JPH0725643A - Production of ultrafine hollow glass sphere - Google Patents

Production of ultrafine hollow glass sphere

Info

Publication number
JPH0725643A
JPH0725643A JP11116193A JP11116193A JPH0725643A JP H0725643 A JPH0725643 A JP H0725643A JP 11116193 A JP11116193 A JP 11116193A JP 11116193 A JP11116193 A JP 11116193A JP H0725643 A JPH0725643 A JP H0725643A
Authority
JP
Japan
Prior art keywords
glass
aqueous solution
hollow glass
powder
volcanic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116193A
Other languages
Japanese (ja)
Inventor
Kunio Kimura
邦夫 木村
Kenichiro Matsuda
健一郎 松田
Fumio Fukagawa
文夫 深川
Hiromi Okada
博美 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KARUSHIIDE KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
KARUSHIIDE KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KARUSHIIDE KK, Agency of Industrial Science and Technology filed Critical KARUSHIIDE KK
Priority to JP11116193A priority Critical patent/JPH0725643A/en
Publication of JPH0725643A publication Critical patent/JPH0725643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily obtain the glass spheres while alleviating conditions of a device for burning by treating volcanic glass deposit powder having specific particle diameters with an aqueous solution of an alkali, facilitating heating and expansion by increasing structural water in glass. CONSTITUTION:A naturally productive mineral of volcanic glass deposit powder (e.g. Shirasu, obsidian or perlite) having <=20mum particle diameters is prepared. The mineral powder is hydrothermally treated with an aqueous solution of an alkali to increase structural water in glass necessary for heating and expansion or to reduce the softening temperature of glass. Then, the mineral is burnt at 900-1,100 deg.C for 1-60 seconds and a hollow substance is separated and recovered from the burnt material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超微細中空ガラス球状体
の製造方法に関するものである。さらに詳しくいえば、
本発明は、各種の軽量複合材の素材として有用な超微細
の中空ガラス球状体を製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine hollow glass spheres. More specifically,
The present invention relates to a method for producing ultrafine hollow glass spheres useful as a material for various lightweight composite materials.

【0002】[0002]

【従来の技術】火山ガラス質堆積物の主要鉱物成分は天
然ガラスであり、このものを原料として超粒中空ガラス
球状体を製造する方法が知られている(特公昭48−1
7645号公報)。ところで、この火山ガラス質堆積物
の灼熱減量分はほとんどが水分であるため、この火山ガ
ラス質堆積物をガラス質の軟化と水蒸気の発生を同時に
行いうる条件下で焼成処理を行うと、発泡して、中空ガ
ラス球状体が得られる。
2. Description of the Related Art The main mineral component of volcanic glassy deposits is natural glass, and a method for producing super-granular hollow glass spheres from this is known (Japanese Patent Publication No. 48-1).
7645). By the way, most of the loss on ignition of this volcanic vitreous deposit is water, so if this volcanic vitreous deposit is fired under conditions that can simultaneously soften the vitreous and generate steam, it will foam. As a result, hollow glass spheres are obtained.

【0003】しかしながら、粒径20μm以下の火山ガ
ラス質堆積物微粉末を焼成処理すると、ガラス構造内部
に含まれている水分の粒子外への拡散速度が速すぎ、適
切な発泡条件を得ることが困難になる。
However, when the fine powder of volcanic glassy deposits having a particle size of 20 μm or less is fired, the diffusion rate of water contained in the glass structure to the outside of the particles is too fast, and appropriate foaming conditions can be obtained. It will be difficult.

【0004】一方、焼成に先立って酸溶液中で加熱処理
を行うことにより、超微細中空ガラス球状体が製造する
方法が知られている(特公平4−296750号公
報)。しかしながら、この方法では、酸による装置の腐
食を生じるため耐食性の材料にしなければならず、工業
的に実施するには不適当である。
On the other hand, there is known a method for producing ultrafine hollow glass spheres by performing heat treatment in an acid solution prior to firing (Japanese Patent Publication No. 4-296750). However, this method requires corrosion-resistant material because it causes corrosion of the device by acid, and is not suitable for industrial use.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来方法に
より、火山ガラス質堆積物を原料として、超微細中空ガ
ラス球状体を製造する際に伴う欠点を克服し、超微粒中
空ガラス球状体を効率よく製造するための工業的に実施
可能な方法を提供することを目的としてなされたもので
ある。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks associated with the production of ultrafine hollow glass spheres from volcanic glassy deposits as a raw material by the conventional method, and provides ultrafine hollow glass spheres. It was made for the purpose of providing an industrially practicable method for efficient production.

【0006】[0006]

【課題を解決するための手段】本発明者らは、超微細中
空ガラス球状体の製造を工業的に実施するのに適した方
法を開発するために鋭意研究を重ねた結果、火山ガラス
質堆積物を粒径20μmに粉砕したのち、焼成に先立っ
てアルカリ水溶液中で加熱処理することにより、その目
的を達成しうることを見出し、この知見に基づいて本発
明を完成するに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted diligent research to develop a method suitable for industrially producing ultrafine hollow glass spheres, and as a result, volcanic glass deposition It was found that the object can be achieved by pulverizing the product to a particle size of 20 μm and then heat-treating it in an alkaline aqueous solution prior to firing, and completed the present invention based on this finding.

【0007】すなわち、本発明は、粒径20μm以下の
火山ガラス堆積物粉末を、アルカリ水溶液中で加熱処理
し、所望に応じ酸によるアルカリの溶出を行ったのち、
900〜1100℃において1〜60秒間焼成し、焼成
物より中空体を分離回収することを特徴とする超微細中
空ガラス球状体の製造方法を提供するものである。
That is, in the present invention, a volcanic glass deposit powder having a particle size of 20 μm or less is heat-treated in an alkaline aqueous solution, and alkali is eluted with an acid as desired,
The present invention provides a method for producing an ultrafine hollow glass sphere, which comprises firing at 900 to 1100 ° C for 1 to 60 seconds and separating and recovering the hollow body from the fired product.

【0008】本発明方法において、原料として用いる火
山ガラス質堆積物は、シラス、黒曜石、真珠岩、松脂岩
などとして天然に産出する鉱物であって、これらは通常
SiO、Al、Fe、CaO、MgO、
NaO及びKOから構成され、水分3〜10重量%
を含んでいる。
In the method of the present invention, the volcanic glassy deposit used as a raw material is a naturally occurring mineral such as shirasu, obsidian, pearlite and pinelite, and these are usually SiO 2 , Al 2 O 3 and Fe. 2 O 3 , CaO, MgO,
Consists of Na 2 O and K 2 O, water content 3-10% by weight
Is included.

【0009】本発明方法においては、これらの火山ガラ
ス質堆積物を粉砕し、粉砕物から20μm以下の区分を
分級して用いる。
In the method of the present invention, these volcanic glassy deposits are crushed, and the pulverized products are classified into 20 μm or smaller sections for use.

【0010】本発明方法においては、この粒径20μm
以下の火山ガラス堆積物粉末を、次いでアルカリ水溶液
中において加熱処理する。この際、アルカリとしては例
えば水酸化ナトリウム、水酸化カリウム、水酸化カルシ
ウムなどが用いられる。アルカリ水溶液の濃度として
は、水酸化カリウムや水酸化ナトリウムの場合は0.0
5〜1.0モル/リットル程度が好ましく、水酸化カル
シウムの場合は溶解度が小さいので、通常飽和水溶液が
用いられる。また、このアルカリ水溶液は、火山ガラス
質堆積物粉末の重量に対して、通常1〜10倍量の範囲
で用いられる。
In the method of the present invention, this particle size is 20 μm.
The following volcanic glass deposit powder is then heat treated in aqueous alkaline solution. At this time, as the alkali, for example, sodium hydroxide, potassium hydroxide, calcium hydroxide or the like is used. The concentration of the alkaline aqueous solution is 0.0 in the case of potassium hydroxide or sodium hydroxide.
It is preferably about 5 to 1.0 mol / liter, and in the case of calcium hydroxide, the solubility is low, so a saturated aqueous solution is usually used. The alkaline aqueous solution is usually used in an amount of 1 to 10 times the weight of the volcanic glassy deposit powder.

【0011】アルカリ水溶液による加熱処理は、密閉容
器中で温度及び圧力を上げて行う、いわゆる水熱処理が
好ましく、これにより加熱発泡に不可欠なガラス中の構
造水がより増加し、加熱発泡がより容易となる。加熱処
理温度は通常100〜200℃の範囲で選ばれ、また、
処理時間は、温度が高い場合は短時間、温度が低い場合
は長時間を要し、例えば150℃程度の温度で処理する
場合、処理時間は4〜100時間程度になる。
The heat treatment with the alkaline aqueous solution is preferably a so-called hydrothermal treatment, which is carried out by raising the temperature and pressure in a closed container, whereby the structural water in the glass, which is indispensable for the heat-foaming, increases, and the heat-foaming is easier Becomes The heat treatment temperature is usually selected in the range of 100 to 200 ° C., and
The treatment time is short when the temperature is high and long when the temperature is low. For example, when the treatment is performed at a temperature of about 150 ° C., the treatment time is about 4 to 100 hours.

【0012】このアルカリ水溶液による加熱処理によ
り、火山ガラス質堆積物におけるシリカのネットワーク
構造が切断されて、ガラスの軟化温度が低下するととも
に、前記したように粒子内の構造水が増加し、その結果
後で述べる熱処理において加熱発泡が容易に起こり、超
微細中空ガラス球状体の形成が可能となる。
By this heat treatment with the alkaline aqueous solution, the silica network structure in the volcanic glassy deposit is cut, the softening temperature of the glass is lowered, and as described above, the structural water in the particles is increased. In the heat treatment described later, heat-foaming easily occurs, and it becomes possible to form ultrafine hollow glass spheres.

【0013】このようにして、アルカリ水溶液により加
熱処理された火山ガラス質堆積物は所望に応じ水で洗浄
したのち、乾燥し、焼成するが、この焼成に先立って酸
溶液に浸して表面のアルカリを溶出させることもでき
る。この酸による溶出処理を行うと表面層の鉄及びアル
カリ金属の含有率が低下するため、焼成時の融着が防止
できるとともに、鉄の酸化による着色も表面層だけの脱
鉄により防止でき、生成した超微細中空ガラス球状体は
白色となる。この際の酸としては、通常0.1〜1.0
モル/リットル濃度の塩酸や硫酸の水溶液が用いられ
る。
The volcanic glassy deposit thus heat-treated with the alkaline aqueous solution is washed with water as desired, then dried and calcined. Can also be eluted. Since the content of iron and alkali metals in the surface layer decreases when this elution treatment with acid is performed, it is possible to prevent fusion during firing, and also to prevent coloring due to oxidation of iron by deironing only the surface layer. The resulting ultrafine hollow glass sphere becomes white. The acid at this time is usually 0.1 to 1.0.
An aqueous solution of hydrochloric acid or sulfuric acid having a mol / l concentration is used.

【0014】次に焼成は、火山ガラス質堆積物を900
〜1100℃の範囲の温度において1〜60秒間維持す
ることによって行われる。この焼成処理によって、ガラ
スの軟化と水蒸気の発生が同時に起こり、超微細中空ガ
ラス球状体が形成される。次いで、水中における浮沈分
離又は空気分級することにより、中空体を分離回収す
る。このようにして、良質の超微細中空ガラス球状体を
得ることができる。
Next, firing is performed to remove 900 volcanic glassy deposits.
It is carried out by maintaining the temperature in the range of ˜1100 ° C. for 1 to 60 seconds. By this baking treatment, softening of glass and generation of water vapor occur at the same time, and ultrafine hollow glass spheres are formed. Next, the hollow body is separated and recovered by floating / settling separation in water or air classification. In this way, good quality ultrafine hollow glass spheres can be obtained.

【0015】[0015]

【発明の効果】本発明の超微粒中空ガラス球状体の製造
方法は、未利用資源の1種である火山ガラス質堆積物を
原料とする方法であって、前処理としてアルカリ水溶液
による加熱処理を採用することにより、従来の酸溶液に
よる加熱処理に比べ、処理装置の材質の選択が大幅に緩
和でき、工業的に有利であり、また、超微粒でかつ白色
の中空ガラス球状体を炉内の融着なしに製造することが
可能である。
Industrial Applicability The method for producing ultrafine hollow glass spheres of the present invention is a method in which a volcanic glassy deposit, which is one of the unused resources, is used as a raw material, and a heat treatment with an alkaline aqueous solution is performed as a pretreatment. By adopting it, compared to the conventional heat treatment with an acid solution, the selection of material for the treatment equipment can be greatly eased, which is industrially advantageous, and the ultrafine and white hollow glass spheres can be used in the furnace. It is possible to manufacture without fusion.

【0016】本発明方法により得られた中空ガラス球状
体は、超微粒で粒子の密度が1g/cm以下の無機質
であるため、各種の軽量複合材の素材など、種々の用途
に有用である。
The hollow glass spheres obtained by the method of the present invention are ultrafine particles and are inorganic substances having a particle density of 1 g / cm 3 or less, and are therefore useful for various applications such as materials for various lightweight composite materials. .

【0017】[0017]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0018】実施例1、2 鹿児島県吉田町産火山ガラス質堆積物、通称吉田シラス
を磁器製ポットミルで8時間粉砕したのち、水ひにより
5〜10μmの粒度範囲の粉末(タップ嵩密度0.83
g/cm、空気置換粒子密度2.33g/cm)を
得た。なおこの吉田シラスの組成は、SiO 70.
54wt%、Al3 13.10wt%、Fe
1.82wt%、CaO 0.53wt%、MgO
0.48wt%、NaO 3.60wt%、K2
2.90wt%、灼熱減量6.05wt%であった。
Examples 1 and 2 Volcanic glassy deposits from Yoshida Town, Kagoshima Prefecture, commonly known as Yoshida Shirasu, were crushed for 8 hours with a porcelain pot mill, and then powdered in a particle size range of 5 to 10 μm with tap water (tap bulk density 0. 83
g / cm 3 and air displacement particle density 2.33 g / cm 3 ) were obtained. The composition of this Yoshida Shirasu is SiO 2 70.
54 wt%, Al 2 O 3 13.10 wt%, Fe 2 O
3 1.82 wt%, CaO 0.53 wt%, MgO
0.48 wt%, Na 2 O 3.60 wt%, K 2 O
The amount was 2.90 wt% and the loss on ignition was 6.05 wt%.

【0019】ステンレス製加圧容器中に、前記粉末原料
と、その粉末に対し5ml/gの割合の0.1モル/リ
ットル濃度の水酸化ナトリウム水溶液とを入れ、密閉系
で24時間150℃に保持したのち、冷却し、水洗後、
乾燥した。なお水ひにより回収した5〜10μmの粒度
範囲の未処理粉末の加熱減量は5.40wt%であった
が、アルカリ処理した粉末の加熱減量は5.85wt%
に増加した。
Into a pressure vessel made of stainless steel, the powder raw material and an aqueous solution of sodium hydroxide having a concentration of 5 ml / g and a concentration of 0.1 mol / liter with respect to the powder were placed, and the mixture was kept at 150 ° C. for 24 hours in a closed system. After holding, cool, wash with water,
Dried. The unheated powder having a particle size range of 5 to 10 μm recovered by hydration had a heating loss of 5.40 wt%, whereas the alkali-treated powder had a heating loss of 5.85 wt%.
Increased.

【0020】次に、上記の粉末を室温から1000℃又
は1100℃まで1分以内で上昇させ、その温度に10
秒間保持し、エアー量8リットル/分で焼成したのち、
水中における浮沈分離を行い、浮揚物として、超微粒中
空ガラス球状体を回収した。
Next, the above-mentioned powder is heated from room temperature to 1000 ° C. or 1100 ° C. within 1 minute, and the temperature is raised to 10 ° C.
After holding for 2 seconds and firing at an air volume of 8 liters / minute,
Floating and sedimentation was performed in water, and ultrafine hollow glass spheres were collected as a float.

【0021】熱処理において、1000℃の保持時間を
1分間以上としても、未処理及び処理粉末共、超微粒中
空ガラス球状体の回収割合は変わらなかった。
In the heat treatment, even if the holding time at 1000 ° C. was set to 1 minute or more, the recovery ratio of the ultrafine hollow glass spheres did not change in both untreated and treated powders.

【0022】また、炉内最高温度を1100℃まで高め
ると、超微粒中空ガラス球状体の回収率は未処理及び処
理粉末共に増加したが、未処理粉末との比率は変わらな
かった。しかし、1100℃以上では炉内融着が発生
し、熱処理物の回収が困難となった。また、炉内最高温
度が1000℃より低温になるに従い、超微粒中空ガラ
ス球状体の回収割合は次第に低くなり、900℃では回
収できなかった。
When the maximum temperature in the furnace was raised to 1100 ° C., the recovery rate of the ultrafine hollow glass spheres increased in both the untreated and treated powders, but the ratio with the untreated powder remained unchanged. However, at 1100 ° C. or higher, fusion in the furnace occurred, making it difficult to recover the heat-treated product. Moreover, as the maximum temperature in the furnace became lower than 1000 ° C., the recovery ratio of the ultrafine hollow glass spheres gradually decreased, and it could not be recovered at 900 ° C.

【0023】なお、水酸化ナトリウムの濃度が0.5モ
ル/リットルの場合、あるいは0.2モル/リットルで
保持時間が48時間以上の場合は、前処理容器内で粉末
が固化し、その後の処理が困難であった。水熱処理及び
熱処理条件を表1に、それぞれの結果を表2に示す。
When the concentration of sodium hydroxide is 0.5 mol / liter, or when the concentration is 0.2 mol / liter and the holding time is 48 hours or more, the powder is solidified in the pretreatment container and It was difficult to process. Table 1 shows the hydrothermal treatment and heat treatment conditions, and Table 2 shows the respective results.

【0024】実施例3〜6 実施例1で用いたのと同じ、5〜10μmの粒度範囲の
吉田シラス粉末を、5ミリリットル/グラムの割合の濃
度0.05モル/リットル又は0.1モル/リットルの
水酸化ナトリウムの水溶液中に浸せきし、24時間又は
72時間保持したのち、水洗、乾燥後、0.55規定の
塩酸に浸せきし、24時間処理した。次いでこの処理物
を取り出し、水洗、乾燥後、1000℃又は1100℃
の温度まで1分以内に昇温し、10秒間保持することに
より焼成した。 この焼成物から、実施例1と同様にし
て中空体を回収した。この際の処理条件を表1に、また
焼成物の密度及び中空体の回収率(水中浮揚率)を表2
に示す。
Examples 3 to 6 Yoshida Shirasu powder having the same particle size range of 5 to 10 μm as that used in Example 1 was added at a concentration of 5 mol / g and a concentration of 0.05 mol / l or 0.1 mol / g. It was immersed in 1 liter of an aqueous solution of sodium hydroxide, kept for 24 hours or 72 hours, washed with water, dried, then immersed in 0.55N hydrochloric acid and treated for 24 hours. Then, this treated product is taken out, washed with water, dried, and then 1000 ° C. or 1100 ° C.
The temperature was raised to within 1 minute within 1 minute, and the temperature was maintained for 10 seconds for firing. A hollow body was recovered from this fired product in the same manner as in Example 1. Table 1 shows the treatment conditions at this time, and Table 2 shows the density of the burned material and the recovery rate of the hollow bodies (underwater floating rate).
Shown in.

【0025】実施例7 実施例1における水酸化ナトリウム水溶液の代りに、同
じ量の水酸化カルシウム飽和水溶液を用い、実施例1と
同様に処理した。この際の処理条件を表1に、焼成物の
密度及び中空体の回収率(水中浮揚率)を表2に示す。
Example 7 The same procedure as in Example 1 was carried out using the same amount of a saturated aqueous solution of calcium hydroxide instead of the aqueous sodium hydroxide solution in Example 1. Table 1 shows the treatment conditions at this time, and Table 2 shows the density of the fired product and the recovery rate of the hollow bodies (underwater floating rate).

【0026】実施例8、9 実施例3における水酸化ナトリウム水溶液の代りに、水
酸化カルシウム飽和水溶液を用い、アルカリ中での加熱
処理を行ったのち、酸処理を行い、実施例3と同様にし
て中空体を得た。この際の処理条件を表1に、焼成物の
密度及び中空体の回収率(水中浮揚率)を表2に示す。
Examples 8 and 9 A saturated aqueous solution of calcium hydroxide was used in place of the aqueous solution of sodium hydroxide in Example 3, heat treatment was performed in an alkali, and then acid treatment was performed. To obtain a hollow body. Table 1 shows the treatment conditions at this time, and Table 2 shows the density of the fired product and the recovery rate of the hollow bodies (underwater floating rate).

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】比較例 比較のために、5〜10μmの粒度範囲の吉田シラス粉
末に何らアルカリ処理を行うことなく、そのまま100
0℃で10秒間焼成処理を行って得た焼成物の密度及び
中空体の回収率(水中浮揚率)を、表2に示す。
Comparative Example For comparison, Yoshida Shirasu powder having a particle size range of 5 to 10 μm was subjected to 100 as it was without any alkali treatment.
Table 2 shows the density of the fired product obtained by performing the firing treatment at 0 ° C. for 10 seconds and the recovery rate of the hollow bodies (floating rate in water).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 健一郎 千葉県市原市五井南海岸8番の2 株式会 社カルシード内 (72)発明者 深川 文夫 山口県美祢市伊佐町伊佐4611番地の1 株 式会社カルシード内 (72)発明者 岡田 博美 千葉県市原市五井南海岸8番の2 株式会 社カルシード内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Kenichiro Matsuda, Inventor Kenichiro Matsuda, Ichihara City, Chiba Prefecture, No. 8 Goi Minami Kaigan No. 8 Stock Company, Calced (72) Inventor Fumio Fukagawa, No. 4611, Isa Town, Mine City, Yamaguchi Prefecture Company Calcied (72) Inventor Hiromi Okada 8-2 Goi Minami Kaigan, Ichihara, Chiba Stock Company Company Calcied

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒径20μm以下の火山ガラス堆積物粉
末を、アルカリ水溶液中で加熱処理したのち、900〜
1100℃において1〜60秒間焼成し、焼成物より中
空体を分離回収することを特徴とする超微細中空ガラス
球状体の製造方法。
1. A volcanic glass deposit powder having a particle size of 20 μm or less is heat treated in an alkaline aqueous solution, and then 900 to
A method for producing an ultrafine hollow glass sphere, which comprises firing at 1100 ° C. for 1 to 60 seconds and separating and recovering the hollow body from the fired product.
【請求項2】 粒径20μm以下の火山ガラス堆積物粉
末を、アルカリ水溶液中で加熱処理し、次いで酸により
表面部のアルカリを溶出させたのち、900〜1100
℃において1〜60秒間焼成し、焼成物より中空体を分
離回収することを特徴とする超微細中空ガラス球状体の
製造方法。
2. A volcanic glass deposit powder having a particle size of 20 μm or less is heat-treated in an alkaline aqueous solution, and then alkali on the surface is eluted with an acid, and then 900 to 1100.
A method for producing an ultrafine hollow glass sphere, which comprises firing at 1 ° C for 1 to 60 seconds, and separating and recovering the hollow body from the fired product.
JP11116193A 1993-04-15 1993-04-15 Production of ultrafine hollow glass sphere Pending JPH0725643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116193A JPH0725643A (en) 1993-04-15 1993-04-15 Production of ultrafine hollow glass sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116193A JPH0725643A (en) 1993-04-15 1993-04-15 Production of ultrafine hollow glass sphere

Publications (1)

Publication Number Publication Date
JPH0725643A true JPH0725643A (en) 1995-01-27

Family

ID=14554028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116193A Pending JPH0725643A (en) 1993-04-15 1993-04-15 Production of ultrafine hollow glass sphere

Country Status (1)

Country Link
JP (1) JPH0725643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177386A (en) * 2013-03-15 2014-09-25 Univ Of Yamanashi Method of producing meso-porous silica from glass
WO2022137942A1 (en) * 2020-12-21 2022-06-30 矢崎エナジーシステム株式会社 Foamed glass body, heat insulator using foamed glass body, and method for manufacturing foamed glass body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296750A (en) * 1989-05-09 1990-12-07 Agency Of Ind Science & Technol Production of hyperfine hollow glass sphere

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296750A (en) * 1989-05-09 1990-12-07 Agency Of Ind Science & Technol Production of hyperfine hollow glass sphere

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177386A (en) * 2013-03-15 2014-09-25 Univ Of Yamanashi Method of producing meso-porous silica from glass
WO2022137942A1 (en) * 2020-12-21 2022-06-30 矢崎エナジーシステム株式会社 Foamed glass body, heat insulator using foamed glass body, and method for manufacturing foamed glass body
GB2613997A (en) * 2020-12-21 2023-06-21 Yazaki Energy System Corp Foamed glass body, heat insulator using foamed glass body, and method for manufacturing foamed glass body

Similar Documents

Publication Publication Date Title
JPH0450264B2 (en)
JPH04227008A (en) Manufacture of calcined diatomaceous earth filter medium free from cristobalite having water permeability and filter mediom obtained thereby
Xing et al. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process
WO2019076009A1 (en) Lightweight modified filter material, preparation method therefor and use thereof
US4174263A (en) Recovery of bitumen from tar sands
CN114212799B (en) Fly ash pretreatment method for molecular sieve preparation
JPH04219310A (en) Production of non-sintered cristobalite particle
JP2534831B2 (en) Method for producing fine hollow glass sphere
JPH0725643A (en) Production of ultrafine hollow glass sphere
FR2671072A1 (en) Silica-soda-lime glass, microspheres obtained from this glass and process for their manufacture
US2472490A (en) Process of preparing porous glass catalysts
JP4271045B2 (en) Method for producing alumina hollow particles
JPH08208272A (en) Production of fine hollow glass spheroid
CN109824272A (en) A kind of preparation method of Ca-Mg-Al-Si system porous devitrified glass
Bobkova et al. Production of foam glass with granite siftings from the Mikashevichi deposit
GB2024183A (en) Sintered basalt and lava
Kaz’mina et al. Prospects for use of finely disperse quartz sands in production of foam-glass crystalline materials.
Grigoras et al. High Mechanical Strength Cellular Glass-Ceramic Manufactured in Microwave Field Using Blast Furnace Slag and Glass Waste
US3996340A (en) Method of producing aluminum fluoride
RU2085489C1 (en) Method of liquid glass production
RU2171222C1 (en) Method for production special-destination liquid glass
NO300126B1 (en) Process for making synthetic rutile
Shtirc et al. Porous Material Production and Material Properties
JP2002224576A (en) Method for manufacturing titanium oxide-coated fine hollow glass sphere
RU2129986C1 (en) Method of producing liquid glass