JPH07258754A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH07258754A
JPH07258754A JP27971794A JP27971794A JPH07258754A JP H07258754 A JPH07258754 A JP H07258754A JP 27971794 A JP27971794 A JP 27971794A JP 27971794 A JP27971794 A JP 27971794A JP H07258754 A JPH07258754 A JP H07258754A
Authority
JP
Japan
Prior art keywords
iron scrap
calcium chloride
tin
copper
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27971794A
Other languages
Japanese (ja)
Inventor
Tadahiro Inasumi
忠弘 稲角
Yoshio Okuno
嘉雄 奥野
Masami Fujimoto
政美 藤本
Masanori Tokuda
昌則 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27971794A priority Critical patent/JPH07258754A/en
Publication of JPH07258754A publication Critical patent/JPH07258754A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To evaporate away copper, tin and zinc included in iron scrap in the case of using scrap for sintered ore. CONSTITUTION:Calcium chloride is mixed at a ratio of 1 to 5 times the copper, tin and zinc equiv., by weight, included in the chips of the iron scrap into these chips. This mixture is charged to a range of a layer height <=300mm from a grate plane 11 of a sintering layer and is sintered. As a result, the sintering is executed while the copper, tin and zinc included in the iron scrap are removed and, therefore, the restriction on the amt. of the iron scrap to be used is eliminated and the mount of use is increased. The consumption unit of coke is thus lowered and NOx and SOx are decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、DL式およびGW式な
どの空気下方吸引式焼結機による鉄鉱石焼結鉱の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing iron ore sintered ore by a downward air suction type sintering machine such as DL type and GW type.

【0002】[0002]

【従来の技術】DL式鉄鉱石焼結法において、省エネル
ギー、資源の有効利用、さらには地球環境の問題の観点
から鉄スクラップのリサイクル利用が益々重要になって
きている。これに対し、特開昭52−53704号公
報、特願平5−283650号明細書に記載されている
ように、焼結に鉄スクラップを使用する技術が効果をあ
げているが、鉄スクラップに含まれた亜鉛は高炉内に蓄
積され、高炉操業を不安定にする他、錫、銅は製銑、製
鋼においても除去することができず鋼に残留し、鋼の性
状に悪影響を与えることになるため、スクラップに含ま
れる微量金属成分が問題になり、鉄スクラップの使用量
が制約されている。そこで、これらスクラップ中に含ま
れた銅、錫、亜鉛などの微量成分が除去できる焼結方法
が求められている。
2. Description of the Related Art In DL type iron ore sintering method, recycling of iron scrap is becoming more and more important from the viewpoint of energy saving, effective use of resources, and global environmental problems. On the other hand, as described in Japanese Patent Application Laid-Open No. 52-53704 and Japanese Patent Application No. 5-283650, the technique of using iron scrap for sintering is effective. The contained zinc accumulates in the blast furnace and makes the operation of the blast furnace unstable, and tin and copper cannot be removed even in the ironmaking and steelmaking, and remain in the steel, which adversely affects the properties of the steel. Therefore, the trace metal component contained in scrap becomes a problem, and the amount of iron scrap used is limited. Therefore, there is a demand for a sintering method that can remove trace components such as copper, tin, and zinc contained in these scraps.

【0003】[0003]

【発明が解決しようとする課題】鉄スクラップ中の銅、
錫、亜鉛除去の方法には、塩化揮発がある。塩化物の沸
点は塩化亜鉛732℃、塩化錫623℃など比較的低温
度であり、蒸気圧も高いため微量元素の塩化揮発は容易
に行えることが知られている。しかし、銅、錫、亜鉛を
同時に塩化揮発させる最適な組み合わせの温度条件、雰
囲気の詳細は不明であった。
[Problems to be Solved by the Invention] Copper in iron scrap,
Chlorine volatilization is a method for removing tin and zinc. It is known that the boiling point of chloride is relatively low such as zinc chloride 732 ° C. and tin chloride 623 ° C., and vaporization of trace elements can be easily volatilized because of high vapor pressure. However, the details of the optimum combination of temperature conditions and atmosphere for simultaneously volatilizing and volatilizing copper, tin, and zinc were unclear.

【0004】本発明は、上述のような問題点に着目し、
焼結鉱の焼結において鉄スクラップ使用の制約条件とな
っている微量金属の問題を解決し、制約なしに大量に鉄
スクラップを使用して焼結できる方法を提供する。
The present invention focuses on the above-mentioned problems,
(EN) A method of solving the problem of a trace amount of metal, which is a constraint condition for using iron scrap in the sintering of sinter, and providing a method of sintering using a large amount of iron scrap without limitation.

【0005】[0005]

【課題を解決するための手段】本発明の焼結鉱の製造方
法は、空気下方吸引式焼結鉱の製造方法において、鉄ス
クラップに含まれる銅、錫及び亜鉛当量の1〜5倍の重
量比の塩化カルシウムを鉄スクラップと混合し、混合物
を空気下方吸引式焼結機の焼結層のグレート面よりの層
高300mm以下の範囲に装入して焼結し、鉄スクラッ
プ中に含まれた銅、錫及び亜鉛を塩化揮発させ、除去し
ながら焼結することを特徴とする焼結鉱の製造方法であ
る。15〜150mmのサイズの鉄スクラップを塩化カ
ルシウムと混合すること、鉄スクラップのチップに塩化
カルシウムのスラリーを吹き付けもしくは浸漬させた
後、焼結機に装入して焼結することは好ましい。
The method for producing a sinter according to the present invention is a method for producing an air downward suction type sinter, wherein the weight is 1 to 5 times the equivalent of copper, tin and zinc contained in iron scrap. The ratio of calcium chloride is mixed with iron scrap, and the mixture is charged into a range of layer height 300mm or less from the great surface of the sintered layer of the downward air suction type sintering machine and sintered to be contained in the iron scrap. The method for producing a sintered ore is characterized in that copper, tin, and zinc are volatilized by volatilization and sintered while being removed. It is preferable to mix an iron scrap having a size of 15 to 150 mm with calcium chloride, and to spray or immerse a chip of the iron scrap in a slurry of calcium chloride, and then load the iron scrap into a sintering machine for sintering.

【0006】[0006]

【作用】塩化揮発では、温度1000〜1400℃、酸
素分圧10-6〜10-2atmにおいて最も効率的に鉄ス
クラップ中の銅、錫、亜鉛が塩化揮発できる。1000
℃未満では還元雰囲気においても固体中に特に銅が残存
するので好ましくない。また、高温になるほど銅、錫、
亜鉛の塩化揮発だけでなく還元揮発も始まるが、140
0℃超では鉄スクラップ中の鉄の揮発が始まるので好ま
しくない。したがって、鉄スクラップに含まれる銅、
錫、亜鉛を除去するための加熱温度は1000〜140
0℃が好ましい。また、1000〜1400℃の範囲で
酸素分圧が10-10 〜10-2atmのときに銅、錫、亜
鉛の除去ができるが、酸素分圧が10-6atm未満では
鉄の還元揮発も始まるため、酸素分圧は10-6〜10-2
atmが好ましい。酸素分圧の上限は、銅では空気まで
問題ないが、錫の場合は揮発除去が困難な酸化錫(Sn
2 )が生成するので10-2atmが上限である。
In chloride volatilization, copper, tin, and zinc in the iron scrap can be most efficiently volatilized under a temperature of 1000 to 1400 ° C. and an oxygen partial pressure of 10 −6 to 10 −2 atm. 1000
If the temperature is lower than ℃, copper remains in the solid even in a reducing atmosphere, which is not preferable. Also, the higher the temperature, the more copper, tin,
In addition to chloride volatilization and reduction volatilization of zinc, 140
If the temperature exceeds 0 ° C, volatilization of iron in the iron scrap begins, which is not preferable. Therefore, copper contained in iron scrap,
The heating temperature for removing tin and zinc is 1000 to 140.
0 ° C is preferred. Further, copper, tin, and zinc can be removed when the oxygen partial pressure is 10 -10 to 10 -2 atm in the range of 1000 to 1400 ° C, but the reduction volatilization of iron also occurs when the oxygen partial pressure is less than 10 -6 atm. Since it starts, the oxygen partial pressure is 10 -6 to 10 -2
atm is preferred. As for the upper limit of the oxygen partial pressure, copper can be used up to air, but tin is difficult to be volatilized and removed.
Since O 2 ) is generated, the upper limit is 10 −2 atm.

【0007】本発明は、空気下方吸引式焼結機の焼結中
の雰囲気が1000〜1400℃、酸素分圧が10-6
10-2atmであることに着目し、特別な装置を必要と
せず、焼結機に塩化カルシウムを混合した鉄スクラップ
を、鉄スクラップ中から蒸発した微量金属が下層の原料
層に凝固沈積しない焼結層の下層に装入するだけで、鉄
スクラップ中に含まれた銅、錫、亜鉛を塩化揮発除去で
き、さらに、処理した鉄スクラップを焼結鉱として高炉
に装入できる。
According to the present invention, the atmosphere during sintering of the downward air suction type sintering machine is 1000 to 1400 ° C. and the oxygen partial pressure is 10 −6 to.
Focusing on 10 -2 atm, it does not require any special equipment and burns iron scrap mixed with calcium chloride in a sintering machine so that trace metals evaporated from the iron scrap do not solidify and deposit in the lower raw material layer. Copper, tin, and zinc contained in the iron scrap can be volatilized by volatilization by simply charging the lower layer of the binder, and the treated iron scrap can be charged into the blast furnace as sinter.

【0008】本発明について図面を参照しながら詳細に
説明する。
The present invention will be described in detail with reference to the drawings.

【0009】図1に示すように、混合機3−1で鉄スク
ラップに含まれる銅、錫及び亜鉛当量以上の重量比で塩
化カルシウムを鉄スクラップと混合した後、焼結用配合
原料に添加したものを、下段原料装入装置6−1でDL
式焼結機8の焼結層のグレート面11から層高300m
m以下に装入し、さらに別の原料系統で鉄スクラップを
含まない通常の焼結用配合原料を上段原料装入装置6−
2で重ねて焼結層上層部に装入する。装入された原料は
点火炉7で着火され、順次表層から下層に向けて焼結さ
れるが、点火炉7を通過した後はストランドの進行とと
もに焼結床の上層から焼結が完了し、固結し、冷却さ
れ、シンターケーキができる。焼結反応が行われている
焼結溶融帯10より上方は焼結反応が完了したいわゆる
シンターケーキ部分である。
As shown in FIG. 1, calcium chloride was mixed with iron scrap in a mixer 3-1 at a weight ratio of copper, tin and zinc equivalents or more contained in the iron scrap, and then added to a raw material for sintering. DL in the lower raw material charging device 6-1
300m from the great surface 11 of the sintered layer of the rotary sintering machine 8
The upper raw material charging device 6-
2 are piled up and charged into the upper layer of the sintered layer. The charged raw material is ignited in the ignition furnace 7, and is sequentially sintered from the surface layer to the lower layer, but after passing through the ignition furnace 7, the sintering is completed from the upper layer of the sintering bed as the strand progresses, Caking and cooling gives a sinter cake. Above the sintering melt zone 10 where the sintering reaction is performed is a so-called sinter cake portion where the sintering reaction is completed.

【0010】このように、空気下方吸引式鉄鉱石焼結法
においては空気が下方に吸引され、この空気で原料に混
合した粉コークスを燃焼させることにより、パレット上
の原料の厚さ方向数mm乃至数十mmの焼結溶融帯が下
方へ移動していく形で焼結反応が進行する。下層になる
ほど、焼結が完了した上層のシンターケーキ層を通過し
て予熱された空気で焼結されるのでコークスの燃焼は高
温になり、還元ポテンシャルが強くなる。数学モデルで
コークスの燃焼条件を種々検討し、実験で検討した結
果、グレート面より高さ300mm以下の層においては
コークスの燃焼が1000〜1400℃になり、酸素分
圧が10-6〜10-2atmと還元ポテンシャルが強く、
かつ焼結溶融帯の炎前線がグレート面に到着するため、
下層に温度の低い原料層がなくなり、蒸発した微量金属
が焼結層に凝固沈積することがなくなり、微量金属を除
去できた。したがって、塩化カルシウムをグレート面よ
り高さ300mm以下の層で鉄スクラップと共存させる
ことにより、微量金属を有効に除去し、鉄スクラップを
使用しても化学成分として優秀な焼結鉱を製造できる。
As described above, in the air downward suction iron ore sintering method, air is sucked downward, and the powder coke mixed with the raw material is burned by this air, whereby a few mm in the thickness direction of the raw material on the pallet. The sintering reaction proceeds in such a manner that the sintering melt zone of several tens of mm moves downward. The lower the layer is, the more the sintering is completed, and the higher the sintering cake layer passes, and the more the sintering is performed with the preheated air, so that the combustion temperature of the coke becomes higher and the reduction potential becomes stronger. As a result of various examinations of coke combustion conditions using a mathematical model and experiments, coke combustion was 1000 to 1400 ° C. and oxygen partial pressure was 10 −6 to 10 − in a layer having a height of 300 mm or less from the great surface. 2 atm and strong reduction potential,
And because the flame front of the sinter melting zone arrives at the Great surface,
The lower temperature raw material layer disappeared, the evaporated trace metal did not solidify and deposit in the sintered layer, and the trace metal could be removed. Therefore, by allowing calcium chloride to coexist with iron scrap in a layer having a height of 300 mm or less from the grate surface, it is possible to effectively remove a trace amount of metal and produce a sintered ore having excellent chemical components even if iron scrap is used.

【0011】なお、鉄スクラップと混合する塩化カルシ
ウムは塩化物であればよく、通常入手しやすい経済的な
材料として塩化カルシウムを選んだが、塩化マグネシウ
ム、塩化バリウムも使用可能である。
The calcium chloride to be mixed with the iron scrap may be a chloride, and calcium chloride was selected as the economical material which is usually easily available, but magnesium chloride and barium chloride can also be used.

【0012】また、塩化カルシウムの混合割合は、重量
比で鉄スクラップに含まれる銅、錫及び亜鉛の当量と同
量が最低限必要であり、5倍を超えると微量金属の除去
効率は向上し、混合率に比例した微量金属成分の除去が
可能である。
Further, the mixing ratio of calcium chloride is required to be the same as the equivalent amount of copper, tin and zinc contained in the iron scrap in a weight ratio, and if it exceeds 5 times, the trace metal removal efficiency is improved. It is possible to remove trace metal components in proportion to the mixing ratio.

【0013】塩化カルシウムと鉄スクラップの混合方法
として、図1では塩化カルシウムのスラリーに浸漬する
方法、図2では該スラリーを吹き付ける方法を示す。塩
化カルシウムは良好な水溶性物質で、容易にスラリーを
製造できる。また、スラリー状の塩化カルシウムは粘着
性が強く、付着した塩化カルシウムのスラリーは容易に
とれない。上記のいずれの方法も塩化カルシウムの添加
量の精度は良くないが、微量金属成分に対応する塩化カ
ルシウムの量は少なく、かつ塩化カルシウムの添加量比
は銅、錫及び亜鉛当量の1〜5の範囲であれば良く、こ
れらの方法で充分である。塩化カルシウムの添加量比の
精度を高める必要がある場合は、図3に示すように、従
来から良く知られた方法である、鉄スクラップと塩化カ
ルシウムを原料槽にいれて秤量切り出しし、ドラム等の
混合器で混合するのが良い。ただし、この方法は原料の
2段装入装置が必要で、通常の1段装入装置しかない場
合は適用できない。しかし、鉄スクラップとして15m
m以上150mm以下のサイズのものを使用し、塩化カ
ルシウムを鉄スクラップに含まれる銅、錫及び亜鉛の当
量の1〜5倍の割合で混合したものを配合原料に添加し
て1段装入装置で装入することによっても同じ効果が発
揮できる。焼結機では装入時には焼結層層高方向に粒度
偏析させ、焼結層の下は粒度が大きく、焼結層の上は粒
度が小さくなるように装入して操業し、偏析の不足する
ものでは偏析を強化することが一般的に行われている。
したがって、通常平均2〜3mmの原料を用いる鉄鉱石
焼結の場合、15mm以上のサイズの鉄スクラップを使
用すれば塩化カルシウムと共に焼結層下層に偏析され
る。鉄スクラップのサイズが15mm未満では下層部に
多くは偏析するが上層部に残るものもあり、充分に微量
金属を除去することは難しく、除去の効率が低下する。
また150mm超では焼結機で焼結鉱にならない。した
がって、焼結機に装入する鉄スクラップのサイズは15
mm以上150mm以下が好ましい。
As a method for mixing calcium chloride and iron scrap, FIG. 1 shows a method of immersing in calcium chloride slurry, and FIG. 2 shows a method of spraying the slurry. Calcium chloride is a good water-soluble substance and can easily be made into a slurry. Further, calcium chloride in the form of slurry has a strong adhesiveness, and a slurry of adhered calcium chloride cannot be easily removed. Although neither of the above methods is accurate in the amount of calcium chloride added, the amount of calcium chloride corresponding to the trace metal component is small, and the amount ratio of calcium chloride added is 1 to 5 of copper, tin and zinc equivalents. If it is within the range, these methods are sufficient. When it is necessary to improve the accuracy of the calcium chloride addition ratio, as shown in FIG. 3, a method well known in the art, such as iron scrap and calcium chloride, is put into a raw material tank, weighed and cut out, and then the drum or the like. It is better to mix with a mixer. However, this method requires a two-stage charging device for raw materials and cannot be applied when there is only a normal one-stage charging device. However, 15m as iron scrap
A one-stage charging device using a material having a size of m or more and 150 mm or less and adding calcium chloride at a ratio of 1 to 5 times the equivalent of copper, tin and zinc contained in the iron scrap to the blended raw material The same effect can be achieved by charging with. In the sintering machine, the particles are segregated in the height direction of the sintered layer at the time of charging, and the particle size is large below the sintered layer and small above the sintered layer. In general, segregation is generally strengthened.
Therefore, in the case of iron ore sintering that normally uses an average of 2 to 3 mm of raw material, if iron scrap having a size of 15 mm or more is used, it is segregated in the lower layer of the sintered layer together with calcium chloride. If the size of the iron scrap is less than 15 mm, most of it segregates in the lower layer, but some remains in the upper layer, and it is difficult to remove a trace amount of metal sufficiently, and the removal efficiency decreases.
If it exceeds 150 mm, it will not be a sinter by the sintering machine. Therefore, the size of the iron scrap charged into the sintering machine is 15
It is preferably from mm to 150 mm.

【0014】鉄スクラップのチップと塩化カルシウムを
単に混合した場合は、原料の装入時に塩化カルシウムの
一部が鉄スクラップから分離する場合もあるが、鉄スク
ラップのチップに塩化カルシウムのスラリーを吹き付け
もしくは溶液中に浸漬後に焼結原料に添加したものは、
塩化カルシウムの混合率は厳密にはできないが、銅、錫
及び亜鉛当量以上にはでき、また、スラリー状の塩化カ
ルシウムは粘着性が強いため塩化カルシウムが原料装入
までの輸送中に鉄スクラップから離脱する率が少なくな
り、銅、錫及び亜鉛の微量金属の除去効果が安定する。
When iron scrap chips and calcium chloride are simply mixed, a part of the calcium chloride may be separated from the iron scrap when the raw material is charged, but the iron scrap chips are sprayed with a slurry of calcium chloride or What was added to the sintering raw material after soaking in the solution,
The mixing ratio of calcium chloride cannot be strict, but it can be made equal to or more than copper, tin, and zinc equivalents, and since calcium chloride in a slurry form has strong adhesiveness, calcium chloride is removed from scrap iron during transportation until it is charged into the raw material. The rate of separation is small, and the effect of removing trace metals such as copper, tin, and zinc is stable.

【0015】本発明では融点が772℃と低い塩化カル
シウムを用いるので、加熱中に溶融塩化カルシウムの溶
融膜が鉄スクラップ表面に形成され、固体−液体間の反
応が起こり、液体と固体の間の反応のため気固反応にく
らべて反応速度が極めて高くできる。
In the present invention, since calcium chloride having a low melting point of 772 ° C. is used, a molten film of molten calcium chloride is formed on the surface of iron scrap during heating, a solid-liquid reaction occurs, and a liquid-solid reaction occurs. Because of the reaction, the reaction rate can be made extremely high as compared with the gas-solid reaction.

【0016】なお、鉄スクラップ表面で固液反応が進む
ためには、鉄スクラップに含まれる銅、錫、亜鉛がスク
ラップ表面に固着していることが望ましいが、銅は鉄ス
クラップとは独立に単体で含まれる場合が多く、また
錫、亜鉛は表面処理鋼板に多く含まれ、鋼板の表面に固
着しているので有利である。
In order for the solid-liquid reaction to proceed on the surface of the iron scrap, it is desirable that copper, tin, and zinc contained in the iron scrap adhere to the surface of the scrap, but copper is a single substance independent of the iron scrap. In many cases, tin and zinc are contained in the surface-treated steel sheet in a large amount and adhere to the surface of the steel sheet, which is advantageous.

【0017】排気中に塩化物として排出した微量の銅、
錫、亜鉛は排ガス中の酸素と反応して酸化物となり、ダ
スト中に補集され、ダストとともに系外に放出される。
系外で還元炉方式のダスト処理により非鉄金属と鉄とに
分離され、銅、錫、亜鉛は非鉄金属原料となる。
A trace amount of copper discharged as chloride in the exhaust gas,
Tin and zinc react with oxygen in the exhaust gas to form oxides, which are collected in the dust and released together with the dust to the outside of the system.
Outside the system, it is separated into non-ferrous metal and iron by dust treatment in a reducing furnace system, and copper, tin, and zinc become non-ferrous metal raw materials.

【0018】[0018]

【実施例1】焼結面積600m2 (5m幅×120mス
トランド長さ)で2段装入装置を有するDL式鉄鉱石焼
結機で、20〜80mmサイズの鉄スクラップを全原料
の3wt%使用し、層厚600mm、コークス原単位4
0kg/tで行っていた焼結操業で、焼結層の下段に装
入する原料系統に、鉄スクラップチップ片と塩化カルシ
ウムとを予め鉄スクラップ1に対し塩化カルシウム0.
004の割合で混合した混合物3%を添加するように鉄
スクラップの添加方法を変更し、焼結層の下層部に装入
して焼結した。鉄スクラップチップ片は缶チップで、鉄
に対し重量比で銅0.014%、錫0.169%、亜鉛
0.004%を含有していたので、3微量金属元素の当
量の塩化カルシウムは鉄スクラップ1に対し0.187
%であった。塩化カルシウムが100%有効に作用する
ことは難しいので、鉄スクラップ中の銅、錫、亜鉛当量
の約倍量の0.4%とした。焼結層の上層の層厚は30
0mm、下層部の層厚も300mmに調整した。焼結時
に焼結溶融帯がグレート面よりの層高で300mm以下
になった際の温度は1250〜1350℃、酸素分圧は
10-4atmであった。微量元素の問題が解消したこと
を確認した後、鉄スクラップを10wt%まで増量して
操業した。本発明実施前後の焼結鉱中の微量元素の成分
の差、コークス原単位、NOx、SOxを表1に示す。
原料中に含まれていた銅は50%、錫は75%、亜鉛は
85%除去でき、微量金属の除去率が向上し、鉄スクラ
ップ使用量を増すとコークス原単位が改善されたほか、
NOx、SOxが低減できた。
Example 1 A DL type iron ore sinter machine having a sintering area of 600 m 2 (5 m width × 120 m strand length) and a two-stage charging device, using 20 wt. And layer thickness 600mm, coke unit 4
In the sintering operation which was carried out at 0 kg / t, iron scrap chip pieces and calcium chloride were preliminarily added to the iron scrap 1 and calcium chloride 0.
The addition method of the iron scrap was changed so that 3% of the mixture mixed at a ratio of 004 was added, and the mixture was charged into the lower layer portion of the sintered layer and sintered. The iron scrap chip pieces were can chips and contained 0.014% by weight of copper, 0.169% of tin, and 0.004% of zinc by weight ratio to iron. Therefore, calcium chloride equivalent to 3 trace metal elements is iron. 0.187 for scrap 1
%Met. Since it is difficult for calcium chloride to act 100% effectively, it was set to 0.4%, which is about twice the equivalent of copper, tin and zinc in the iron scrap. The layer thickness of the upper layer of the sintered layer is 30
The thickness of the lower layer was adjusted to 0 mm and the layer thickness of the lower layer was adjusted to 300 mm. At the time of sintering, the temperature was 1250 to 1350 ° C. and the oxygen partial pressure was 10 −4 atm when the layer thickness of the sintered melt zone was 300 mm or less from the grate surface. After confirming that the problem of trace elements had been resolved, the amount of iron scrap was increased to 10 wt% for operation. Table 1 shows the difference in the components of the trace elements in the sintered ore before and after carrying out the present invention, the basic unit of coke, NOx, and SOx.
50% of copper, 75% of tin and 85% of zinc contained in the raw materials could be removed, the removal rate of trace metals was improved, and the coke consumption rate was improved when the amount of iron scrap was increased.
NOx and SOx could be reduced.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【実施例2】焼結面積280m2 (4m幅×70mスト
ランド長さ)で通常のシュート装入装置を有するDL式
鉄鉱石焼結機で、20〜80mmのサイズの鉄スクラッ
プを全原料の10wt%使用し、層厚650mm、コー
クス原単位21kg/tで行っていた焼結操業で、20
〜80mmの鉄スクラップチップ片とスラリー状の塩化
カルシウムとを、鉄スクラップチップ片1に対し塩化カ
ルシウム0.002の割合になるように予め吹き付け機
で混合した混合物を鉄スクラップが全原料の10%とな
るように焼結機に偏析装入するように鉄スクラップの添
加方法を変更し、装入して焼結した。鉄スクラップチッ
プ片は缶チップで、鉄に対し重量比で銅0.014%、
錫0.169%、亜鉛0.004%を含有していたの
で、3微量金属元素の当量の塩化カルシウムは鉄スクラ
ップ1に対し0.187%であった。したがって塩化カ
ルシウムの添加量はほぼ当量に等しい。焼結ベッド下層
部250mm以下に鉄スクラップチップ片が偏析してい
ることをパレット抜き取り試験で確認した。焼結時に焼
結溶融帯がグレート面よりの層高で250mm以下にな
った際の温度は1280〜1370℃、酸素分圧は10
-5atmであった。本発明実施前後の焼結鉱中の微量元
素の成分の差を表2に示す。鉄スクラップを全原料の2
0wt%添加した場合においても、Cuを始め微量金属
の除去率が著しく向上した。
[Example 2] A DL type iron ore sintering machine having a sintering area of 280 m 2 (4 m width x 70 m strand length) and a normal chute charging device was used, and iron scrap of a size of 20 to 80 mm was used as a total raw material of 10 wt. %, The layer thickness is 650 mm, and the coke unit is 21 kg / t.
Iron scrap chip pieces of ~ 80 mm and slurry calcium chloride were mixed in advance with a spraying machine so that the ratio of calcium chloride 0.002 to iron scrap chip piece 1 was 10% of all raw materials. The method of adding the iron scrap was changed so as to segregate the mixture into the sintering machine, and the mixture was charged and sintered. Iron scrap chip pieces are can chips, and 0.014% by weight of copper to iron,
Since it contained 0.169% tin and 0.004% zinc, the equivalent calcium chloride content of the three trace metal elements was 0.187% based on 1 scrap iron. Therefore, the amount of calcium chloride added is almost equivalent. It was confirmed by a pallet sampling test that iron scrap chip pieces were segregated in the lower layer portion of the sintering bed of 250 mm or less. At the time of sintering, the temperature when the molten zone of the sintered zone became 250 mm or less at the layer height from the grate surface was 1280 to 1370 ° C., and the oxygen partial pressure was 10
It was -5 atm. Table 2 shows the difference in the components of the trace elements in the sintered ore before and after the present invention was carried out. Iron scraps are all raw materials 2
Even when 0 wt% was added, the removal rate of trace metals including Cu was remarkably improved.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明により、空気下方吸引式焼結機を
用い特別な処理を行うことなく、鉄スクラップ中に含ま
れた銅、錫、亜鉛などの鋼の性状に良くない微量成分を
揮発除去しながら焼結できるので、従来、鋼の性状を劣
化させていた鉄スクラップの使用量の制約を解消して使
用量を増加でき、鉄スクラップをコークス粉に代替する
ことが一層進められ、コークス原単位の低減、NOx、
SOxの低減を格段に進めることができる。
EFFECTS OF THE INVENTION According to the present invention, trace components that are not good in the properties of steel such as copper, tin and zinc contained in iron scrap are volatilized without performing special treatment using an air downward suction type sintering machine. Since it can be sintered while being removed, the restrictions on the amount of iron scrap used to deteriorate the properties of steel in the past can be removed and the amount used can be increased. Reduction of basic unit, NOx,
SOx can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施するための装置の例を示す図で
ある。
FIG. 1 is a diagram showing an example of an apparatus for carrying out the method of the present invention.

【図2】本発明法を実施するための装置の他の例を示す
図である。
FIG. 2 is a diagram showing another example of an apparatus for carrying out the method of the present invention.

【図3】本発明法を実施するための装置のさらに他の例
を示す図である。
FIG. 3 is a view showing still another example of an apparatus for carrying out the method of the present invention.

【符号の説明】 1 原料槽 1′ 鉄スクラップ用原料槽 1′′ 塩化カルシウム用原料槽 2 ベルトコンベヤ 3−1 混合機 3−2 吹き付け機 4 ミキサー 5 サージホッパー 6−1 下段原料装入装置 6−2 上段原料装入装置 6′ 1段原料装入装置 7 点火炉 8 DL式焼結機 9 パレット 10 焼結溶融帯 11 グレート面[Explanation of Codes] 1 raw material tank 1 ′ raw material tank for iron scrap 1 ″ raw material tank for calcium chloride 2 belt conveyor 3-1 mixer 3-2 spraying machine 4 mixer 5 surge hopper 6-1 lower raw material charging device 6 -2 Upper-stage raw material charging device 6'1st-stage raw material charging device 7 Ignition furnace 8 DL type sintering machine 9 Pallet 10 Sintering melt zone 11 Great surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳田 昌則 宮城県仙台市太白区八木山南3−7−15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanori Tokuda 3-7-15 Minami Yagiyama, Taihaku-ku, Sendai City, Miyagi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気下方吸引式焼結鉱の製造方法におい
て、鉄スクラップに含まれる銅、錫及び亜鉛当量の1〜
5倍の重量比の塩化カルシウムを鉄スクラップと混合
し、混合物を空気下方吸引式焼結機の焼結層のグレート
面よりの層高300mm以下の範囲に装入して焼結し、
鉄スクラップ中に含まれた銅、錫及び亜鉛を塩化揮発さ
せ、除去しながら焼結することを特徴とする焼結鉱の製
造方法。
1. A method for producing an air downward suction type sintered ore, wherein 1 to 1 of copper, tin and zinc equivalents contained in iron scrap is included.
Calcium chloride in a weight ratio of 5 times was mixed with iron scrap, and the mixture was charged into a range of a layer height of 300 mm or less from the great surface of the sintered layer of an air downward suction type sintering machine and sintered,
A method for producing a sintered ore, which comprises volatilizing and removing chlorine, copper, tin and zinc contained in an iron scrap, and sintering while removing the chlorine.
【請求項2】 15〜150mmのサイズの鉄スクラッ
プを塩化カルシウムと混合することを特徴とする請求項
1記載の焼結鉱の製造方法。
2. The method for producing a sintered ore according to claim 1, wherein iron scrap having a size of 15 to 150 mm is mixed with calcium chloride.
【請求項3】 鉄スクラップのチップに塩化カルシウム
のスラリーを吹き付けもしくは浸漬させた後、焼結機に
装入して焼結することを特徴とする請求項1または2記
載の焼結鉱の製造方法。
3. The production of the sintered ore according to claim 1, wherein the iron scrap chips are sprayed or dipped with a slurry of calcium chloride and then charged into a sintering machine and sintered. Method.
JP27971794A 1994-02-07 1994-10-20 Production of sintered ore Withdrawn JPH07258754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27971794A JPH07258754A (en) 1994-02-07 1994-10-20 Production of sintered ore

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3326994 1994-02-07
JP6-33269 1994-02-07
JP27971794A JPH07258754A (en) 1994-02-07 1994-10-20 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH07258754A true JPH07258754A (en) 1995-10-09

Family

ID=26371945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27971794A Withdrawn JPH07258754A (en) 1994-02-07 1994-10-20 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH07258754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526008A (en) * 2000-03-08 2003-09-02 ハーキュリーズ・インコーポレイテッド Sintering method and sintered bed composition
KR100891308B1 (en) * 2008-05-16 2009-03-31 주식회사 와이씨씨 Rdi improvement composotion of sinter ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526008A (en) * 2000-03-08 2003-09-02 ハーキュリーズ・インコーポレイテッド Sintering method and sintered bed composition
KR100891308B1 (en) * 2008-05-16 2009-03-31 주식회사 와이씨씨 Rdi improvement composotion of sinter ore

Similar Documents

Publication Publication Date Title
EP0453151A1 (en) Process for recovering valuable metals from a dust containing zinc
EP1126039A1 (en) Method and apparatus for reductively processing the liquid slag and the baghouse dust of the electric arc furnace
EP0657552A1 (en) Method for recovering zinc from zinc containing dust
WO2010085635A2 (en) Production of iron from metallurgical waste
CN109652653A (en) A kind of inorganic dangerous waste system process
US6126714A (en) Revert manufactured from iron-bearing waste material
JP2001192741A (en) Method for utilizing steel making slag
KR102613147B1 (en) Improved process for the production of crude solder
KR102113558B1 (en) Manufacturing process of various metals and derivatives derived from copper and sulfur
JPH05320779A (en) Method for recovering available matal from iron-making dust using vertical reduction melting furnace
US4447261A (en) Method for separating non-ferrous metals from iron-containing materials
JPH07258754A (en) Production of sintered ore
US6602322B2 (en) High temperature metal recovery process
CN110629054A (en) Preparation device of manganese-rich slag
AU732984B2 (en) Recycling process for brass foundry waste
JP2004500486A (en) How to treat dust or dust mixtures
JPH06330198A (en) Method for recovering zinc in dust
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
KR910001010B1 (en) Method for recovering zinc from substances containing a zinc conpound
JPS644572B2 (en)
Higley et al. Electric Furnace Steelmaking Dusts, a Zinc Raw Material
JPS5845335A (en) Treating method of steel making electric furnace dust and mill scale
CA1141166A (en) Steelmaking process
JP2000328130A (en) Method for decomposing dioxin group compounds in steel dust
JPH09241769A (en) Treatment of lead sulfate-containing material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115