JPH07258156A - Production of glycol monoester - Google Patents

Production of glycol monoester

Info

Publication number
JPH07258156A
JPH07258156A JP6078166A JP7816694A JPH07258156A JP H07258156 A JPH07258156 A JP H07258156A JP 6078166 A JP6078166 A JP 6078166A JP 7816694 A JP7816694 A JP 7816694A JP H07258156 A JPH07258156 A JP H07258156A
Authority
JP
Japan
Prior art keywords
aldehyde
reaction
glycol monoester
catalyst
calcium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6078166A
Other languages
Japanese (ja)
Inventor
Kanichiro Inui
貫一郎 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP6078166A priority Critical patent/JPH07258156A/en
Publication of JPH07258156A publication Critical patent/JPH07258156A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a method for producing a glycol monoester from an aldehyde in a high yield and selectivity without producing waste water by neutralization and washing with water. CONSTITUTION:This method for producing a glycol monoester is to use an aldehyde as a raw material and calcium oxide as a catalyst. The aldehyde is preferably a 4-8C aldehyde, especially isobutyl aldehyde and a white solid prepared by thermally decomposing one or more salts of nitrates, carbonates, hydroxides or organic acid salts of calcium at 500-900 deg.C temperature is preferred as the calcium oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はグリコールモノエステル
の製造法に関する。更に詳しくは酸化カルシウムを触媒
としてアルデヒドからグリコールモノエステルを製造す
る方法である。
FIELD OF THE INVENTION The present invention relates to a process for producing glycol monoesters. More specifically, it is a method for producing a glycol monoester from an aldehyde using calcium oxide as a catalyst.

【0002】[0002]

【従来の技術】アルデヒドからグリコールモノエステル
を合成する際には水酸化ナトリウムに代表されるアルカ
リ金属水酸化物を用い、均一系反応で行われるもの(特
公昭54−59215号公報)、或いはアルカリ土類金
属酸化物を用いるもの(特公昭58−65245号公
報)、カルボン酸塩を用いるもの(特公昭54−148
716号公報)等があるが、どの方法においても下記の
様な問題点を有している。
2. Description of the Related Art When a glycol monoester is synthesized from an aldehyde, an alkali metal hydroxide typified by sodium hydroxide is used to carry out a homogeneous reaction (Japanese Patent Publication No. 54-59215) or an alkali. Those using an earth metal oxide (Japanese Patent Publication No. 58-65245) and those using a carboxylate (Japanese Patent Publication No. 54-148).
No. 716) and the like, but any of the methods has the following problems.

【0003】[0003]

【発明が解決しようとする課題】アルカリ金属水酸化物
を用いた反応は均一系反応であり、中和、水洗等により
廃水が多量に発生する。またアルカリ土類金属酸化物を
用いるとしている特公昭58−65245号公報の実施
例においては酸化バリウム及び酸化マグネシウムのみの
記載しかなく、また下記比較例に示すとおり酸化バリウ
ムを用いた反応では触媒活性は高いもののグリコールモ
ノエステルの生成物選択性が非常に低くまた、酸化マグ
ネシウムを用いた反応では触媒の活性が小さい。更に触
媒としてカルボン酸塩を用いる反応においては反応系化
合物以外の有機化合物を用いるため精製工程では分離さ
れずに生成物に混入する可能性がある。上記の通り従来
技術によると多量の廃水が発生するか若しくは、充分な
触媒活性、生成物選択性を得る事は困難であった。
The reaction using an alkali metal hydroxide is a homogeneous reaction, and a large amount of waste water is generated by neutralization, washing with water and the like. In the example of Japanese Patent Publication No. Sho 58-65245, which uses an alkaline earth metal oxide, only the barium oxide and the magnesium oxide are described, and as shown in the following comparative examples, the reaction using barium oxide has a catalytic activity. Although the product selectivity of glycol monoester is very low, the activity of the catalyst is small in the reaction using magnesium oxide. Furthermore, in the reaction using a carboxylate as a catalyst, an organic compound other than the reaction system compound is used, so that there is a possibility that the compound is not separated in the purification step and may be mixed in the product. As described above, according to the prior art, a large amount of waste water is generated, or it is difficult to obtain sufficient catalytic activity and product selectivity.

【0004】一般に不均一系固体触媒を用いる反応は均
一系触媒反応と比較して以下の様な利点を有している。 (1) 触媒の中和、水洗等の操作が不要で廃水が無い
或いは非常に少ない。 (2) 触媒の再利用が可能である。 (3) 選択性が高い場合が多い。 従って、不均一系固体触媒を用いる事は均一系触媒を用
いて目的物を得る場合と比較してプロセスがシンプルに
なりプラントのコストが安く高収率で目的物を得る事が
期待される。しかしながら、前述したように高活性かつ
高選択性の固体触媒は見出されていないのが現状であ
る。本発明者等はアルデヒドを三量化することによるグ
リコールモノエステルを製造する方法において思いがけ
なく、アルカリ土類金属酸化物の中でも特にカルシウム
酸化物が高活性かつ高選択性の触媒である事を見い出
し、本発明を完成した。
Generally, a reaction using a heterogeneous solid catalyst has the following advantages as compared with a homogeneous catalyst reaction. (1) There is no or very little waste water, since operations such as catalyst neutralization and washing are unnecessary. (2) The catalyst can be reused. (3) In many cases, the selectivity is high. Therefore, it is expected that the use of the heterogeneous solid catalyst will simplify the process as compared with the case where the target product is obtained using the homogeneous catalyst, the cost of the plant will be low, and the target product can be obtained in a high yield. However, as described above, no solid catalyst with high activity and high selectivity has been found at present. The present inventors unexpectedly found in the method for producing a glycol monoester by trimerizing an aldehyde, and found that calcium oxide was a highly active and highly selective catalyst among alkaline earth metal oxides. Completed the invention.

【0005】[0005]

【課題を解決するための手段】本発明は下記(1)〜
(4)項より構成される。即ち、 (1) 触媒として酸化カルシウムを用いることを特徴
とするアルデヒドからグリコールモノエステルを製造す
る方法。 本発明のより好ましい態様として、(2)〜(4)を挙
げることができる。 (2) 炭素数が4〜8のアルデヒドである前記(1)
項に記載の製造法。 (3) 酸化カルシウムがカルシウムの硝酸塩、炭酸
塩、水酸化物或いは有機酸塩からなる塩類の1種類以上
を500〜900℃の温度で熱分解する事により得られ
る白色固体である前記(1)項に記載の製造法。 (4) アルデヒドがイソブチルアルデヒドであり、グ
リコールモノエステルが2,2,4−トリメチルー1,
3−ペンタンジオールモノイソブチレートである前記
(1)項若しくは(3)項に記載の製造法。
The present invention provides the following (1) to
It is composed of item (4). That is, (1) A method for producing a glycol monoester from an aldehyde, which comprises using calcium oxide as a catalyst. As more preferable embodiments of the present invention, (2) to (4) can be mentioned. (2) The above (1), which is an aldehyde having 4 to 8 carbon atoms.
The manufacturing method according to item. (3) Calcium oxide is a white solid obtained by thermally decomposing one or more salts of calcium nitrate, carbonate, hydroxide or organic acid salt at a temperature of 500 to 900 ° C. (1) The manufacturing method according to item. (4) The aldehyde is isobutyraldehyde and the glycol monoester is 2,2,4-trimethyl-1,
The method according to item (1) or (3), which is 3-pentanediol monoisobutyrate.

【0006】本発明で使用される酸化カルシウムは粉
末、粒状あるいは塊状等如何なる形態でも良いし、また
如何なる製造法で製造されたものでも良い。従って、市
販の酸化カルシウムをそのまま用いることもできる。し
かし、カルシウムの硝酸塩、炭酸塩、水酸化物或いは有
機酸塩の1種類以上の塩を500〜900℃の温度で熱
分解する事により得られる白色固体の酸化カルシウムが
特に好ましい。
The calcium oxide used in the present invention may be in any form such as powder, granules or lumps, and may be produced by any production method. Therefore, commercially available calcium oxide can be used as it is. However, white solid calcium oxide obtained by thermally decomposing one or more salts of calcium nitrate, carbonate, hydroxide or organic acid salt at a temperature of 500 to 900 ° C. is particularly preferable.

【0007】本発明で用いられるアルデヒドとしては特
に限定されないが、イソブチルアルデヒド、nーブチル
アルデヒド、2ーエチルブチルアルデヒド、2ーエチル
ヘキシルアルデヒド等が好ましく、イソブチルアルデヒ
ドが特に好ましい。反応に使用するアルデヒド中の不純
物としては、酸及び水は少ない方が好ましいが、酸含有
量1重量%、水分含有量5重量%以下であれば充分、本
発明に使用できる。
The aldehyde used in the present invention is not particularly limited, but isobutyraldehyde, n-butyraldehyde, 2-ethylbutyraldehyde, 2-ethylhexylaldehyde and the like are preferable, and isobutyraldehyde is particularly preferable. As impurities in the aldehyde used in the reaction, it is preferable that the amount of acid and water is small, but an acid content of 1% by weight and a water content of 5% by weight or less are sufficient for use in the present invention.

【0008】触媒は固定床方式あるいはバッチ方式で攪
拌流動させても良い。触媒量としては、酸化カルシウム
として反応液に対しバッチ方式では0.5乃至20重量
%の範囲で用いる事が可能で好ましくは1乃至10重量
%の範囲である。反応は、バッチ式反応の場合、触媒と
反応液の混合物を70−130℃の温度で4−8時間行
う。70℃以下の温度では反応速度が充分でなく130
℃を越えると生成物の選択性が悪くなる。反応後、反応
液から目的物を得るには、反応液を触媒と濾別し公知の
方法にて蒸留する事により目的物を得る。
The catalyst may be agitated and fluidized by a fixed bed system or a batch system. The amount of catalyst can be used as calcium oxide in the range of 0.5 to 20% by weight in the batch method with respect to the reaction solution, and preferably in the range of 1 to 10% by weight. In the case of batch reaction, the reaction is carried out by mixing the catalyst and the reaction solution at a temperature of 70 to 130 ° C for 4 to 8 hours. If the temperature is lower than 70 ° C, the reaction rate is not sufficient.
When the temperature exceeds ℃, the selectivity of the product is deteriorated. After the reaction, to obtain the desired product from the reaction solution, the desired solution is obtained by filtering the reaction solution from the catalyst and distilling it by a known method.

【0009】[0009]

【実施例】以下、実施例、及び比較例により本発明の効
果を具体的に説明するが、本発明はこれらに限定される
ものではない。。
EXAMPLES The effects of the present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. .

【0010】(実施例1)硝酸カルシウム4水和物(C
a(NO32・4H2O、和光純薬製)236gを60
0mlの純水に溶解させた溶液に、20%水酸化ナトリ
ウム水溶液250mlを加え、生じた沈澱を濾別、乾燥
し水酸化カルシウムの白色固体59gを得る。かかる水
酸化カルシウム2.0gを真空中600℃で1時間焼成
した後、反応器に移し、イソブチルアルデヒド103.
5g、2,2,4−トリメチル−1,3−ペンタンジオ
ールモノイソブチレート(以下CS−12と略す。)1
01.4gを加えて攪拌し、110℃で3時間反応させ
る。反応後、反応液を濾別した後濾液をガスクロマトグ
ラフィーにより分析した。結果を以下に記す。 イソブチルアルデヒドの転化率 89.9% CS−12の選択率 65.6% CS−12の収率 58.9%
Example 1 Calcium nitrate tetrahydrate (C
a (NO 3) 2 · 4H 2 O, a product of Wako Pure Chemical Industries, Ltd.) 236 g 60
To a solution dissolved in 0 ml of pure water, 250 ml of 20% sodium hydroxide aqueous solution was added, and the resulting precipitate was filtered off and dried to obtain 59 g of white solid calcium hydroxide. After baking 2.0 g of such calcium hydroxide in vacuum at 600 ° C. for 1 hour, it was transferred to a reactor and isobutyraldehyde 103.
5 g, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (hereinafter abbreviated as CS-12) 1
0.1.4g is added and stirred, and it is made to react at 110 degreeC for 3 hours. After the reaction, the reaction solution was filtered off and the filtrate was analyzed by gas chromatography. The results are shown below. Conversion of isobutyraldehyde 89.9% Selectivity of CS-12 65.6% Yield of CS-12 58.9%

【0011】(実施例2)反応器に酸化カルシウム(C
aO、和光純薬製)2.1g、イソブチルアルデヒド1
01.3g、CS−12 102.8gを入れ攪拌し、1
10℃で8時間反応させる。反応後、反応液を濾別した
後濾液をガスクロマトグラフィーにより分析した。結果
を以下に記す。 イソブチルアルデヒドの転化率 84.5% CS−12の選択率 97.7% CS−12の収率 82.6%
(Example 2) Calcium oxide (C
aO, Wako Pure Chemical Industries, Ltd.) 2.1 g, isobutyraldehyde 1
Add 01.3g, CS-12 102.8g, stir and mix 1
The reaction is carried out at 10 ° C for 8 hours. After the reaction, the reaction solution was filtered off and the filtrate was analyzed by gas chromatography. The results are shown below. Conversion of isobutyraldehyde 84.5% Selectivity of CS-12 97.7% Yield of CS-12 82.6%

【0012】(比較例1)水酸化マグネシウム(Mg
O、和光純薬製)2.1gを真空中700℃で1時間焼
成、反応器に移し、イソブチルアルデヒド105.1
g、CS−12 105.8gを加え攪拌し、110℃で
21.5時間反応させる。反応後、反応液を濾別した後
濾液をガスクロマトグラフィーにより分析した。結果を
以下に記す。 イソブチルアルデヒドの転化率 21.5% CS−12の選択率 87.0% CS−12の収率 18.7%
Comparative Example 1 Magnesium hydroxide (Mg)
O, Wako Pure Chemical Industries, Ltd.) 2.1 g was baked in vacuum at 700 ° C. for 1 hour and transferred to a reactor, isobutyraldehyde 105.1
g and CS-12 105.8 g are added and stirred, and the mixture is reacted at 110 ° C. for 21.5 hours. After the reaction, the reaction solution was filtered off and the filtrate was analyzed by gas chromatography. The results are shown below. Isobutyraldehyde conversion 21.5% CS-12 selectivity 87.0% CS-12 yield 18.7%

【0013】(比較例2)反応器に酸化バリウム(Ba
O、和光純薬製)2.0g、イソブチルアルデヒド10
0.9g、CS−12 103.4gを入れ攪拌し、11
0℃で1.8時間反応させる。反応後、反応液を濾別し
た後濾液をガスクロマトグラフィーにより分析した。結
果を以下に記す。 イソブチルアルデヒドの転化率 96.5% CS−12の選択率 15.8% CS−12の収率 15.2%
Comparative Example 2 Barium oxide (Ba) was added to the reactor.
O, Wako Pure Chemical Industries, Ltd.) 2.0 g, isobutyraldehyde 10
0.9g, CS-12 103.4g, and stirred, 11
React at 0 ° C for 1.8 hours. After the reaction, the reaction solution was filtered off and the filtrate was analyzed by gas chromatography. The results are shown below. Isobutyraldehyde conversion 96.5% CS-12 selectivity 15.8% CS-12 yield 15.2%

【0014】[0014]

【発明の効果】アルデヒドよりグリコールモノエステル
を製造する方法において、中和、水洗の必要は無く廃水
の発生は皆無であり、且つ高収率、高選択率である製造
法を提供することを可能にしたことは工業上、大いに意
義のあるものである。
INDUSTRIAL APPLICABILITY In the method for producing a glycol monoester from an aldehyde, it is possible to provide a production method in which there is no need for neutralization and washing, no waste water is generated, and a high yield and a high selectivity are obtained. What I did was very significant industrially.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒として酸化カルシウムを用いること
を特徴とするアルデヒドからグリコールモノエステルを
製造する方法。
1. A method for producing a glycol monoester from an aldehyde, which comprises using calcium oxide as a catalyst.
【請求項2】 炭素数が4〜8のアルデヒドである請求
項1に記載の製造法。
2. The method according to claim 1, which is an aldehyde having 4 to 8 carbon atoms.
【請求項3】 酸化カルシウムがカルシウムの硝酸塩、
炭酸塩、水酸化物或いは有機酸塩からなる塩類の1種類
以上を500〜900℃の温度で熱分解する事により得
られる白色固体である請求項1に記載の製造法。
3. Calcium oxide is calcium nitrate,
The production method according to claim 1, which is a white solid obtained by thermally decomposing one or more kinds of salts consisting of carbonate, hydroxide or organic acid salt at a temperature of 500 to 900 ° C.
【請求項4】 アルデヒドがイソブチルアルデヒドであ
り、グリコールモノエステルが2,2,4−トリメチル
ー1,3−ペンタンジオールモノイソブチレートである
請求項1若しくは3に記載の製造法。
4. The method according to claim 1 or 3, wherein the aldehyde is isobutyraldehyde and the glycol monoester is 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate.
JP6078166A 1994-03-23 1994-03-23 Production of glycol monoester Pending JPH07258156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078166A JPH07258156A (en) 1994-03-23 1994-03-23 Production of glycol monoester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078166A JPH07258156A (en) 1994-03-23 1994-03-23 Production of glycol monoester

Publications (1)

Publication Number Publication Date
JPH07258156A true JPH07258156A (en) 1995-10-09

Family

ID=13654357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078166A Pending JPH07258156A (en) 1994-03-23 1994-03-23 Production of glycol monoester

Country Status (1)

Country Link
JP (1) JPH07258156A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308825A (en) * 2001-04-12 2002-10-23 Rebo International:Kk Method for producing fatty acid alkyl ester
KR20030021485A (en) * 2001-09-06 2003-03-15 주식회사 엘지화학 Method for preparing of glycol monoester
CN105712874A (en) * 2016-01-20 2016-06-29 宁波永顺精细化工有限公司 Method for treating isobutyrate-containing wastewater by alcohol etherification
CN110372500A (en) * 2019-07-25 2019-10-25 润泰化学(泰兴)有限公司 A kind of synthetic method of 1,3- diol monoester

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308825A (en) * 2001-04-12 2002-10-23 Rebo International:Kk Method for producing fatty acid alkyl ester
KR20030021485A (en) * 2001-09-06 2003-03-15 주식회사 엘지화학 Method for preparing of glycol monoester
CN105712874A (en) * 2016-01-20 2016-06-29 宁波永顺精细化工有限公司 Method for treating isobutyrate-containing wastewater by alcohol etherification
CN105712874B (en) * 2016-01-20 2017-12-22 宁波永顺精细化工有限公司 The method that alcohol esterification method handles the waste water containing isobutyrate
CN110372500A (en) * 2019-07-25 2019-10-25 润泰化学(泰兴)有限公司 A kind of synthetic method of 1,3- diol monoester

Similar Documents

Publication Publication Date Title
US4950801A (en) Process for producing alpha-hydroxycarboxylic acid amide
JP5511187B2 (en) Manganese dioxide catalyst for hydrolysis of carboxylic nitrile
KR100513664B1 (en) Method for preparing a catalyst for partial oxidation of propylene
JP2004313984A (en) Dimethycarbonate synthetic catalyst
US3923884A (en) Process for producing DL-tartaric acid
JPH07258156A (en) Production of glycol monoester
US5700754A (en) Barium/calcium catalyst and a process for producing the same
JPH085811B2 (en) Improved process for producing amide compounds
JP4306430B2 (en) Method for producing adipic acid
EP1748042B1 (en) Process for producing adipic acid
JP4048578B2 (en) Base catalyst and method for producing carbonyl compound derivative
JPH08299790A (en) Solid base catalyst, its production and production of carbonyl compound derivative using same
JPH04139148A (en) Production of lower fatty acid ester
JPH0546253B2 (en)
JPH0699362B2 (en) Method for producing ether carboxylic acid metal salt
JPS60258133A (en) Preparation of o-alkylphenol
JP3173273B2 (en) Method for producing glyoxylate
JPH05331100A (en) Production of dl-glyceric acid and its salt
WO2021206132A1 (en) Improved method for producing o-methylisourea sulfate
JP4362666B2 (en) Process for producing 5-hydroxyisophthalic acid
JPH07256102A (en) Production of solid base catalyst
CN117820299A (en) Preparation method of ilaprazole intermediate
JPS6239135B2 (en)
JPH04271841A (en) Catalyst for manufacturing maleic anhydride from butane and its manufacture
JPS6115852A (en) Production of cycloalkanol