JPH0725793B2 - Angiotensin converting enzyme inhibitor - Google Patents

Angiotensin converting enzyme inhibitor

Info

Publication number
JPH0725793B2
JPH0725793B2 JP1303294A JP30329489A JPH0725793B2 JP H0725793 B2 JPH0725793 B2 JP H0725793B2 JP 1303294 A JP1303294 A JP 1303294A JP 30329489 A JP30329489 A JP 30329489A JP H0725793 B2 JPH0725793 B2 JP H0725793B2
Authority
JP
Japan
Prior art keywords
angiotensin
converting enzyme
fraction
solution
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1303294A
Other languages
Japanese (ja)
Other versions
JPH03167198A (en
Inventor
幸雄 河村
敏男 ▲すぎ▼本
Original Assignee
農林水産省食品総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 農林水産省食品総合研究所長 filed Critical 農林水産省食品総合研究所長
Priority to JP1303294A priority Critical patent/JPH0725793B2/en
Publication of JPH03167198A publication Critical patent/JPH03167198A/en
Publication of JPH0725793B2 publication Critical patent/JPH0725793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、アンギオテンシンIをアンギオテンシンII
に変換させるアンギオテンシン変換酵素の活性を阻害す
るアンギオテンシン変換酵素阻害物質に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to angiotensin I and angiotensin II.
The present invention relates to an angiotensin-converting enzyme inhibitor that inhibits the activity of angiotensin-converting enzyme that is converted into.

[従来技術] 従来より、アンギオテンシン変換酵素がアンギオテンシ
ンIをアンギオテンシンIIに変換させる作用を有するこ
とが知られている。
[Prior Art] It has been conventionally known that angiotensin-converting enzyme has an action of converting angiotensin I into angiotensin II.

そして、このようにアンギオテンシン変換酵素によって
アンギオテンシンIから変換されたアンギオテンシンII
が血圧を上昇させる作用を有すると言われている。
And thus, angiotensin II converted from angiotensin I by angiotensin converting enzyme in this way
Is said to have the effect of increasing blood pressure.

このため、アンギオテンシンIをアンギオテンシンIIに
変換させるアンギオテンシン変換酵素の活性を阻害すれ
ば、血圧の上昇を抑制することができるとして、従来よ
り、上記のようなアンギオテンシン変換酵素の活性を阻
害する物質について様々な研究が行われ、種々のアンギ
オテンシン変換酵素阻害物質が開発されるに至った。
Therefore, by inhibiting the activity of angiotensin-converting enzyme that converts angiotensin I into angiotensin II, it is possible to suppress an increase in blood pressure, and conventionally, there are various substances that inhibit the activity of angiotensin-converting enzyme as described above. Various studies have been carried out, and various angiotensin converting enzyme inhibitors have been developed.

そして、上記のようなアンギオテンシン変換酵素の活性
を阻害する物質として、従来においては、例えば、D−
2−メチル−3−メルカプトプロパノイル−L−プロリ
ンのような合成物質の他、特開昭62−270533号公報,特
開昭64−5497号公報,特開昭64−83096号公報等におい
てカゼインを分解させて得られる各種のペプチドが開示
されている。
And, as a substance that inhibits the activity of the angiotensin converting enzyme as described above, conventionally, for example, D-
In addition to synthetic substances such as 2-methyl-3-mercaptopropanoyl-L-proline, casein is disclosed in JP-A-62-270533, JP-A-64-5497 and JP-A-64-83096. Various peptides obtained by decomposing the above are disclosed.

しかし、上記の合成物からなるアンギオテンシン変換酵
素阻害物質は、一般にアンギオテンシン変換酵素の阻害
活性が高いが、合成物であるため、多くの場合、副作用
等の安全性の点で若干問題を有していた。
However, the angiotensin-converting enzyme inhibitor composed of the above-mentioned compound generally has a high inhibitory activity of angiotensin-converting enzyme, but since it is a compound, it often has some problems in terms of safety such as side effects. It was

一方、カゼイン等を分解して得られるアンギオテンシン
変換酵素阻害物質の場合、上記の合成物からなるものに
比べ、その阻害活性が一般に低いが、その原料が天然
物、特に食品由来のものであるため、一般にその毒性が
低く、安全性の高いものであった。
On the other hand, in the case of an angiotensin converting enzyme inhibitor obtained by decomposing casein etc., its inhibitory activity is generally lower than that of the above-mentioned synthetic product, but its raw material is a natural product, especially because it is derived from food. Generally, the toxicity was low and the safety was high.

このため、上記のように天然物、特に食品由来のアンギ
オテンシン変換酵素阻害物質について、さらなる開発が
望まれていた。
Therefore, further development of natural products, particularly food-derived angiotensin-converting enzyme inhibitors as described above, has been desired.

[発明が解決しようとする課題] この発明は、上記のような事情に鑑みなされたものであ
り、アンギオテンシンIをアンギオテンシンIIに変換さ
せるアンギオテンシン変換酵素の活性を有効に阻害し
て、血圧の上昇を抑制できると共に、人体に対する安全
性も高く、食品等として投与され、マイルドな作用で血
圧の上昇を抑制することができるアンギオテンシン変換
酵素阻害物質を提供することを課題とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and effectively inhibits the activity of an angiotensin-converting enzyme that converts angiotensin I into angiotensin II, thereby increasing blood pressure. It is an object of the present invention to provide an angiotensin converting enzyme inhibitory substance that can be suppressed, is highly safe to the human body, is administered as a food, etc., and can suppress an increase in blood pressure with a mild action.

[課題を解決するための手段] この発明においては、アンギオテンシンIをアンギオテ
ンシンIIに変換させるアンギオテンシン変換酵素の活性
を阻害するアンギオテンシン変換酵素阻害物質として、
下記に示す構造式〔1〕のペプチドまたはその塩を用い
るようにしたのである。
[Means for Solving the Problems] In the present invention, as an angiotensin-converting enzyme inhibitor that inhibits the activity of angiotensin-converting enzyme that converts angiotensin I into angiotensin II,
The peptide of the structural formula [1] shown below or a salt thereof was used.

[1] Asp-Gln-Thr-Pro-Arg-Val-Phe ここで、上記ペプチドにおける塩の形態としては、塩酸
塩,臭化水素酸塩,ヨウ化水素塩,硫酸塩,燐酸塩等の
無機酸塩、酢酸塩,トリフルオロ酢酸塩,クエン酸塩,
マレイン酸塩,フマル酸塩,酒石酸塩,乳酸塩,メタン
スルホン酸塩,P−トルエンスルホン酸塩等の有機酸塩が
挙げられる。
[1] Asp-Gln-Thr-Pro-Arg-Val-Phe Here, as the salt form in the above-mentioned peptide, there are inorganic salts such as hydrochloride, hydrobromide, hydroiodide, sulfate and phosphate. Acid salt, acetate, trifluoroacetate, citrate,
Examples of the organic acid salt include maleate, fumarate, tartrate, lactate, methanesulfonate and P-toluenesulfonate.

また、上記ペプチドを構成するアミノ酸は、天然に存在
するという点で、L−体であることが望ましい。
Further, the amino acids constituting the above peptides are preferably L-forms in that they naturally occur.

ここで、上記[1]の構造式に示されるペプチドは、大
豆から分離された分離大豆蛋白をペプシンによって分解
させて製造することができる。
Here, the peptide represented by the structural formula [1] above can be produced by degrading isolated soybean protein isolated from soybean with pepsin.

そして、上記構造式[1]に示されるペプチド及びその
塩は、アンギオテンシンIをアンギオテンシンIIに変換
させるアンギオテンシン変換酵素の活性を阻害する作用
を有すると共に、上記のように食品として使用されてい
る大豆から得られた分離大豆蛋白を、ペプシンによって
分解させて製造できる食品由来のものであり、安全性が
高いものとなっている。
The peptide represented by the structural formula [1] and a salt thereof have an action of inhibiting the activity of angiotensin-converting enzyme that converts angiotensin I into angiotensin II, and from soybeans used as food as described above. The obtained isolated soybean protein is derived from a food product that can be produced by decomposing it with pepsin, and is highly safe.

[実施例] 以下、この発明の実施例について具体的に説明する。[Examples] Examples of the present invention will be specifically described below.

まず、上記[1]に示す構造式のペプチドを製造する場
合について説明する。
First, the case of producing the peptide having the structural formula shown in [1] above will be described.

この実施例においては、大豆から分離させた分離大豆蛋
白(不二製油(株)製 フジプロ−R)3.0gを水に溶解
させ、これに酢酸を加えてpH3.2に調製し、さらに6規
定の塩酸を加えてpH2.0に調整した溶液60mlとした。
In this example, 3.0 g of separated soybean protein (Fuji Pro-R manufactured by Fuji Oil Co., Ltd.) separated from soybean was dissolved in water, and acetic acid was added to the solution to adjust the pH to 3.2. The resulting solution was adjusted to pH 2.0 by adding hydrochloric acid to make 60 ml of solution.

そして、この溶液にペプシンを上記分離大豆蛋白の1/50
0の量、すなわち6mg加え、これを37℃で10時間反応さ
せ、上記の分離大豆蛋白をペプシンによって酵素分解さ
せた。
Then, pepsin was added to this solution at 1/50 of the soybean protein isolate.
An amount of 0, that is, 6 mg was added, and this was reacted at 37 ° C. for 10 hours, and the above isolated soybean protein was enzymatically decomposed by pepsin.

その後、これを100℃で15分間加熱し、上記ペプシンを
失活させた後、これを遠心分離機により、10000rpmで2
分間遠心分離させて、沈殿画分と溶液画分とに分離さ
せ、沈殿画分を除去し、溶液画分だけを取り出した。
Then, this was heated at 100 ° C for 15 minutes to inactivate the above pepsin, and then this was centrifuged at 10000 rpm for 2 minutes.
Centrifugation was carried out for a minute to separate into a precipitate fraction and a solution fraction, the precipitate fraction was removed, and only the solution fraction was taken out.

次いで、このようにして取り出された溶液画分を、分子
ふるいクロマトグラフィー(ファルマシア社製 セファ
デックスG−25)を用いて分画するようにした。
Then, the solution fraction thus taken out was fractionated using molecular sieve chromatography (Pharmacia Sephadex G-25).

ここで、上記の分子ふるいクロマトグラフィーによって
分画を行うにあたっては、カラム容積が200mlのものを
使用し、また展開液としては0.05Mの酢酸溶液を使用
し、流量が4ml/hrとなるようにして、各フラクションに
3mlづつ分取するようにした。
Here, in performing the fractionation by the above-mentioned molecular sieve chromatography, a column volume of 200 ml is used, a 0.05M acetic acid solution is used as a developing solution, and the flow rate is 4 ml / hr. In each fraction
I tried to collect 3 ml each.

次いで、このようにして分取された各フラクションのも
のについて、それぞれ蛋白量及びアンギオテンシン変換
酵素阻害率を測定するようにした。
Next, the amount of protein and the angiotensin converting enzyme inhibitory rate of each of the fractions thus collected were measured.

ここで、蛋白量を測定するにあたり、この実施例におい
ては、公知のTNBS法を用いて測定するようにした。
Here, in measuring the protein amount, in this example, the known TNBS method was used.

即ち、この実施例においては、0.10%のTNBS(2,4,6−
トリニトロベンゼンスルホン酸)溶液を0.5mlと、0.01M
の亜硫酸ナトリウム溶液を0.5mlと、0.15Mのホウ酸緩衝
液を2.0ml加えたものに、上記の各フラクションにおけ
るサンプルを吸光度の測定範囲に入るように適当に希釈
したものを0.5ml加えて、これらを37℃で60分間反応さ
せた後、分光光度計によって420nmの光の吸収を測定
し、その結果を、第1図に実線で示した。なお、上記分
光光度計によって測定された420nmの光の吸収が大きい
ほど、サンプル中におけるペプチド数が多くなってい
る。
That is, in this example, 0.10% TNBS (2,4,6-
Trinitrobenzene sulfonic acid) solution 0.5 ml, 0.01M
0.5 ml of sodium sulfite solution of, and 2.0 ml of 0.15 M borate buffer, 0.5 ml of appropriately diluted sample in each of the above fractions so as to fall within the measurement range of absorbance, After reacting these at 37 ° C. for 60 minutes, the absorption of light at 420 nm was measured by a spectrophotometer, and the result is shown by the solid line in FIG. The larger the absorption of light at 420 nm measured by the spectrophotometer, the larger the number of peptides in the sample.

また、上記のように分取された各フラクションにおける
アンギオテンシン変換酵素阻害率を測定するにあたり、
この実施例においては、公知のアンギオテンシン変換酵
素阻害活性測定法(Cushman−Cheung法)によってアン
ギオテンシン変換酵素阻害率を測定するようにした。
Further, in measuring the angiotensin-converting enzyme inhibition rate in each fraction collected as described above,
In this example, the angiotensin-converting enzyme inhibitory rate was measured by a known method for measuring angiotensin-converting enzyme inhibitory activity (Cushman-Cheung method).

ここで、この実施例においては、ラビットラングアセト
ンパウダー(シグマ社製)10gを、100mlの50mMホウ酸緩
衝液(pH8.3)に溶解させ、40000g,40分の遠心処理を行
った後、その上清液を50mMのリン酸カリウム緩衝液で5
倍に希釈して、アンギオテンシン変換酵素溶液を調製し
た。
Here, in this example, 10 g of rabbit rung acetone powder (manufactured by Sigma) was dissolved in 100 ml of 50 mM borate buffer (pH 8.3), and after centrifugation at 40,000 g for 40 minutes, Supernatant with 5OmM potassium phosphate buffer 5
Diluted by a factor of two to prepare an angiotensin converting enzyme solution.

一方、上記の各フラクションのものを凍結乾燥させた
後、これらのものをそれぞれ50mMのリン酸カリウム緩衝
液0.6mlに溶解させ、この溶液よりサンプルとしてそれ
ぞれ50μ採取した。
On the other hand, each of the above fractions was freeze-dried and then dissolved in 0.6 ml of 50 mM potassium phosphate buffer, and 50 μm of each sample was collected from this solution.

そして、このように採取した50μの各サンプルに対し
て、それぞれ基質Bz−Gly−His−Leu(ペプチド研究所
製)と、リン酸カリウム緩衝液と塩化ナトリウムとの混
合溶液と、上記のように調製したアンギオテンシン変換
酵素溶液50μとを加えて250μにした。この時、上
記溶液中における基質の最終濃度は2.5mM、リン酸カル
シウム緩衝液の最終濃度は100mM、塩化ナトリウムの最
終濃度は300mMであった。
Then, for each sample of 50μ collected in this way, the substrate Bz-Gly-His-Leu (manufactured by Peptide Institute), a mixed solution of potassium phosphate buffer and sodium chloride, as described above. The prepared angiotensin converting enzyme solution (50 μ) was added to make 250 μ. At this time, the final concentration of the substrate in the above solution was 2.5 mM, the final concentration of the calcium phosphate buffer was 100 mM, and the final concentration of sodium chloride was 300 mM.

次いで、このように調製された各混合溶液を37℃で30分
間反応させた後、1規定の塩酸を250μ添加させて反
応を停止させ、その後、1.5mlの酢酸エチルを加えて10
秒間撹拌し、さらに35000rpmで2分間遠心分離させて、
酢酸エチル層を1ml採取した。
Then, each of the mixed solutions thus prepared was reacted at 37 ° C. for 30 minutes, 250 μ of 1N hydrochloric acid was added to stop the reaction, and then 1.5 ml of ethyl acetate was added to the mixture to give 10
Stir for 2 seconds, then centrifuge at 35000 rpm for 2 minutes,
1 ml of the ethyl acetate layer was collected.

そして、このように採取されたものを、ニバポレートに
よって乾固させた後、これを1mlの蒸留水に溶解させ、
抽出されたヒブリル酸の吸収(228nmの吸光度)を測定
し、各フラクションにおけるサンプルのアンギオテンシ
ン変換酵素阻害率を、上記の[1]式によって求めるよ
うにした。
Then, the thus collected material was dried to dryness with nivaporate, and then dissolved in 1 ml of distilled water,
The absorption of the extracted hybric acid (absorbance at 228 nm) was measured, and the angiotensin-converting enzyme inhibition rate of the sample in each fraction was determined by the above formula [1].

(但し、ODは上記のようにしてサンプルを加えて測定
した時の吸光度。ODsbは上記の混合溶液を反応せる前に
1規定の塩酸を250μ添加させて測定した時の吸光
度。ODは上記の混合溶液にサンプルを加えずに測定し
た時の吸光度。ODcbは上記の混合溶液にサンプルを加え
ずに1規定の塩酸を250μ添加させて測定した時の吸
光度。) そして、このようにして測定した各フラクションのサン
プルにおけるアンギオテンシン変換酵素阻害率(ACE阻
害率)を第1図に破線で示した。
(However, OD s is the absorbance when the sample is added and measured as described above. OD sb is the absorbance when 250 μl of 1N hydrochloric acid is added before the reaction of the above mixed solution. OD c Is the absorbance when measured without adding a sample to the above mixed solution, and OD cb is the absorbance when measured with 250 μl of 1N hydrochloric acid added to the above mixed solution without adding a sample.) The angiotensin-converting enzyme inhibitory rate (ACE inhibitory rate) in the samples of the respective fractions measured as described above is shown by the broken line in FIG.

この結果、同図に示すように、アンギオテンシン変換酵
素阻害率は、そのフラクション番号が44〜60のものにお
いて大きくなっていた。
As a result, as shown in the figure, the angiotensin-converting enzyme inhibition rate was high in the fraction numbers 44 to 60.

このため、この実施例においては、フラクション番号が
44〜60の部分、すなわち分子量が約2000〜200のものを
分取するようにした。
Therefore, in this example, the fraction number
The portion of 44 to 60, that is, the one having a molecular weight of about 2000 to 200 was collected.

そして、このようにして分取されたものを凍結乾燥さ
せ、次いで、このように凍結乾燥されたものを、分子ふ
るいクロマトグラフィー(ファルマシア社製 セファデ
ックスG−10)を使用してさらに分画するようにした。
Then, the thus separated fraction is freeze-dried, and then the freeze-dried fraction is further fractionated by using molecular sieve chromatography (Pharmacia Sephadex G-10). I did it.

ここで、この分子ふるいクロマトグラフィーによって分
画を行うにあたっては、カラム容積が150mlになったも
のを使用し、また展開液としては0.05Mの酢酸溶液を使
用し、流量が3ml/hrとなるようにして、各フラクション
に1mlづつ分取するようにした。
Here, when fractionating by this molecular sieve chromatography, a column volume of 150 ml was used, and a 0.05M acetic acid solution was used as a developing solution, and the flow rate was 3 ml / hr. Then, 1 ml of each fraction was collected.

次いで、このようにして各フラクションに分取されたも
のについて、上記の場合と同様にして、各フラクション
における蛋白量及びアンギオテンシン変換酵素阻害率を
測定するようにした。
Then, with respect to the fractions thus separated into fractions, the protein amount and the angiotensin converting enzyme inhibitory rate in each fraction were measured in the same manner as in the above case.

そして、分光光度計によって測定された各フラクション
における420nmの光の吸収結果を第2図に実線で示む一
方、各フラクションから採取された各サンプルにおける
アンギオテンシン変換酵素阻害率(ACE阻害率)を同図
に破線で示した。
And, while the absorption result of light at 420 nm in each fraction measured by the spectrophotometer is shown by a solid line in FIG. 2, the angiotensin converting enzyme inhibition rate (ACE inhibition rate) in each sample collected from each fraction is the same. It is indicated by a broken line in the figure.

この結果、第2図に示すように、フラクション番号が10
5〜130のものにおいては、ペプチド数に対するアンギオ
テンシン変換酵素阻害率が高くなっていた。
As a result, as shown in FIG. 2, the fraction number is 10
In the case of 5-130, the angiotensin-converting enzyme inhibitory rate was high with respect to the number of peptides.

このため、この実施例においては、フラクション番号が
105〜130のもの、すなわち分子量が約1000〜400になっ
たものを分取するようにした。
Therefore, in this example, the fraction number
Those having a molecular weight of 105 to 130, that is, those having a molecular weight of about 1000 to 400 were collected.

そして、このようにして分取したものを、今度は陽イオ
ン交換分離によって、分画するようにした。
Then, the thus collected fractions were fractionated by cation exchange separation.

ここで、陽イオン交換分離を行うにあたっては、ファル
マシア社製のFPLCユニットを使用すると共に、カラムと
して陽イオン交換樹脂Mono S HR5/5(商品名)を使用
し、また展開液として、0.05Mの酢酸−アンモニア緩衝
液(pH7.5)を用いる一方、グラジエントとして、0.5M
の塩化ナトリウム溶液を用い、この塩化ナトリウム溶液
を加える量を当初から5分間は0にし、5〜25分の間で
0〜100%に増加させるようにし、流量が1ml/minとなる
ようにして、各フラクションに0.5mlづつ分取するよう
にした。
Here, in the cation exchange separation, an FPLC unit manufactured by Pharmacia was used, a cation exchange resin Mono S HR5 / 5 (trade name) was used as a column, and 0.05 M of a developing solution was used. While using acetic acid-ammonia buffer (pH 7.5), 0.5M as a gradient
Sodium chloride solution is used, and the amount of the sodium chloride solution added is set to 0 for 5 minutes from the beginning, and is increased to 0 to 100% in 5 to 25 minutes so that the flow rate is 1 ml / min. , 0.5 ml of each fraction was collected.

そして、上記のようにして分画された各フラクションの
ものについて、それぞれ蛋白量及びアンギオテンシン変
換酵素阻害率を測定するようにした。
Then, the amount of protein and the angiotensin converting enzyme inhibitory rate of each of the fractions fractionated as described above were measured.

ここで、各フラクションにおけるアンギオテンシン変換
酵素阻害率を測定するにあたっては、各フラクションの
ものを凍結乾燥させた後、これらのものをそれぞれ50mM
のリン酸カリウム緩衝液1mlに溶解させるようにし、そ
れ以外については、上記のアンギオテンシン変換酵素阻
害活性測定法と同様にして、各フラクションにおけるサ
ンプルについてそれぞれアンギオテンシン変換酵素阻害
率(ACE阻害率)を測定し、その結果を第3図(A)に
示した。
Here, in measuring the angiotensin-converting enzyme inhibition rate in each fraction, after freeze-drying each fraction, 50 mM each of these
Dissolve it in 1 ml of potassium phosphate buffer, and otherwise measure the angiotensin-converting enzyme inhibitory rate (ACE inhibitory rate) of each sample in the same manner as in the angiotensin-converting enzyme inhibitory activity measurement method described above. The results are shown in FIG. 3 (A).

一方、各フラクションにおけるサンプルについての蛋白
量の測定は、公知の紫外部吸光法によって行い、280nm
の光の吸収を測定し、その結果を、第3図(B)に示し
た。なお、この場合においても、280nmの光の吸収が大
きいほど、サンプル中における蛋白量が多くなってい
る。
On the other hand, the amount of protein in the sample in each fraction was measured by a known ultraviolet absorption method at 280 nm.
The absorption of light was measured and the results are shown in FIG. 3 (B). Even in this case, the larger the absorption of light at 280 nm, the larger the amount of protein in the sample.

この結果、上記の第3図(A)に示したように、0.5Mの
塩化ナトリウム溶液を加えていない時点における素通り
画分においては、アンギオテンシン変換酵素阻害率が低
くなっていた。
As a result, as shown in FIG. 3 (A), the angiotensin converting enzyme inhibitory rate was low in the flow-through fraction at the time when the 0.5 M sodium chloride solution was not added.

そして、この実施例のものにおいては、第3図(A)に
おいて、アンギオテンシン変換酵素阻害率が高くなった
フラクション番号が28,29のものを分取した。次いで、
分取したフラクション番号が28,29のものを凍結乾燥さ
せ、このサンプルを40μlの蒸留水に溶解させた後、高
速液体クロマトグラフィー((株)日立製作所製のHPLC
L−4200)を用いて、さらに分画を行った。
Then, in this example, fractions with a fraction number of 28,29 in which the angiotensin converting enzyme inhibitory rate was high in FIG. 3 (A) were fractionated. Then
The collected fractions with fraction numbers 28 and 29 were lyophilized, and this sample was dissolved in 40 μl of distilled water and then subjected to high performance liquid chromatography (HPLC manufactured by Hitachi, Ltd.).
Further fractionation was performed using L-4200).

ここで、上記高速液体クロマトグラフィーによる分画に
おいては、0.05%のテトラヒドロフルフリルアクリレー
ト(TFA)と5%のアセトアニリドとを加えたA溶液
と、0.05%のTFAと100%のアセトアニリドとを加えたB
溶液とを用い、当初から5分間は上記A溶液だけを加
え、5〜35分の間で、上記A溶液を100〜0%に減少さ
せる一方、B溶液を0〜100%に増加させるようにして
分画を行った。
Here, in the high performance liquid chromatography fractionation, a solution A containing 0.05% tetrahydrofurfuryl acrylate (TFA) and 5% acetanilide, and 0.05% TFA and 100% acetanilide were added. B
Solution, by adding only the above solution A for 5 minutes from the beginning, and decreasing the above solution A to 100 to 0% and increasing the solution B to 0 to 100% for 5 to 35 minutes. And fractionated.

そして、このように分画されたものについて、前記の紫
外部吸光法により、その蛋白量を測定するようにした。
Then, the thus-fractionated product was measured for its protein content by the aforementioned ultraviolet absorption method.

この結果、フラクション番号が28,29のものをサンプル
として用いたものにおいては、280nmの光に対して、第
4図に示すような光の吸収結果が得られた。
As a result, light absorption results as shown in FIG. 4 were obtained for light having a wavelength of 280 nm in the samples using fraction numbers 28 and 29 as samples.

そして、同図において光の吸収がある程度有り、適当な
量の蛋白を含んでいる(a)の部分を分取し、このよう
に分取された(a)の部分のものを凍結乾燥させた後、
これを0.4mlの蒸留水に溶解させ、この溶液を20μ採
取したものに、50mMのリン酸カリウム緩衝液30μを加
えて50μになったサンプルを調製し、前記のアンギオ
テンシン変換酵素阻害活性測定法と同様にして、アンギ
オテンシン変換酵素阻害率を測定したところ、このサン
プルにおけるアンギオテンシン変換酵素阻害率は39.9%
と高い値を示した。
Then, in the figure, the portion (a) which absorbs light to some extent and contains an appropriate amount of protein was fractionated, and the portion (a) thus fractionated was freeze-dried. rear,
This was dissolved in 0.4 ml of distilled water, 20 μm of this solution was collected, and a sample of 50 μm was prepared by adding 30 μm of 50 mM potassium phosphate buffer, and the angiotensin-converting enzyme inhibitory activity measurement method described above was used. Similarly, when the angiotensin-converting enzyme inhibition rate was measured, the angiotensin-converting enzyme inhibition rate in this sample was 39.9%.
And showed a high value.

次いで、上記の第4図に示す(a)の部分のものを分取
し、これを凍結乾燥させて、完全に溶剤を除去した後、
上記の場合と同様にして、再度、上記の高速液体クロマ
トグラフィーによって精製を行い、その蛋白量を前記の
紫外部吸光法によって測定するようにした。
Then, the portion (a) shown in FIG. 4 is separated and freeze-dried to completely remove the solvent.
In the same manner as in the above case, the purification was performed again by the above high performance liquid chromatography, and the amount of the protein was measured by the ultraviolet absorption method.

この結果、第4図に示す(a)の部分から精製されたも
のにおいては、280nmの光に対して、第6図に示すよう
な3つの山になった光の吸収結果が得られた。
As a result, in the product purified from the portion (a) shown in FIG. 4, the absorption result of light having three peaks as shown in FIG. 6 was obtained for the light of 280 nm.

そして、同図において、第1,第2,第3の各山部分
(a1),(a2),(a3)について、それぞれ前記のよう
にしてアンギオテンシン変換酵素阻害率を測定したとこ
ろ、(a1)の部分はアンギオテンシン変換酵素阻害率が
ほぼ0%であり、(a2)の部分はアンギオテンシン変換
酵素阻害率が33.1%と高い値を示し、(a3)の部分はア
ンギオテンシン変換酵素阻害率が16.1%であった。
Then, in the figure, when the angiotensin-converting enzyme inhibition rate was measured for each of the first, second, and third mountain portions (a 1 ), (a 2 ), and (a 3 ) as described above, The angiotensin-converting enzyme inhibition rate of the part (a 1 ) is almost 0%, the angiotensin-converting enzyme inhibition rate of the part (a 2 ) shows a high value of 33.1%, and the angiotensin-converting enzyme part of the (a 3 ) shows a high value. The inhibition rate was 16.1%.

このため、(a)の部分からは、上記のようにアンギオ
テンシン変換酵素阻害率が高くなった(a2)の部分を分
取するようにした。
Therefore, the portion (a 2 ) in which the angiotensin converting enzyme inhibition rate was high as described above was fractionated from the portion (a).

次いで、上記のようにして分取した第5図に示す(a2
の部分のものについて、アミノ酸シーケンサー(アプラ
イズバイオシステム社製の477A型)により、これに含ま
れるペプチドの構造を特定した。
Then, it is shown in FIG. 5 which was taken out as described above (a 2 ).
The structure of the peptide contained in the above portion was identified by an amino acid sequencer (Model 477A manufactured by Applied Biosystems).

この結果、第5図に示す(a2)の部分のものは、下記の
構造式[1]に示されるペプチドであることが判明し
た。
As a result, it was found that the portion (a 2 ) shown in FIG. 5 was a peptide represented by the following structural formula [1].

[1] Asp-Gln-Thr-Pro-Arg-Val-Phe そして、このようにして得られた上記構造式[1]のペ
プチドについて、前記のアンギオテンシン変換酵素阻害
活性測定法(Cushman−Cheung法)によって、アンギオ
テンシン変換酵素阻害率が50%になるのに必要なペプチ
ドの濃度ID50を測定したところ、上記構造式[1]に示
されるペプチドにおいては、そのID50が42μMであっ
た。
[1] Asp-Gln-Thr-Pro-Arg-Val-Phe And the above-obtained peptide of structural formula [1] is assayed for the angiotensin-converting enzyme inhibitory activity (Cushman-Cheung method). Accordingly, where the angiotensin converting enzyme inhibition rate was determined concentration ID 50 of the required peptide to be 50%, in the peptide shown in the above formula [1], the ID 50 was 42MyuM.

また、上記構造式[1]に示されるペプチドが、その原
料として使用した分離大豆蛋白に由来するものであるか
を確認したところ、上記の構造式[1]に示されるアミ
ノ酸の配列は、大豆蛋白における蛋白質画分が11sA5A4B
3サブユニット プリカーサー配列中に存在しており、
上記構造式〔1〕に示されるペプチドが、その原料に使
用した分離大豆蛋白に由来するものであることが確認さ
れた。
Moreover, when it was confirmed whether the peptide represented by the structural formula [1] was derived from the isolated soybean protein used as the starting material, it was found that the amino acid sequence represented by the structural formula [1] was soybean. The protein fraction of protein is 11sA 5 A 4 B
3 subunits are present in the precursor sequence,
It was confirmed that the peptide represented by the structural formula [1] was derived from the isolated soybean protein used as the starting material.

従って、上記構造式[1]に示されるペプチドは、上記
のようにアンギオテンシンIをアンギオテンシンIIに変
換させるアンギオテンシン変換酵素に対して、その活性
を有効に阻害することができ、食品等として投与するこ
とによって、血圧の上昇をマイルドな作用で抑制するこ
とが期待でき、またこのペプチドは、上記のように食品
として利用されている大豆蛋白に由来するものであるた
め、副作用等の問題がなく、人体に対する安全性も高い
ものであった。
Therefore, the peptide represented by the structural formula [1] can effectively inhibit the activity of angiotensin-converting enzyme that converts angiotensin I into angiotensin II as described above, and can be administered as a food or the like. It is expected that the increase in blood pressure can be suppressed by a mild action, and since this peptide is derived from soybean protein used as a food as described above, there are no problems such as side effects and the human body Was also very safe.

[発明の効果] 以上詳述したように、この発明に係るアンギオテンシン
変換酵素阻害物質は、アンギオテンシンIをアンギオテ
ンシンIIに変換させるアンギオテンシン変換酵素の活性
をマイルドな作用で有効に阻害することができると共
に、食品として使用されている大豆から得られた分離大
豆蛋白を、ペプシンによって分解させて製造できる食品
由来のものであり、副作用等がなく、安全性が高いもの
となっていた。
[Effect of the Invention] As described in detail above, the angiotensin-converting enzyme inhibitor according to the present invention can effectively inhibit the activity of angiotensin-converting enzyme that converts angiotensin I into angiotensin II with a mild action, and The isolated soybean protein obtained from soybean used as a food is derived from a food that can be produced by decomposing it with pepsin, and has no side effects and is highly safe.

この結果、この発明に係るアンギオテンシン変換酵素阻
害物質は、人体に対する安全性が高く、食品等として投
与して、マイルドな作用で血圧を下げることができ、ま
た高血圧の予防効果も期待できるものであった。
As a result, the angiotensin converting enzyme inhibitor according to the present invention is highly safe for the human body, can be administered as a food or the like, can lower blood pressure with a mild action, and can also be expected to prevent hypertension. It was

【図面の簡単な説明】[Brief description of drawings]

図面はいずれもこの発明の実施例を示す図であり、第1
図は分子ふるいクロマトグラフィー(ファルマシア社製
セファデックスG−25)によって分画された各フラク
ションにおける420nmの光に対する吸光度及びアンギオ
テンシン変換酵素阻害率を示す図、第2図は分子ふるい
クロマトグラフィー(ファルマシア社製 セファデック
スG−10)によって分画された各フラクションにおける
420nmの光に対する吸光度及びアンギオテンシン変換酵
素阻害率を示す図、第3図(A),(B)は陽イオン交
換分離によって分画された各フラクションにおけるアン
ギオテンシン変換酵素阻害率及び280nmの光に対する吸
光度を示す図、第4図は高速液体クロマトグラフィーを
用いて最初に分画を行った場合における280nmの光に対
する吸光度を示す図、第5図は高速液体クロマトグラフ
ィーを用いて再度分画行った場合における280nmの光に
対する吸光度を示す図である。
Each of the drawings is a diagram showing an embodiment of the present invention.
The figure shows the absorbance at 420 nm and the angiotensin-converting enzyme inhibition rate in each fraction fractionated by molecular sieve chromatography (Pharmacia Sephadex G-25). Fig. 2 shows the molecular sieve chromatography (Pharmacia). In each fraction fractionated by Sephadex G-10)
The figure showing the absorbance for 420 nm light and the angiotensin-converting enzyme inhibition rate, and FIGS. 3 (A) and (B) show the angiotensin-converting enzyme inhibition rate and the absorbance for 280 nm light in each fraction fractionated by cation exchange separation. Fig. 4 is a diagram showing the absorbance at 280 nm in the case of the first fractionation using high performance liquid chromatography, and Fig. 5 is the case of the second fractionation using high performance liquid chromatography. It is a figure which shows the light absorbency with respect to the light of 280 nm.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61K 38/55 AED C07K 99:00 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display area A61K 38/55 AED C07K 99:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記の構造式〔1〕で示されるペプチドま
たはその塩を含有することを特徴とするアンギオテンシ
ン変換酵素阻害物質。 〔1〕Asp-Gln-Thr-Pro-Arg-Val-Phe
1. An angiotensin-converting enzyme inhibitor containing a peptide represented by the following structural formula [1] or a salt thereof. [1] Asp-Gln-Thr-Pro-Arg-Val-Phe
JP1303294A 1989-11-24 1989-11-24 Angiotensin converting enzyme inhibitor Expired - Lifetime JPH0725793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303294A JPH0725793B2 (en) 1989-11-24 1989-11-24 Angiotensin converting enzyme inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303294A JPH0725793B2 (en) 1989-11-24 1989-11-24 Angiotensin converting enzyme inhibitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6113396A Division JP2535782B2 (en) 1994-05-02 1994-05-02 Angiotensin converting enzyme inhibitor

Publications (2)

Publication Number Publication Date
JPH03167198A JPH03167198A (en) 1991-07-19
JPH0725793B2 true JPH0725793B2 (en) 1995-03-22

Family

ID=17919222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303294A Expired - Lifetime JPH0725793B2 (en) 1989-11-24 1989-11-24 Angiotensin converting enzyme inhibitor

Country Status (1)

Country Link
JP (1) JPH0725793B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269087A (en) * 1992-03-02 1996-10-15 Fumio Yamauchi New tetrapeptide and pentapeptide, their production and antihypertensive containing the same as active ingredient
KR0156678B1 (en) 1996-01-11 1998-10-15 이상윤 Angiotensin converting enzyme inhibitor
WO2002055546A1 (en) * 2001-01-16 2002-07-18 Ajinomoto Co.,Inc. Angiotensin converting enzyme inhibitors
US20040022877A1 (en) * 2002-07-30 2004-02-05 Nancy Green Cardiovascular health enhancement with soy fortified orange juice compositions
JP5060741B2 (en) * 2006-06-06 2012-10-31 公立大学法人青森県立保健大学 Apios acetic acid / enzyme processed product production method, Apios-derived peptide and production method thereof

Also Published As

Publication number Publication date
JPH03167198A (en) 1991-07-19

Similar Documents

Publication Publication Date Title
JP3727383B2 (en) Prolyl endopeptidase inhibitor
JP3068656B2 (en) Novel peptide and angiotensin converting enzyme inhibitory peptide and oral feeding composition containing them
JPH0331298A (en) Prolyl endopeptidase inhibitory peptide
JPH0725793B2 (en) Angiotensin converting enzyme inhibitor
CA2195053C (en) Agents for inhibiting accumulation of visceral fat
JP3119674B2 (en) New peptides, their production methods and applications
JP2535782B2 (en) Angiotensin converting enzyme inhibitor
JP3414761B2 (en) Oral intake
JP3110075B2 (en) Method for producing composition containing angiotensin converting enzyme inhibitor
JP3129523B2 (en) Novel peptide and method for producing the same
JP3031693B2 (en) Method for producing composition containing angiotensin converting enzyme inhibitor
JP3220420B2 (en) Pentapeptide, its production method and its use
JPH04139196A (en) New peptide, its production and use thereof
JP2965683B2 (en) Novel peptide, method for producing it and use
JP2965682B2 (en) New peptides, their production methods and applications
JP3012291B2 (en) Novel peptide, its production method and use
JP2990354B1 (en) Novel pentapeptide and angiotensin converting enzyme inhibitors
JP3112694B2 (en) Novel peptide, method for producing it and use
JP3009719B2 (en) New peptides, their production methods and applications
JP2953634B2 (en) New peptides, their production methods and applications
JP3112695B2 (en) Method for producing peptide
JP2001106699A (en) New hexapeptide and angiotensin-converting enzyme inhibitor
JP2001106698A (en) New tetrapeptide and angiotensin-converting enzyme inhibitor
JP3009720B2 (en) New peptides, their production methods and applications
JP3108920B1 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term