JPH0725665Y2 - Organic solvent drying equipment for electron microscope samples - Google Patents
Organic solvent drying equipment for electron microscope samplesInfo
- Publication number
- JPH0725665Y2 JPH0725665Y2 JP1988081262U JP8126288U JPH0725665Y2 JP H0725665 Y2 JPH0725665 Y2 JP H0725665Y2 JP 1988081262 U JP1988081262 U JP 1988081262U JP 8126288 U JP8126288 U JP 8126288U JP H0725665 Y2 JPH0725665 Y2 JP H0725665Y2
- Authority
- JP
- Japan
- Prior art keywords
- organic solvent
- sample
- electron microscope
- vacuum
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【考案の詳細な説明】 [産業上の利用分野] 本考案は、電子顕微鏡により、生物試料を観察する場合
に、生物組織の形態を保つための水を、試料の組織の微
細形態を保持した状態で除去する有機溶媒乾燥装置の改
良に関する。[Detailed Description of the Invention] [Industrial field of application] The present invention holds water for maintaining the morphology of biological tissue when observing a biological sample by an electron microscope, and retains the fine morphology of the tissue of the sample. The present invention relates to an improvement in an organic solvent drying device for removing in a state.
[従来の技術] 電子顕微鏡の試料室は、高度の真空に保たれているた
め、水を含んだままの試料を観察することができない。
しかし、単に乾燥したのでは試料が収縮し、変形してし
まう。特に、電子顕微鏡的微細構造は乾燥過程での水の
表面張力により、原形を保持させることはおよそ不可能
である。光学顕微鏡観察のためには、古くから凍結乾燥
法が採用されていた。この方法は試料を凍結して、−50
℃付近に保ちながら真空中で水を昇華させるもので、光
学顕微鏡観察の範囲では一応の形態は保存されていた。
しかし、氷の結晶成長を抑えるには、−80℃以下に保持
する必要がある。ところが、このような低温度では水の
昇華速度は極めて遅く、高真空中においても数日を必要
とするため、実用には適していない。[Prior Art] Since the sample chamber of the electron microscope is kept at a high vacuum, the sample containing water cannot be observed.
However, simply drying causes the sample to shrink and deform. In particular, it is almost impossible for the electron microscopic microstructure to retain its original shape due to the surface tension of water during the drying process. The freeze-drying method has long been used for optical microscope observation. This method freezes the sample to -50
It sublimates water in a vacuum while keeping it at around ℃, and its morphology was tentatively preserved in the range of optical microscope observation.
However, in order to suppress the crystal growth of ice, it is necessary to keep the temperature below -80 ° C. However, at such a low temperature, the sublimation rate of water is extremely slow, and several days are required even in a high vacuum, which is not suitable for practical use.
最近、凍結乾燥の改良法として、水を有機溶媒に置換
し、これを凍結して真空中で乾燥する方法が提案され、
実用に供されようとしている。有機溶媒としては、常
温、大気圧では液体又は固体であって、且つ比較的蒸発
速度の緩慢な気化熱の大きいものが望ましい。例えばフ
レオン113、アセトニトリル、第3ブタノール、ベンゼ
ンあるいはネオペンタンなどが推奨されている。これら
の液体は、前記の凍結乾燥法における凍結温度よりも充
分高い温度で冷却するか、あるいは減圧することによっ
て容易に固体化する。そして、油回転ポンプ程度の真空
ポンプで維持できる真空度において、比較的速やかに昇
華させることができる。Recently, as an improved method for freeze-drying, a method has been proposed in which water is replaced with an organic solvent, which is frozen and dried in a vacuum,
It is about to be put to practical use. As the organic solvent, those which are liquid or solid at room temperature and atmospheric pressure and have large vaporization heat with a relatively slow evaporation rate are desirable. For example, Freon 113, acetonitrile, tertiary butanol, benzene, neopentane, etc. are recommended. These liquids are easily solidified by cooling at a temperature sufficiently higher than the freezing temperature in the freeze-drying method or by reducing the pressure. Then, it can be sublimated relatively quickly at a degree of vacuum that can be maintained by a vacuum pump such as an oil rotary pump.
前記の性質を利用するには、まず、生物組織中の水分を
アセトンやアルコールで脱水し、更にこれを上記の有機
溶媒と置換し、冷却して固体にして真空排気することに
よって乾燥する。この方法は、微細形態保持の点で従来
の他の乾燥法に優り、更に乾燥に要する時間は水の場合
の数十分の一に短縮できる外、真空排気装置も油回転ポ
ンプだけの簡単なもので済むといった利点がある。In order to utilize the above-mentioned properties, first, water in biological tissue is dehydrated with acetone or alcohol, which is then replaced with the above-mentioned organic solvent, cooled, solidified and vacuum-exhausted to dry. This method is superior to other conventional drying methods in terms of maintaining fine morphology, and the time required for drying can be shortened to several tens of times in the case of water, and the vacuum exhaust device is a simple oil rotary pump. It has the advantage that it can be done with just one thing.
しかし、前記方法の欠点は、昇華した有機溶媒が回転ポ
ンプの油の中に溶解停留し、油回転ポンプとしての能
力、すなわち排気速度、真空度を低下させてしまう。こ
のため長期使用に対する性能と信頼性がやや低いといっ
た問題があった。However, a disadvantage of the above method is that the sublimated organic solvent remains dissolved in the oil of the rotary pump, which lowers the ability as an oil rotary pump, that is, the pumping speed and the degree of vacuum. Therefore, there is a problem that performance and reliability for long-term use are slightly low.
この問題に対し、気化した有機溶媒を油回転ポンプ側に
吸引させないためには、例えば、液体窒素等を満たした
コールドトラップを設ける手段が考えられる。In order to prevent the vaporized organic solvent from being sucked toward the oil rotary pump side, for example, a means of providing a cold trap filled with liquid nitrogen or the like is conceivable.
[考案が解決しようとする課題] しかしながら、有機溶媒凍結乾燥法では、水分凍結乾燥
法に比べてはるかに高い温度で有機溶媒を蒸発させるた
め、真空容器内に液体窒素等を満たしたコールドトラッ
プを設けた場合、試料がコールドトラップにより冷却さ
れることから、試料の温度が低下し過ぎる。これによ
り、有機溶媒の昇華がきわめて遅くなり、低い真空度で
速やかに有機溶媒を昇華させることができなくなる。[Problems to be solved by the invention] However, in the organic solvent freeze-drying method, since the organic solvent is evaporated at a much higher temperature than the water freeze-drying method, a cold trap filled with liquid nitrogen or the like is provided in the vacuum container. When provided, the sample is cooled by the cold trap, so the temperature of the sample drops too much. As a result, the sublimation of the organic solvent becomes extremely slow, and it becomes impossible to quickly sublimate the organic solvent at a low degree of vacuum.
さらに、液体窒素等の冷媒を満たしたコールドトラップ
は、冷媒容器を備えるため、真空槽から取り出すことが
できない。従って、試料を処理した後、コールドトラッ
プの表面に付着した有機溶媒を真空容器内から除去する
には、真空槽全体を分解して洗浄する必要がある。この
ため、コールドトラップに付着した有機溶媒の除去に多
くの手数がかかる。しかも、洗浄の度に液体窒素を出し
入れしなければならないため、液体窒素の消費量が多
い。Further, since the cold trap filled with the refrigerant such as liquid nitrogen has the refrigerant container, it cannot be taken out from the vacuum chamber. Therefore, in order to remove the organic solvent adhering to the surface of the cold trap from the inside of the vacuum container after processing the sample, it is necessary to disassemble and wash the entire vacuum chamber. Therefore, it takes a lot of trouble to remove the organic solvent attached to the cold trap. Moreover, since liquid nitrogen has to be taken in and out each time cleaning is performed, the amount of liquid nitrogen consumed is large.
そこで、本考案の目的は、前記従来技術における有機溶
媒凍結乾燥法の問題点に鑑み、試料の温度を必要以上に
低下させずに有機溶媒が回転ポンプへ流入するのを防止
でき、さらにコールドトラップに付着した有機溶媒の除
去も容易に行え、液体窒素等の冷媒の消費が少ない電子
顕微鏡用試料の有機溶媒乾燥装置を提供することにあ
る。Therefore, in view of the problems of the organic solvent freeze-drying method in the above-mentioned conventional technique, an object of the present invention is to prevent the organic solvent from flowing into the rotary pump without lowering the temperature of the sample more than necessary, and further to cold trap. It is an object of the present invention to provide an organic solvent drying apparatus for an electron microscope sample which can easily remove the organic solvent attached to the sample and consumes less refrigerant such as liquid nitrogen.
[課題を解決するための手段] すなわち、前記本考案の目的は、周囲に立ち上がった壁
を有するカップ状の試料容器の底部に、水分を有機溶媒
に置換された電子顕微鏡観察用の試料を収納し、さらに
同試料容器を前記真空槽内に収納し、前記試料容器の周
囲の壁の外側の近傍に、予め低温に冷却されたブロック
状の低温金属体を配置したことを特徴とする電子顕微鏡
用試料の有機溶媒乾燥装置によって達成される。[Means for Solving the Problems] That is, the object of the present invention is to store a sample for electron microscope observation in which water is replaced by an organic solvent in the bottom of a cup-shaped sample container having a wall that stands up around the sample. Further, the same sample container is further housed in the vacuum chamber, and a block-shaped low-temperature metal body cooled in advance to a low temperature is arranged in the vicinity of the outside of the peripheral wall of the sample container. It is achieved by an organic solvent drying apparatus for the sample.
[作用] 本考案による有機溶媒乾燥装置では、周囲に立ち上がっ
た壁を有するカップ状の試料容器の底部に、水分を有機
溶媒に置換された電子顕微鏡観察用の試料を収納し、真
空槽内において、この試料容器の周囲の壁の外側の近傍
に、低温金属体を配置したので、試料が低温金属体に対
して前記の壁で遮られ、試料が低温金属体で直接冷却さ
れない。このため、試料温度が必要以上に低下せず、比
較的低い真空度の中で、有機溶媒を速やかに昇華させる
ことができる。[Operation] In the organic solvent drying device according to the present invention, the sample for electron microscope observation in which water is replaced by the organic solvent is stored in the bottom of the cup-shaped sample container having the wall rising up in the periphery, and the sample is placed in the vacuum chamber. Since the low temperature metal body is arranged near the outside of the wall around the sample container, the sample is shielded by the wall against the low temperature metal body, and the sample is not directly cooled by the low temperature metal body. Therefore, the sample temperature does not drop more than necessary, and the organic solvent can be quickly sublimated in a relatively low degree of vacuum.
さらに、前記低温金属体は、予め冷却したブロック状の
ものであるため、それに付着した有機溶媒を真空装置の
中から除去するときは、その低温金属体単体を真空槽か
ら取り出すだけでよい。このため、低温金属体に付着し
た有機溶媒を真空槽内から容易に除去できる。しかも、
液体窒素等の冷媒の消費も少なくて済む。Furthermore, since the low-temperature metal body is a block that has been cooled in advance, when removing the organic solvent attached to the low-temperature metal body from the vacuum device, the low-temperature metal body alone needs to be taken out from the vacuum chamber. Therefore, the organic solvent attached to the low temperature metal body can be easily removed from the vacuum chamber. Moreover,
It consumes less refrigerant such as liquid nitrogen.
[実施例] 以下、本考案の実施例について添付図面を参照しながら
詳細に説明する。[Embodiment] Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
第1図は、本考案の一実施例を示す縦断面図である。比
較的少量の試料を、有機溶媒乾燥装置で処理する実験的
簡易装置の例である。1は真空槽用ガラス鐘で、基板2
と共に真空槽を形成する。基板2の上に熱絶縁台3を介
して試料容器4を置く。この試料容器4は、周囲に立ち
上がる壁を有するカップ状のもので、その壁で囲まれた
底部に、水を有機溶媒に置換した試料5が少量の同一有
機溶媒と共に入れてある。この試料容器4の周囲の壁の
外側の近傍に、予め液体窒素等の冷媒により冷却された
熱容量の大きなブロック状の低温金属体6が置かれる。FIG. 1 is a vertical sectional view showing an embodiment of the present invention. It is an example of an experimental simple device for treating a relatively small amount of sample with an organic solvent drying device. 1 is a glass bell for a vacuum chamber, and 2 is a substrate
Together with this, a vacuum chamber is formed. The sample container 4 is placed on the substrate 2 via the heat insulating base 3. The sample container 4 is a cup-shaped one having a wall rising up to the periphery, and a sample 5 in which water is replaced with an organic solvent is put in the bottom surrounded by the wall together with a small amount of the same organic solvent. A block-shaped low-temperature metal body 6 having a large heat capacity, which has been cooled in advance by a coolant such as liquid nitrogen, is placed near the outside of the wall around the sample container 4.
このような構成で、基板2にある排気パイプ8から油回
転ポンプPで排気減圧すると、有機溶媒は急激に蒸発
し、気化熱を奪われて直ちに自ら凍結して固体となる。
そして、固体化した有機溶媒は、真空槽内の圧力低下に
より昇華するが、近傍には極低温の低温金属体6があ
り、その表面付近は、油回転ポンプP側より遥かに低い
気圧状態にあるため、蒸発した有機溶媒のガスは低温金
属体6の方へ流れ、金属体6の表面に吸着される。With such a configuration, when the pressure is exhausted from the exhaust pipe 8 on the substrate 2 by the oil rotary pump P, the organic solvent is rapidly evaporated, the heat of vaporization is taken away, and the organic solvent immediately freezes and becomes a solid.
Then, the solidified organic solvent sublimes due to the pressure drop in the vacuum chamber, but there is a cryogenic low temperature metal body 6 in the vicinity thereof, and the vicinity of the surface thereof is at a pressure state much lower than the oil rotary pump P side. Therefore, the evaporated gas of the organic solvent flows toward the low temperature metal body 6 and is adsorbed on the surface of the metal body 6.
すなわち、−100℃以下の低温金属体6は、このコール
ドトラップ効果により、単なる油回転ポンプPによる真
空度より遥かに高度の真空を試料容器4の近傍に作るこ
とになり、試料容器4内の有機溶媒の昇華を促進する相
乗効果をもたらす。しかも、試料容器4の周囲の壁によ
り、試料5が低温金属体6に対して遮られ、直接冷却さ
れないため、試料5の温度が必要以上に低下しない。従
って、試料5の有機溶媒が速やかに乾燥され、その乾燥
時間が短縮される。初期排気によって、有機溶媒が自己
凍結するまでに、若干の有機溶媒が油回転ポンプPに吸
引されるが、これを嫌う場合は、有機溶媒を液体窒素の
冷気によって予め固体化しておけばよい。That is, the low temperature metal body 6 of −100 ° C. or less creates a vacuum much higher than the vacuum degree by the simple oil rotary pump P in the vicinity of the sample container 4 due to the cold trap effect, and the inside of the sample container 4 is It provides a synergistic effect of promoting sublimation of the organic solvent. Moreover, since the sample 5 is shielded from the low temperature metal body 6 by the wall around the sample container 4 and is not directly cooled, the temperature of the sample 5 does not drop more than necessary. Therefore, the organic solvent of the sample 5 is quickly dried and the drying time is shortened. By the initial evacuation, some of the organic solvent is sucked into the oil rotary pump P before the organic solvent self-freezes. If this is not desired, the organic solvent may be solidified in advance by cold air of liquid nitrogen.
第2図は、本考案の他の実施例を示す縦断面図である。
有機溶媒の回収が可能な、多量の試料処理用装置の例で
ある。コールドトラップとしての低温金属体6を円筒ブ
ロック状とし、その有機溶媒の吸着面積を大ならしめ、
この中に熱絶縁体10を介してカップ状の試料容器4を設
置する。そして円筒状の低温金属6は、熱伝導良好な金
属性の縁付き円盤7の上に熱的に密着して設置され、熱
絶縁体3を介して真空槽の基板2の上に設置される。FIG. 2 is a vertical sectional view showing another embodiment of the present invention.
This is an example of a large amount of sample processing device capable of recovering an organic solvent. The low temperature metal body 6 as a cold trap is formed into a cylindrical block shape to increase the adsorption area of the organic solvent,
A cup-shaped sample container 4 is placed in this via a heat insulator 10. Then, the cylindrical low-temperature metal 6 is placed in thermal contact with a metallic disc 7 having a good thermal conductivity, and is placed on the substrate 2 of the vacuum chamber via the thermal insulator 3.
次に、以上のように構成された実施例の操作について述
べる。まず、熱絶縁体10を持った縁付き金属円盤7を、
基板2の上に熱絶縁体3を介して設置する。この上に、
カップ状の試料容器4の底部に有機溶媒漬けの試料5を
入れ、冷却固体化して載せる。次に、円筒状の低温金属
体6を液体窒素温度にして、試料5を取り囲むように置
き、真空槽用ガラス鐘1を被せて、基板2にある排気パ
イプ8を通して油回転ポンプPにより真空排気を行う。
そうすると、圧力の低下に伴い、有機溶媒は昇華する
が、有機ガスは周囲を取り巻く低温壁に大半吸着され、
未吸着のガスも外壁に吸着されて、油回転ポンプ側への
有機ガスの流れは殆ど無くなる。Next, the operation of the embodiment configured as described above will be described. First, the rimmed metal disk 7 with the thermal insulator 10
It is installed on the substrate 2 via the thermal insulator 3. On top of this,
The organic solvent-immersed sample 5 is placed in the bottom of the cup-shaped sample container 4, cooled, solidified, and mounted. Next, the cylindrical low-temperature metal body 6 is brought to the liquid nitrogen temperature, placed so as to surround the sample 5, covered with the vacuum chamber glass bell 1, and evacuated by the oil rotary pump P through the exhaust pipe 8 on the substrate 2. I do.
Then, as the pressure drops, the organic solvent sublimes, but most of the organic gas is adsorbed by the surrounding low temperature wall,
Unadsorbed gas is also adsorbed on the outer wall, and the flow of organic gas to the oil rotary pump side is almost eliminated.
このことは、有機溶媒の量が一定以内であれば同様で、
低温壁には粉末状の有機溶媒が積層吸着し、一定の厚さ
を越すと剥離して縁付き円盤7の上に落下する。縁付き
円盤7は、円筒状の低温金属体6に熱を奪われ、同程度
の低温度になっているので、落下した有機溶媒の粉末は
蒸発することがない。This is the same if the amount of organic solvent is within a certain amount,
The powdery organic solvent is laminated and adsorbed on the low temperature wall, and when it exceeds a certain thickness, it peels off and falls onto the edged disk 7. The edged disk 7 is deprived of heat by the cylindrical low-temperature metal body 6 and has a similar low temperature, so that the powder of the organic solvent that has dropped does not evaporate.
更に、試料5の乾燥終了後は、真空を破って真空槽用ガ
ラス鐘1を取り外し、試料容器4に蓋をしてから低温金
属体6を取り除けば、乾燥した試料5への大気中の水分
吸着を防止できる。Further, after the drying of the sample 5, the vacuum is broken to remove the glass bell 1 for the vacuum chamber, the sample container 4 is covered, and then the low-temperature metal body 6 is removed. Adsorption can be prevented.
有機溶媒の種類によっては、気化熱でかなりの低温にな
るので、真空槽に空気を入れたとき、大気中の湿気が乾
燥した試料5に吸着される。そのような有機溶媒を使用
する場合は、熱絶縁台10の上に小型ヒーター9を設け、
その上に試料容器4を置く。試料5の乾燥後、ヒーター
9によって試料温度を室温付近まで上昇させた後、大気
中に取り出すようにすればよい。低温金属体6及び縁付
き円盤7に付着している粉末状の有機溶媒は、室温に戻
して回収する。Depending on the type of organic solvent, the heat of vaporization brings the temperature to a considerably low temperature. Therefore, when air is introduced into the vacuum chamber, moisture in the atmosphere is adsorbed by the dried sample 5. When such an organic solvent is used, a small heater 9 is provided on the heat insulation base 10,
The sample container 4 is placed on it. After drying the sample 5, the temperature of the sample may be raised to near room temperature by the heater 9 and then taken out into the atmosphere. The powdery organic solvent adhering to the low-temperature metal body 6 and the rimmed disk 7 is returned to room temperature and recovered.
[考案の効果] 以上説明したように、本考案によれば、試料の温度を必
要以上に低下させずに有機溶媒が回転ポンプへ流入する
のを防止できるので、有機溶媒の昇華速度を低下させる
ことなく、試料を短時間で処理できる。さらに低温金属
体に付着した有機溶媒の除去も容易に行え、液体窒素等
の冷媒の消費が少ない電子顕微鏡用試料の有機溶媒乾燥
装置を提供することができる。[Effects of the Invention] As described above, according to the present invention, the organic solvent can be prevented from flowing into the rotary pump without lowering the temperature of the sample more than necessary, so that the sublimation rate of the organic solvent is reduced. Sample can be processed in a short time. Further, it is possible to easily remove the organic solvent attached to the low-temperature metal body, and it is possible to provide an organic solvent drying apparatus for an electron microscope sample that consumes less refrigerant such as liquid nitrogen.
第1図は本考案の有機溶媒乾燥装置の一実施例を示す縦
断面図、第2図は本考案の他の実施例を示す縦断面図で
ある。 1……真空槽用ガラス鐘、2……基板、3、10……熱絶
縁台、4……試料容器、5……試料、6……低温金属
体、P……油回転ポンプFIG. 1 is a vertical sectional view showing an embodiment of the organic solvent drying apparatus of the present invention, and FIG. 2 is a vertical sectional view showing another embodiment of the present invention. 1 ... Glass bell for vacuum chamber, 2 ... Substrate, 3, 10 ... Thermal insulation stand, 4 ... Sample container, 5 ... Sample, 6 ... Low temperature metal body, P ... Oil rotary pump
Claims (1)
顕微鏡用試料の前記有機溶媒を、それが固体状態を保つ
温度に維持された真空槽内で真空乾燥する電子顕微用試
料の有機溶媒乾燥装置において、周囲に立ち上がった壁
を有するカップ状の試料容器の底部に、水分を有機溶媒
に置換された電子顕微鏡観察用の試料を収納し、さらに
同試料容器を前記真空槽内に収納し、前記試料容器の周
囲の壁の外側の近傍に、予め低温に冷却されたブロック
状の低温金属体を配置したことを特徴とする電子顕微鏡
用試料の有機溶媒乾燥装置。1. An organic solvent for an electron microscope sample, which is vacuum-dried in a vacuum chamber maintained at a temperature at which it maintains the solid state of the organic solvent of an electron microscope sample in which the water content is replaced by an organic solvent. In the drying device, the bottom of a cup-shaped sample container having a rising wall around the periphery, the sample for electron microscope observation in which water was replaced by an organic solvent was stored, and the same sample container was stored in the vacuum chamber. An organic solvent drying apparatus for a sample for an electron microscope, characterized in that a block-shaped low-temperature metal body cooled in advance to a low temperature is arranged in the vicinity of an outer side of a wall around the sample container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988081262U JPH0725665Y2 (en) | 1988-06-20 | 1988-06-20 | Organic solvent drying equipment for electron microscope samples |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988081262U JPH0725665Y2 (en) | 1988-06-20 | 1988-06-20 | Organic solvent drying equipment for electron microscope samples |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH022649U JPH022649U (en) | 1990-01-09 |
JPH0725665Y2 true JPH0725665Y2 (en) | 1995-06-07 |
Family
ID=31306049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1988081262U Expired - Lifetime JPH0725665Y2 (en) | 1988-06-20 | 1988-06-20 | Organic solvent drying equipment for electron microscope samples |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0725665Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3053731B2 (en) * | 1994-04-13 | 2000-06-19 | 日本電子株式会社 | Biological sample preparation method for scanning electron microscope and biological sample observation method |
JP2005233942A (en) * | 2004-01-20 | 2005-09-02 | Nikkiso Co Ltd | Length measurement method for micro-fibrous material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536159U (en) * | 1976-07-01 | 1978-01-19 | ||
JPS56150325A (en) * | 1980-04-22 | 1981-11-20 | Yukitaka Ajimi | Vaccum device |
-
1988
- 1988-06-20 JP JP1988081262U patent/JPH0725665Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH022649U (en) | 1990-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Williams | A method of freeze-drying for electron microscopy | |
US9651305B2 (en) | Lyophilization system and method | |
JP5876491B2 (en) | Optimization of nucleation and crystallization for lyophilization using gap freezing | |
CA1037858A (en) | Freeze-drying process | |
JP2676374B2 (en) | Freeze dryer | |
KR860000909B1 (en) | Process for preparation a microporus structured freeze dried coffee product | |
JP2000240570A (en) | Shield for protecting array of activated carbon of cryopump from shedding during regeneration of cryopump | |
CA2336198A1 (en) | Cryogenic freezing of liquids | |
JPH0725665Y2 (en) | Organic solvent drying equipment for electron microscope samples | |
JPH02110281A (en) | Freeze drying method and device having active thermal shield forming means between freeze drying shelf | |
US5715686A (en) | Method for cryopreservation of biological samples | |
JP2002214091A (en) | Specimen freezing method, cooling holder and scanning electron microscope | |
US3281950A (en) | Freeze-drying process | |
JPH0621165Y2 (en) | Sample freeze-drying device for electron microscope | |
US3264746A (en) | Freeze-drying | |
JP3602506B2 (en) | Pressure heating drying method and pressure heating drying apparatus | |
CN1202401C (en) | Mini fast vacuum freeze-drier and its drying method | |
JP2766667B2 (en) | Frozen sample transfer device | |
Woods et al. | Preservation of EDTA‐expanded grid‐mounted chromosomes and nuclei for electron microscopy using a specially designed freeze‐dryer | |
KR20180028233A (en) | Vacuum freeze-drying system using a liquid nitrogen | |
Frederik et al. | Cryo‐transfer revised | |
US3308551A (en) | Freeze-drying apparatus and method | |
JP2633022B2 (en) | Frozen sample preparation device | |
RH et al. | FREEZE-DRYING OF BIOLOGICAL SPECIMENS FOR ELECTRON MICROSCOPY USING THERMOELECTRIC COOLING. | |
CN113606880B (en) | Method for realizing dynamic ultra-fast agglomeration-free freeze drying by utilizing high-acceleration vibration |