖IMI
M。 (2)以下に示す理化学的性質: 作用 (a)澱粉から主にマルトースを生成する。 (b)プルランからパノースを生成する。
A novel isomaltooligosaccharide IMI represented by
M. (2) Physicochemical properties shown below: Action (a) Maltose is mainly produced from starch. (B) Panose is produced from pullulan.

【0010】(c)グルコースの存在下でプルランを加
水分解し、次式(I):
(C) Pullulan is hydrolyzed in the presence of glucose to give the following formula (I):

【0011】[0011]

【化5】 [Chemical 5]

【0012】で示されるイソマルトオリゴ糖及び次式
(II):
Isomalto-oligosaccharide represented by the following formula (II):

【0013】[0013]

【化6】 [Chemical 6]

【0014】で示されるイソマルトオリゴ糖を生成す
る。 基質特異性 澱粉やプルラン等のα−1,4−グルコシド結合を加水
分解し、マルトースやパノースを生成する。生成したパ
ノースは分解せず、グルコースの存在下で前記式(I)
で示されるイソマルトオリゴ糖及び前記式(II)で示さ
れるイソマルトオリゴ糖を生成する。前記式(II)で示
されるイソマルトシルマルトースを分解する。
An isomalto-oligosaccharide represented by is produced. Substrate specificity Hydrolyzes α-1,4-glucoside bonds such as starch and pullulan to produce maltose and panose. The produced panose is not decomposed, and in the presence of glucose, the above formula (I)
To produce the isomaltooligosaccharide represented by and the isomaltooligosaccharide represented by the formula (II). The isomaltosyl maltose represented by the formula (II) is decomposed.

【0015】プルランに対する活性よりも澱粉に対する
活性は強いものの、高温放線菌Thermoactinomyces vulg
aris R-47 の生産するα−アミラーゼ(澱粉から主にマ
ルトースを生成する酵素、以下「TVAI」という。)
に比べてプルランに対する活性が強い。 至適pH及びpH安定性 プルランを基質としてpH 6〜7 に至適pHがあり、pH 6〜
9 で安定である。
Although the activity against starch is stronger than that against pullulan, the thermoactinomycete Thermoactinomyces vulg
α-amylase produced by aris R-47 (enzyme mainly producing maltose from starch, hereinafter referred to as "TVAI")
The activity against pullulan is stronger than that of. Optimum pH and pH stability With pullulan as a substrate, there is an optimum pH between 6 and 7,
It is stable at 9.

【0016】至適温度及び熱安定性 プルランを基質として45〜55℃に至適温度があり、50℃
まで安定である。 分子量は約60,000である(SDSポリアクリルアミド
ゲル・スラブ電気泳動法による)。を有するα−アミラ
ーゼ。 (3)グルコースの存在下において、α−1,4−グル
コシド結合を加水分解する酵素をプルラン又はパノース
に作用させることを特徴とする前記(1)に記載の新規
イソマルトオリゴ糖IMIMの製造法。
Optimum temperature and thermal stability With pullulan as a substrate, the optimum temperature is 45-55 ° C, and 50 ° C
Is stable up to. The molecular weight is about 60,000 (by SDS polyacrylamide gel slab electrophoresis). Α-amylase having (3) The method for producing the novel isomaltooligosaccharide IMIM according to (1) above, wherein pullulan or panose is caused to act on an enzyme that hydrolyzes an α-1,4-glucoside bond in the presence of glucose.

【0017】本発明の製造法に用いる加水分解酵素とし
ては、α−1,4−グルコシド結合を加水分解する酵素
であれば特に制限はないが、好ましくはプルランからパ
ノースを生成するα−アミラーゼが挙げられる。かかる
酵素としては、例えば、高温放線菌 Thermoactinomyces
vulgaris R-47(M. Shimizu et al., Agric. Biol. Che
m., 42, 1681(1978))の生産するα−アミラーゼ、即ち
本発明の新規α−アミラーゼが挙げられる。
The hydrolase used in the production method of the present invention is not particularly limited as long as it is an enzyme that hydrolyzes α-1,4-glucoside bonds, but α-amylase which produces panose from pullulan is preferable. Can be mentioned. Examples of such enzymes include Thermoactinomyces
vulgaris R-47 (M. Shimizu et al., Agric. Biol. Che
m., 42 , 1681 (1978)), that is, the novel α-amylase of the present invention.

【0018】清水らは高温放線菌Thermoactinomyces vu
lgaris R-47 の生産するα−アミラーゼTVAIがプル
ランを分解してパノースを生成することを見出した。次
いで、本発明者はTVAIの酵素作用について詳細な研
究を行い、その性質を明らかにしている (Y. Sakano et
al., Agric. Biol. Chem., 46, 1121(1982); Y. Sakan
o et al., Agric. Biol. Chem., 46, 1423(1982); Y. S
akano et al., Agric.Biol. Chem., 47, 2211(1983);
Y. Sakano et al., Agric. Biol. Chem., 49,3391(198
5)) 。
Shimizu et al. Thermoactinomyces vu
It was found that the α-amylase TVAI produced by lgaris R-47 decomposes pullulan to produce panose. Next, the present inventor conducted a detailed study on the enzymatic action of TVAI and clarified its property (Y. Sakano et.
al., Agric. Biol. Chem., 46 , 1121 (1982); Y. Sakan
o et al., Agric. Biol. Chem., 46 , 1423 (1982); Y. S
akano et al., Agric. Biol. Chem., 47 , 2211 (1983);
Y. Sakano et al., Agric. Biol. Chem., 49 , 3391 (198
Five)) .

【0019】更に、本発明者は本菌の遺伝子からシット
ガン方式でプラスミドを分取してクローン化した大腸菌
の中にTVAIと異なるα−アミラーゼ(TVAII)が
生成することを見出した (Y. Sakano et al., Biosci.
Biotech. Biochem., 57, 395(1993)) 。その後、TVA
IIの蛋白質合成能を高める発現系を構築して大腸菌の本
酵素生産を大きく増加させると同時に、大腸菌を培養し
た後、加熱、超音波処理等の抽出操作によって容易に結
晶化する高純度な酵素の生産方法を開発した。
Furthermore, the present inventor has found that α-amylase (TVAII) different from TVAI is produced in Escherichia coli cloned by collecting a plasmid from the gene of this bacterium by the sit-gun method (Y. Sakano). et al., Biosci.
Biotech. Biochem., 57 , 395 (1993)). Then TVA
A high-purity enzyme that constructs an expression system that enhances the protein synthesizing ability of II and greatly increases the production of this enzyme in Escherichia coli, and at the same time, easily crystallizes by culturing E. coli and then performing extraction operations such as heating and sonication. Has developed a production method.

【0020】TVAIIはTVAIと遺伝子の塩基配列及
びアミノ酸配列が異なり、従来の酵素と理化学的性質の
異なるα−アミラーゼである (Y. Sakano et al., Bios
ci.Biotech. Biochem., 57, 395(1993)) 。TVAIIの
遺伝子の塩基配列及びアミノ酸配列を図1に示す。本発
明者は、TVAIIの酵素作用を調べる内、グルコースの
存在下でプルランに作用させると薄層クロマトグラフィ
ーでパノースよりも展開距離の短い2つのオリゴ糖が生
成すること(図2)を見出した。両者は4個のグルコー
スからなるオリゴ糖であり、その一つは既知のイソマル
トシルマルトース(以下「IMM」という。)と同じ位
置に展開され、もう一つの未知の糖はIMMより展開距
離の短い糖であり、明らかにIMMと異なる糖であっ
た。そこで、未知の糖を単離してNMRを測定すると、
13C−NMRでα−1, 4−及びα−1, 6−グルコシ
ド結合のシグナルを示すピークがほぼ同じ高さで得られ
(図3)、α−1, 6−結合のシグナルは2つのピーク
に別れていた。従って、グルコシド結合はα−1, 4−
結合:α−1, 6−結合=1:2の割合で存在すること
が明らかとなった。次いで、IMMにイソマルトデキス
トラナーゼを作用させるとマルトースとイソマルトース
が生成し、未知の糖に同じ酵素を作用させるとイソマル
トースのみが生成された(図4)。なお、図2及び図4
に示した薄層クロマトグラフィーにおいて、展開溶媒と
しては1−ブタノール:エタノール:水=5:5:3を
用い、薄層としてはメルク社のシリカゲルG60を用い
た。
TVAII is an α-amylase which differs from TVAI in the nucleotide sequence and amino acid sequence of the gene and differs in physicochemical properties from conventional enzymes (Y. Sakano et al., Bios.
ci.Biotech.Biochem., 57 , 395 (1993)). The nucleotide sequence and amino acid sequence of the TVAII gene are shown in FIG. The present inventor investigated the enzymatic action of TVAII, and found that when it was allowed to act on pullulan in the presence of glucose, two oligosaccharides having a shorter developing distance than panose were formed by thin layer chromatography (FIG. 2). . Both are oligosaccharides consisting of 4 glucoses, one of which is developed at the same position as known isomaltosyl maltose (hereinafter referred to as "IMM"), and the other unknown sugar has a development distance larger than that of IMM. It was a short sugar and was clearly different from IMM. Therefore, when an unknown sugar is isolated and NMR is measured,
In 13 C-NMR, peaks showing the signals of α-1,4- and α-1,6-glucoside bonds were obtained at almost the same height (FIG. 3), and the signals of α-1,6-bond were two. It had broken up into a peak. Therefore, the glucosidic bond is α-1, 4-
It was revealed that there was a ratio of bond: α-1, 6-bond = 1: 2. Then, maltose and isomaltose were produced when IMM was acted with isomaltdextranase, and only isomaltose was produced when the same enzyme was acted on an unknown sugar (FIG. 4). 2 and 4
In the thin layer chromatography shown in 1), 1-butanol: ethanol: water = 5: 5: 3 was used as the developing solvent, and silica gel G60 manufactured by Merck was used as the thin layer.

【0021】これらの実験事実から未知のオリゴ糖は前
記式(I)で示されるIMIMであり、これまで見出さ
れていない全く新規なイソマルトオリゴ糖であることが
判明した。本発明のIMIMは、プルラン又はパノース
とグルコースとを溶解してα−1,4−グルコシド結合
を加水分解する酵素を作用させることにより容易に製造
できる。
From these experimental facts, it was found that the unknown oligosaccharide is IMIM represented by the above formula (I) and is a completely novel isomalt oligosaccharide which has not been found so far. The IMIM of the present invention can be easily produced by dissolving pullulan or panose and glucose to act an enzyme that hydrolyzes an α-1,4-glucoside bond.

【0022】ここで用いる酵素としては、例えば、前述
したTVAIIが挙げられるが、その他、ネオプルラナー
ゼ(N. Kuriki et al., J. Bacteriol., 170, 1554(198
8); N. Kuriki et al., J. Bacteriol., 173, 6147(199
1))等のプルランからパノースを生成するα−アミラー
ゼを用いることができる。例えば、TVAIIを用いる場
合、プルランとグルコースを共に5%濃度でリン酸ナト
リウム緩衝液(pH 6.5)1.5Lに溶解し、TVAIIを60mg
加えて40℃で72時間反応させる。この反応液を経時的に
採取し、薄層クロマトグラフィーにかけると図2に示す
ように、IMIMとIMMが生成した。この時、IMM
はTVAIIによって加水分解を受けるため、反応24時間
以降は減少する。
The enzyme used here includes, for example, the above-mentioned TVAII, but in addition, neopullulanase (N. Kuriki et al., J. Bacteriol., 170 , 1554 (198)
8); N. Kuriki et al., J. Bacteriol., 173 , 6147 (199
An α-amylase that produces panose from pullulan such as 1)) can be used. For example, when TVAII is used, both pullulan and glucose are dissolved in 1.5 L of sodium phosphate buffer (pH 6.5) at a concentration of 5% to give 60 mg of TVAII.
In addition, the mixture is reacted at 40 ° C for 72 hours. When this reaction solution was sampled with time and subjected to thin layer chromatography, IMIM and IMM were produced as shown in FIG. At this time, IMM
Is reduced by TVAII and therefore decreases after 24 hours of reaction.

【0023】反応の一方の基質はプルラン又はパノース
であり、パノースの原料となる澱粉やアミロペクチン等
も基質となる。プルラン又はパノースの濃度については
濃度の高い程良いが、1〜30%の範囲が好ましい。勿
論、プルラン又はパノースを反応途中で添加して生成す
るIMIMの濃度を高くすることもできる。他方の基質
であるグルコースは、通常、反応の始めから反応液に添
加するが、反応の途中から添加してもさしつかえない。
即ち、TVAIIはパノースを加水分解できず、グルコー
スの転移反応はパノースの存在下でも進行するため、高
濃度のプルラン溶液が酵素分解を受けて粘度が低下して
からグルコースを加えてIMIMの濃度を高くすること
もできる。また、酵素濃度は、酵素の種類により異なる
が、通常0.0001〜1.0 %である。
One substrate for the reaction is pullulan or panose, and starch, amylopectin, etc., which is a raw material for panose, also serves as a substrate. Regarding the concentration of pullulan or panose, the higher the concentration, the better, but the range of 1 to 30% is preferable. Of course, the concentration of IMIM produced by adding pullulan or panose during the reaction can be increased. Glucose as the other substrate is usually added to the reaction solution from the beginning of the reaction, but it may be added during the reaction.
That is, since TVAII cannot hydrolyze panose and the glucose transfer reaction proceeds even in the presence of panose, glucose is added to increase the IMIM concentration after the high-concentration pullulan solution undergoes enzymatic decomposition to reduce the viscosity. It can also be higher. The enzyme concentration varies depending on the type of enzyme, but is usually 0.0001 to 1.0%.

【0024】IMIMを生成する反応条件としては、酵
素の作用pH及び温度範囲であれば、如何なる条件でもよ
く、好ましくはpH 4.0〜7.0 で、温度20〜80℃の条件が
用いられる。更に、必要に応じて有機溶媒等の添加も可
能である。反応時間は生成物の利用目的に応じて適宜設
定されるが、多くの場合30分〜72時間が好ましい。反応
で得られるIMIMを含む糖液は、常法に従い活性炭に
よる脱色及びイオン交換樹脂による脱塩等の精製操作を
経て、そのままシロップとして利用できる。また、還元
処理すれば糖アルコールとしても利用することができ
る。
The reaction conditions for producing IMIM may be any conditions as long as they are in the pH range and temperature range of action of the enzyme, preferably pH 4.0 to 7.0 and temperature 20 to 80 ° C. Further, an organic solvent or the like can be added if necessary. The reaction time is appropriately set depending on the intended use of the product, but in most cases, 30 minutes to 72 hours is preferable. The IMIM-containing sugar solution obtained by the reaction can be directly used as a syrup after purification operations such as decolorization with activated carbon and desalting with an ion exchange resin according to a conventional method. Further, it can be used as sugar alcohol if subjected to reduction treatment.

【0025】更に、必要に応じてゲル濾過クロマトグラ
フィー、カーボンカラムクロマトグラフィー、イオン交
換樹脂カラムクロマトグラフィーを用いたり、膜分画法
や晶析法等を用いることにより、高純度のIMIMを調
製することができる。
Further, if necessary, high-purity IMIM is prepared by using gel filtration chromatography, carbon column chromatography, ion exchange resin column chromatography, or by using a membrane fractionation method or a crystallization method. be able to.

【0026】[0026]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明は下記実施例によりその技術的範囲が
限定されるものではない。 (実施例1)Thermoactinomyces vulgaris R-47を清水
らの方法(M. Shimizu et al., Agric. Biol. Chem., 4
2, 1681(1978)) により培養し、Marmurの方法(J. Marmu
r, J.Mol. Biol., 3, 208(1961))により本菌の培養菌体
からゲノムDNAを調製した。このゲノムDNAを制限
酵素 Sau3AI で部分消化し、得られた4〜10kbのDNA
断片をpUC119プラスミドの BamHIサイトに導入し
た。こうして得られた組換えプラスミドで大腸菌 JM83
株を形質転換した。
The present invention will be described in more detail with reference to the following examples, but the technical scope of the present invention is not limited by the following examples. (Example 1) Thermoactinomyces vulgaris R-47 was prepared by the method of Shimizu et al. (M. Shimizu et al., Agric. Biol. Chem., 4
2 , 1681 (1978)) and cultured by Marmur's method (J. Marmu
r, J. Mol. Biol., 3 , 208 (1961)), genomic DNA was prepared from cultured cells of this bacterium. This genomic DNA was partially digested with the restriction enzyme Sau3AI and the resulting 4-10 kb DNA was obtained.
The fragment was introduced into the BamHI site of pUC119 plasmid. With the recombinant plasmid thus obtained, E. coli JM83
The strain was transformed.

【0027】TVAII遺伝子を持つ大腸菌の探索は、ヨ
ウ素澱粉反応の有無を指標にして行った。約30,000株よ
り5株のTVAII遺伝子を持つ大腸菌を得、このうち最
も短い4kbの遺伝子をpTO1と名付け、以下、図5に
示す手順に従い、TVAIIの大量生産系の構築を行っ
た。先ず、不要な部分の削除を行った。pTO1のTV
AII遺伝子部分の2.8kb のPstI-PstI 断片をpUC11
9にサブクローニングしたプラスミドpTO124では
TVAII活性がみられた。次に、エキソヌクレアーゼII
I とマングビーンヌクレアーゼを用いる方法により、p
TO124のTVAII遺伝子部分の下流側0.2kb を削っ
たpTO424、及び、更に上流の0.5kb を削ったpT
N1を構築し、これらのプラスミドについてもTVAII
活性がみられることを確認した。こうして得られた2.1k
b のTVAII遺伝子を含むプラスミドpTN1のプロモ
ーター、及びShine-Dalgarnoリボソーム結合配列とし
て、pUC119由来のβ−ガラクトシダーゼ由来のプ
ロモーターの直下に、TVAII遺伝子由来のShine-Dalg
arnoリボソーム結合配列をつないだものをクンケル法に
よる部位指定突然変異の方法で構築した。得られたプラ
スミドpTN302−10で大腸菌 MV1184 株を形質転
換した。この形質転換体は、培養液1L当たり100mg 以
上のTVAIIを生産した。
The search for Escherichia coli having the TVAII gene was carried out by using the presence or absence of iodine starch reaction as an index. From about 30,000 strains, 5 strains of Escherichia coli carrying the TVAII gene were obtained, and the shortest 4 kb gene was named pTO1, and a mass production system of TVAII was constructed according to the procedure shown in FIG. First, unnecessary parts were deleted. pTO1 TV
A 2.8 kb PstI-PstI fragment of the AII gene portion was added to pUC11.
TVAII activity was observed in the plasmid pTO124 subcloned in 9. Next, exonuclease II
By the method using I and mung bean nuclease, p
PTO424 with 0.2 kb downstream of the TVAII gene portion of TO124, and pT with 0.5 kb further upstream
N1 was constructed and TVAII for these plasmids
It was confirmed that activity was observed. 2.1k thus obtained
As a Shine-Dalgarno ribosome binding sequence of the plasmid pTN1 containing the TVAII gene of b, the Shine-Dalg derived from the TVAII gene is directly under the promoter derived from β-galactosidase derived from pUC119.
The arno ribosome binding sequence was constructed by the site-directed mutagenesis method using the Kunkel method. Escherichia coli MV1184 strain was transformed with the obtained plasmid pTN302-10. This transformant produced 100 mg or more of TVAII per liter of culture solution.

【0028】なお、本形質転換体は、Escherichia coli
NK699311 (FERM P-13717)として工業技術院生命工学工
業技術研究所に平成5年7月2日付けにて寄託されてい
る。前記形質転換体1白金耳を培地(1%ペプトン、
0.5%酵母エキス、 0.5%食塩を含む)に接種し、37℃
で16時間培養して種培養を行った。得られた種培養液1
mLを1.6gペプトン、1.0g酵母エキス、 0.5g 食塩、5mg
アンピシリンを含む培地 100mLに加えて、500mL 容坂口
フラスコで37℃で16時間往復振盪して本培養(培地 100
mL×10)した。なお、培養5時間で0.5Mイソプロピルβ
−D−チオガラクトシド0.1mL を培地に添加した。菌体
は培養液を遠心分離(2,000g, 20分)して回収し、5mM
CaCl2を含む100mM Tris-HCl緩衝液(pH 7.5)に懸濁し
た。懸濁菌体は80℃で30分間加熱処理してから超音波処
理により破砕され、遠心分離(7,500g, 10分)により上
清液が回収された。得られた上清液をTVAIIの粗酵素
液とし、反応に用いた。酵素蛋白質の測定はLowry の方
法により行った。
The transformant was Escherichia coli
NK699311 (FERM P-13717) has been deposited at the Institute of Biotechnology, National Institute of Industrial Science on July 2, 1993. The transformant 1 platinum loop was placed in a medium (1% peptone,
0.5% yeast extract and 0.5% sodium chloride), and incubate at 37 ℃
Seed culture was performed by culturing for 16 hours. Obtained seed culture solution 1
mL 1.6g peptone, 1.0g yeast extract, 0.5g salt, 5mg
Add 100 mL of medium containing ampicillin, and shake in a 500 mL Sakaguchi flask at 37 ° C for 16 hours reciprocal shaking to perform main culture (medium 100
mL × 10). In addition, 0.5M isopropyl β for 5 hours of culture
0.1 mL of -D-thiogalactoside was added to the medium. The bacterial cells were collected by centrifuging the culture solution (2,000g, 20 minutes) and collecting 5mM.
The cells were suspended in 100 mM Tris-HCl buffer solution (pH 7.5) containing CaCl 2 . The suspended bacterial cells were heat-treated at 80 ° C. for 30 minutes, then disrupted by ultrasonication, and the supernatant was recovered by centrifugation (7,500 g, 10 minutes). The obtained supernatant was used as a crude enzyme solution of TVAII and used for the reaction. The enzyme protein was measured by the method of Lowry.

【0029】プルランとグルコースを共に5%濃度で20
mMリン酸ナトリウム緩衝液(pH 6.5)2L に溶解し、T
VAIIを85mg加えて40℃で72時間反応させてIMIMを
含む糖液を得た。得られた糖液の1/10をトヨパール H
W40Sカラム(10cm×2m) を用いて分離した。流速は10ml
/分、検出は示差屈折計を用いた。分離したときのパタ
ーンを図6に示す。の画分を分取し、エバポレーター
で濃縮乾固させたところ、IMMを含まないIMIMが
0.5g得られた。の画分については薄層クロマトグラ
フィーによって若干のIMMが含まれていることが判明
した。この若干のIMMを含む粗IMIMの量は約2g
であった。
20% pullulan and glucose at 5% concentration
Dissolve in 2 L of mM sodium phosphate buffer (pH 6.5) and add T
85 mg of VAII was added and reacted at 40 ° C. for 72 hours to obtain a sugar solution containing IMIM. 1/10 of the obtained sugar solution is Toyopearl H
Separation was performed using a W40S column (10 cm x 2 m). Flow rate is 10 ml
/ Min, the differential refractometer was used for detection. The pattern when separated is shown in FIG. Was collected and concentrated to dryness with an evaporator. IIM containing no IMM
0.5 g was obtained. It was found by thin layer chromatography that some of the fractions contained some IMM. The amount of crude IMIM including this slight amount of IMM is about 2 g.
Met.

【0030】[0030]

【発明の効果】本発明によれば、新規イソマルトオリゴ
糖を提供することができる。新規イソマルトオリゴ糖で
ある本発明のIMIMは、近年、機能性食品として注目
されているオリゴ糖の一つであり、低甘味、低カロリ
ー、非発酵性、ビフィズス菌増殖因子、難う蝕性等の機
能性を有し、健康食品素材として有用性の高い糖であ
る。従って、本発明のIMIMは機能性が求められる食
品工業において利用価値の高いオリゴ糖である。
Industrial Applicability According to the present invention, a novel isomaltooligosaccharide can be provided. IMIM of the present invention, which is a novel isomalto-oligosaccharide, is one of oligosaccharides which has been attracting attention as a functional food in recent years, and has low sweetness, low calorie, non-fermentability, bifidobacterial growth factor, carious caries, etc. It is a sugar that has functionality and is highly useful as a health food material. Therefore, the IMIM of the present invention is an oligosaccharide having a high utility value in the food industry where functionality is required.

【図面の簡単な説明】[Brief description of drawings]

【図1】TVAIIの遺伝子の塩基配列及びアミノ酸配列
を示す図である。
FIG. 1 shows the nucleotide sequence and amino acid sequence of the TVAII gene.

【図2】グルコースの存在下でプルランにTVAIIを作
用させて得られる反応液の薄層クロマトグラフィーを示
す図である。
FIG. 2 is a diagram showing thin layer chromatography of a reaction solution obtained by allowing pullulan to act on TVAII in the presence of glucose.

【符号の説明】[Explanation of symbols]

P TVAIIによるプルラン分解物 MOS 一連のマルトオリゴ糖 Degradation product of pullulan by PTV AII MOS Series of maltooligosaccharides

【図3】IMIMの13C−NMRスペクトルを示す図で
ある。
FIG. 3 is a view showing a 13 C-NMR spectrum of IMIM.

【図4】IMIMにイソマルトデキストラナーゼを作用
させて得られる反応液の薄層クロマトグラフィーを示す
図である。
FIG. 4 is a diagram showing thin layer chromatography of a reaction solution obtained by allowing IMIM to act with isomaltdextranase.

【符号の説明】[Explanation of symbols]

MOS 一連のマルトオリゴ糖 1 イソマルトース 2 IMM 3 1%IMMを20mM酢酸緩衝液(pH5.3) に溶かし
たもの90μl に対し、イソマルトデキストラナーゼ(5 U
nit/ml) を10μl 加え、40℃で1時間反応させたもの 4 IMIM 5 1%IMIMを20mM酢酸緩衝液(pH5.3) に溶か
したもの90μl に対し、イソマルトデキストラナーゼ(5
Unit/ml) を10μl 加え、40℃で1時間反応させたもの
MOS A series of maltooligosaccharides 1 isomaltose 2 IMM 3 1% IMM dissolved in 20 mM acetate buffer (pH 5.3) 90 μl of isomaltodextranase (5 U
nit / ml) 10 μl and reacted at 40 ° C. for 1 hour 4 IMIM 5 1% IMIM dissolved in 20 mM acetate buffer (pH 5.3) 90 μl against isomaltodextranase (5
Unit / ml) was added at 10 μl and reacted at 40 ° C for 1 hour

【図5】TVAIIの大量生産系の構築の手順を示す図で
ある。
FIG. 5 is a diagram showing a procedure for constructing a mass production system of TVAII.

【図6】糖液をカラムクロマトグラフィーで分離したと
きのパターンを示す図である。
FIG. 6 is a diagram showing a pattern when a sugar solution is separated by column chromatography.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 次式(I): 【化1】 で示される新規イソマルトオリゴ糖。1. The following formula (I): A novel isomalto-oligosaccharide represented by. 【請求項2】 以下に示す理化学的性質: (1)作用 (a)澱粉から主にマルトースを生成する。 (b)プルランからパノースを生成する。 (c)グルコースの存在下でプルランを加水分解し、次
式(I): 【化2】 で示されるイソマルトオリゴ糖及び次式(II): 【化3】 で示されるイソマルトオリゴ糖を生成する。 (2)基質特異性 澱粉及びプルランのα−1,4−グルコシド結合を加水
分解し、それぞれマルトース及びパノースを生成する。
生成したパノースは分解せず、グルコースの存在下で前
記式(I)で示されるイソマルトオリゴ糖及び前記式
(II)で示されるイソマルトオリゴ糖を生成する。前記
式(II)で示されるイソマルトシルマルトースを分解す
る。 (3)至適pH及びpH安定性 プルランを基質としてpH 6〜7 に至適pHがあり、pH 6〜
9 で安定である。 (4)至適温度及び熱安定性 プルランを基質として45〜55℃に至適温度があり、50℃
まで安定である。 (5)分子量は約60,000である(SDSポリアクリルア
ミドゲル・スラブ電気泳動法による)。を有するα−ア
ミラーゼ。
2. Physicochemical properties shown below: (1) Action (a) Maltose is mainly produced from starch. (B) Panose is produced from pullulan. (C) Pullulan is hydrolyzed in the presence of glucose to give the following formula (I): And an isomaltooligosaccharide represented by the following formula (II): To produce the isomalto-oligosaccharide. (2) Substrate specificity The α-1,4-glucoside bond of starch and pullulan is hydrolyzed to produce maltose and panose, respectively.
The produced panose is not decomposed to produce the isomaltooligosaccharide represented by the formula (I) and the isomaltooligosaccharide represented by the formula (II) in the presence of glucose. The isomaltosyl maltose represented by the formula (II) is decomposed. (3) Optimum pH and pH stability With pullulan as a substrate, there is an optimum pH between pH 6 and 7,
It is stable at 9. (4) Optimum temperature and thermal stability With pullulan as a substrate, the optimum temperature is 45-55 ℃, and 50 ℃
Is stable up to. (5) The molecular weight is about 60,000 (by SDS polyacrylamide gel slab electrophoresis). Α-amylase having
【請求項3】 グルコースの存在下において、α−1,
4−グルコシド結合を加水分解する酵素をプルラン又は
パノースに作用させることを特徴とする請求項1記載の
新規イソマルトオリゴ糖の製造法。
3. In the presence of glucose, α-1,
The method for producing a novel isomaltooligosaccharide according to claim 1, wherein an enzyme that hydrolyzes a 4-glucoside bond is allowed to act on pullulan or panose.
【請求項4】 α−1,4−グルコシド結合を加水分解
する酵素がプルランからパノースを生成するα−アミラ
ーゼである請求項3記載の製造法。
4. The method according to claim 3, wherein the enzyme that hydrolyzes the α-1,4-glucoside bond is α-amylase that produces panose from pullulan.
【請求項5】 α−1,4−グルコシド結合を加水分解
する酵素が請求項2記載のα−アミラーゼである請求項
3記載の製造法。
5. The method according to claim 3, wherein the enzyme that hydrolyzes an α-1,4-glucoside bond is the α-amylase according to claim 2.
JP19388193A 1993-07-12 1993-07-12 Novel isomaltoligosaccharides and enzymes for producing them Expired - Lifetime JP3537464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19388193A JP3537464B2 (en) 1993-07-12 1993-07-12 Novel isomaltoligosaccharides and enzymes for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19388193A JP3537464B2 (en) 1993-07-12 1993-07-12 Novel isomaltoligosaccharides and enzymes for producing them

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003424104A Division JP3605410B2 (en) 2003-12-22 2003-12-22 Production method of new isomaltoligosaccharide

Publications (2)

Publication Number Publication Date
JPH0725891A true JPH0725891A (en) 1995-01-27
JP3537464B2 JP3537464B2 (en) 2004-06-14

Family

ID=16315296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19388193A Expired - Lifetime JP3537464B2 (en) 1993-07-12 1993-07-12 Novel isomaltoligosaccharides and enzymes for producing them

Country Status (1)

Country Link
JP (1) JP3537464B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568839B2 (en) 2011-01-11 2020-02-25 Capsugel Belgium Nv Hard capsules
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568839B2 (en) 2011-01-11 2020-02-25 Capsugel Belgium Nv Hard capsules
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules
US11878079B2 (en) 2017-04-14 2024-01-23 Capsugel Belgium Nv Pullulan capsules

Also Published As

Publication number Publication date
JP3537464B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
KR100714912B1 (en) Hybrid genes and enzymes of glucanase and dextransucrase and processes for preparing isomalto-oligosaccharides or dextran using the same
JP2002519054A (en) Starch debranching enzyme
JPH08336388A (en) Recombinant heat-resistant enzyme capable of liberating trehalose from non-reducing carbohydrate
KR100395445B1 (en) Recombinant thermostable enzyme which forms non-reducing saccharide from reducing amylaceous saccharide
US5958749A (en) DNA encoding a polypeptide possessing maltotetraose-forming amylase activity
Takasaki et al. Maltotetraose-producing amylase from Bacillus sp. MG-4
JP3605410B2 (en) Production method of new isomaltoligosaccharide
JP3537464B2 (en) Novel isomaltoligosaccharides and enzymes for producing them
US5278059A (en) Polypeptide possessing cyclomaltodextrin glucanotransferase activity
WO2019100676A1 (en) Preparation method for enzyme-modified stevioside, enzyme for said preparation method, and application thereof
JP4012595B2 (en) Method for producing oligosaccharide composition
KR100735819B1 (en) Enzymatic preparation of highly purified maltooligosaccharide
KR100898384B1 (en) Thermostable sulfolobus sulfataricus-derived ?-glycosyl transferase and preparation method of branched cyclodextrin with the same
KR100387286B1 (en) Method for production of isomaltooligosaccharides
KR0133727B1 (en) Polypeptide possessing isoamylase activity andpre paration method thereof
KR940003652B1 (en) Method of preparing of polypeptide possessing cyclomaltodextrin glucano transferase activity
JP2992830B2 (en) New β-glucuronidase
西本友之 et al. Production of Cyclic Tetrasaccharide with 6-. ALPHA.-Glucosyltransferase and. ALPHA.-Isomaltosyltransferase
JP3427984B2 (en) A novel thermostable sclerooligosaccharide-forming enzyme and its use
KR100367154B1 (en) Amylase with Acabose Resolution, Genes That Encode It, Microorganisms That Produce It, and Its Uses
JP3779034B2 (en) Polypeptide having β-fructofuranosidase activity
KR100604401B1 (en) Protein with the hydrolysis of amylopectin, starch, glycogen and amylose, gene encoding said protein, the expressing host cell and methods for producing said protein
JP4108154B2 (en) α-1 → 3-bond-containing saccharide-forming enzyme gene and use thereof
JPS60186296A (en) Saccharification of starch
KR20100083467A (en) Glucanase from thermophile, thermotoga lettingae tmo baa-301 and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term