JPH0725615A - Heat-resistant transparent electrically conductive window material - Google Patents

Heat-resistant transparent electrically conductive window material

Info

Publication number
JPH0725615A
JPH0725615A JP16785593A JP16785593A JPH0725615A JP H0725615 A JPH0725615 A JP H0725615A JP 16785593 A JP16785593 A JP 16785593A JP 16785593 A JP16785593 A JP 16785593A JP H0725615 A JPH0725615 A JP H0725615A
Authority
JP
Japan
Prior art keywords
heat
window material
transparent conductor
resistant transparent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16785593A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
浩之 田中
Kaoru Torigoe
薫 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP16785593A priority Critical patent/JPH0725615A/en
Publication of JPH0725615A publication Critical patent/JPH0725615A/en
Priority to US08/607,202 priority patent/US5643369A/en
Priority to US08/688,196 priority patent/US5805333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain a window material usable even under a high temperature condition without causing the variation of the electrical conductivity of the transparent conductive layer. CONSTITUTION:This heat-resistant transparent electrically conductive window material is provided with an indium oxide-based transparent conductive layer 2 formed by applying a solution containing an organic indium compound to a surface of a heat-resistant transparent substrate 1 and subjecting the solution to thermal decomposition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電体層を有する
耐熱性透明導電性部材に関するものであり、特に、電気
炉等において、高温で用いられる窓材、飛行機や自動車
等の窓材などとして応用される耐熱性透明導電性窓材に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant transparent conductive member having a transparent conductor layer, and particularly to a window material used at high temperature in an electric furnace or the like, a window material for airplanes, automobiles, etc. The present invention relates to a heat-resistant transparent conductive window material applied as.

【0002】[0002]

【従来の技術】透明導電体層としては、金、銀等の金属
薄膜や、酸化スズ、酸化インジウム等の金属酸化物が、
一般的に知られている(薄膜ハンドブック:日本学術振
興会)。また、酸化インジウム透明導電体層の作製方法
としては、スパッタ法や蒸着法が、一般的によく知られ
ている(エレクトロセラミクス '85.5月号,p.2
3(1985)参照)。また、特公昭54−28396
号公報には、塗布熱分解法による酸化インジウム被膜の
製造方法が開示されている。しかし、耐熱性かつ透明か
つ導電性を有する部材は、無かった。
2. Description of the Related Art As transparent conductor layers, metal thin films such as gold and silver, and metal oxides such as tin oxide and indium oxide are used.
Generally known (Thin Film Handbook: Japan Society for the Promotion of Science). Further, as a method for producing the indium oxide transparent conductor layer, a sputtering method and a vapor deposition method are generally well known (Electroceramics '85 .5 May, p. 2).
3 (1985)). In addition, Japanese Patent Publication No. 54-28396
The publication discloses a method for producing an indium oxide film by a coating pyrolysis method. However, there is no member having heat resistance, transparency, and conductivity.

【0003】[0003]

【発明が解決しようとする課題】たとえば、金属薄膜の
場合、透過性を上げるために膜厚を薄くするので機械的
強度が弱い。また、スパッタ法や蒸着法で作製した酸化
インジウム透明導電体層を高温条件下で使用する場合、
熱によって、透明導電体の導電性が変化するという欠点
があった(表面技術vol.43,No.12,p.98(1992) 参照)。
そのため、高温条件下で使用する場合、従来のスパッタ
法や蒸着法で作製した透明導電体層を用いることは難し
い。また、塗布熱分解法による酸化インジウム被膜の製
造方法を開示している特公昭54−28396号公報に
は、塗布熱分解法の透明導電体の耐熱性や耐熱性透明導
電性窓材としての応用方法については、何も述べられて
いない。
For example, in the case of a metal thin film, the mechanical strength is weak because the film thickness is made thin in order to increase the permeability. When using the indium oxide transparent conductor layer produced by the sputtering method or the vapor deposition method under high temperature conditions,
There was a drawback that the conductivity of the transparent conductor was changed by heat (see Surface Technology vol.43, No.12, p.98 (1992)).
Therefore, when used under high temperature conditions, it is difficult to use the transparent conductor layer produced by the conventional sputtering method or vapor deposition method. Further, Japanese Patent Publication No. 54-28396 discloses a method for producing an indium oxide coating film by a coating pyrolysis method. Application of the transparent conductor by the coating pyrolysis method as a heat resistance or a heat resistant transparent conductive window material. Nothing is said about the method.

【0004】本発明の目的は、このような従来技術の問
題点にかんがみ、高温条件下で導電性を変化しない耐熱
性透明導電性窓材を提供することである。
In view of the above problems of the prior art, an object of the present invention is to provide a heat resistant transparent conductive window material which does not change its conductivity under high temperature conditions.

【0005】[0005]

【課題を解決するための手段】本発明による耐熱性透明
導電性窓材は、耐熱性透明基板上に、有機インジウム化
合物含有溶液を、付与、熱分解して、形成した酸化イン
ジウム系透明導電体層を有することを特徴とする。
A heat-resistant transparent conductive window material according to the present invention is an indium oxide-based transparent conductor formed by applying and pyrolyzing a solution containing an organic indium compound on a heat-resistant transparent substrate. It is characterized by having layers.

【0006】[0006]

【作用】有機インジウム化合物含有溶液の付与、熱分解
の手段により形成された透明導電体層は、加熱処理をし
ても、導電性が下がらないので、高温の条件下で使用す
ることが可能となる。したがって、耐熱性の窓材として
使用することができる。これは、作製時に、加熱処理を
行っているために、その後の熱処理に対して、結晶性等
に変化が生じないため、導電性の変化が見られない。
The transparent conductor layer formed by applying an organic indium compound-containing solution and thermally decomposing does not decrease in conductivity even if it is heat-treated, so that it can be used under high temperature conditions. Become. Therefore, it can be used as a heat resistant window material. In this case, since the heat treatment is performed at the time of manufacturing, the crystallinity and the like do not change due to the subsequent heat treatment, so that the conductivity is not changed.

【0007】[0007]

【実施例】次に、添付図面を参照して、本発明の耐熱性
透明導電性窓材の実施例について、本発明をより詳細に
説明する。
EXAMPLES Next, the present invention will be described in more detail with reference to the accompanying drawings with respect to examples of the heat-resistant transparent conductive window material of the present invention.

【0008】本発明に使用される耐熱性透明基板の例と
しては、石英、無アルカリガラス、ほうけい酸ガラス等
が挙げられる。透明基板の厚さは、特に限定されない。
また、透明導電体層の形成に使用される有機インジウム
化合物としては、(R1 COO)3 In[式中R1 は、
炭素原子数4〜16のアルキル基を示す]、(CH3
OCHCOCH3 3 In等が挙げられる。
Examples of the heat resistant transparent substrate used in the present invention include quartz, non-alkali glass, borosilicate glass and the like. The thickness of the transparent substrate is not particularly limited.
Further, as the organic indium compound used for forming the transparent conductor layer, (R 1 COO) 3 In [wherein R 1 is
Represents an alkyl group having 4 to 16 carbon atoms], (CH 3 C
OCHCOCH 3) 3 In, and the like.

【0009】また、透明導電体膜上に形成する有機イン
ジウム金属化合物含有溶液には、有機インジウム金属化
合物の他に、導電性を向上させるために、有機スズ化合
物を加えても良い。有機スズ化合物としては、(R2
OO)2 Sn[式中R2 は、炭素原子数4〜16のアル
キル基を示す]、(CH3 COCHCOCH3 2 Sn
等が挙げられる。有機スズ化合物の添加量は、スズ/イ
ンジウムのモル比にして、0〜40%が望ましい。スズ
のモル比をこれ以上多くすると導電性が低くなる。
In addition to the organic indium metal compound, an organic tin compound may be added to the organic indium metal compound-containing solution formed on the transparent conductor film in order to improve the conductivity. Examples of the organic tin compound include (R 2 C
OO) 2 Sn [wherein R 2 represents an alkyl group having 4 to 16 carbon atoms], (CH 3 COCHCOCH 3 ) 2 Sn
Etc. The addition amount of the organic tin compound is preferably 0 to 40% in terms of tin / indium molar ratio. If the molar ratio of tin is higher than this, the conductivity becomes low.

【0010】有機インジウム化合物含有溶液の溶媒とし
ては、石英、無アルカリガラス、ほうけい酸ガラス等の
透明基板へのぬれ性の点から、オクタン、デカン、ドデ
カン、トリデカン等の脂肪族炭化水素が、特に望ましい
が、トルエン、キシレン等の芳香族炭化水素、塩化メチ
レン等のハロゲン化炭化水素等、有機インジウム化合物
の溶解性を有する溶媒であればよい。溶液の濃度は、固
形分比が5〜50%の範囲が望ましい。
As a solvent for the organic indium compound-containing solution, aliphatic hydrocarbons such as octane, decane, dodecane and tridecane are selected from the viewpoint of wettability to a transparent substrate such as quartz, non-alkali glass and borosilicate glass. Although it is particularly desirable, any solvent having solubility for the organic indium compound, such as aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as methylene chloride, may be used. The concentration of the solution is preferably in the range of solid content ratio of 5 to 50%.

【0011】また、添加剤として、溶液を増粘化して、
基板との密着性を高めるためにエチルセルロース、ニト
ロセルロース等のセルロース誘導体を添加したり、ある
いは基板とのぬれ性を改善するためリノール酸、リノレ
ン酸等の不飽和カルボン酸を添加してもよい。添加量
は、それぞれ0〜50%の範囲が望ましい。
As an additive, the solution is thickened,
Cellulose derivatives such as ethyl cellulose and nitrocellulose may be added to improve the adhesion to the substrate, or unsaturated carboxylic acids such as linoleic acid and linolenic acid may be added to improve the wettability with the substrate. The addition amount is preferably in the range of 0 to 50%.

【0012】また、透明導電体層上には、たとえば、保
護膜等のその他の膜を積層してもかまわない。有機金属
化合物含有溶液の溶媒としては、有機金属化合物の溶解
性を有する溶媒であればよい。例えば、オクタン、デカ
ン、ドデカン、トリデカン等の脂肪族炭化水素、トルエ
ン、キシレン等の芳香族炭化水素、塩化メチレン、クロ
ロベンゼン等のハロゲン化炭化水素、エタノール、ブタ
ノール、ターピネオール、エチレングリコール等のアル
コール類、アセトン、メチルエチルケトン、シクロヘキ
サノン等のケトン類、ジエチルエーテル、テトラヒドロ
フラン等のエーテル類、酢酸エチル、酢酸ベンジル等の
エーテル類等が挙げられる。溶液の濃度は、固形分比が
5〜50%の範囲が望ましい。市販の金属レジネートを
使用する場合は、上記の溶媒で希釈してもよいが、金属
レジネートをそのまま用いてもかまわない。
Further, another film such as a protective film may be laminated on the transparent conductor layer. The solvent of the organometallic compound-containing solution may be any solvent that has solubility for the organometallic compound. For example, octane, decane, dodecane, aliphatic hydrocarbons such as tridecane, toluene, aromatic hydrocarbons such as xylene, methylene chloride, halogenated hydrocarbons such as chlorobenzene, ethanol, butanol, terpineol, alcohols such as ethylene glycol, Examples thereof include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethers such as diethyl ether and tetrahydrofuran, ethers such as ethyl acetate and benzyl acetate. The concentration of the solution is preferably in the range of solid content ratio of 5 to 50%. When a commercially available metal resinate is used, it may be diluted with the above solvent, but the metal resinate may be used as it is.

【0013】また、添加剤として、溶液の増粘化して、
基板との密着性を高めるためにエチルセルロース、ニト
ロセルロース等のセルロース誘導体を添加したり、ある
いは基板とのぬれ性を改善するため、リノール酸、リノ
レン酸等の不飽和カルボン酸を添加してもよい。添加量
は、それぞれ0〜20%の範囲が望ましい。
Further, as an additive, the solution is thickened,
A cellulose derivative such as ethyl cellulose or nitrocellulose may be added to enhance the adhesion to the substrate, or an unsaturated carboxylic acid such as linoleic acid or linolenic acid may be added to improve the wettability with the substrate. . The addition amount is preferably in the range of 0 to 20%.

【0014】有機インジウム化合物含有溶液の付与方法
としては、例えば、バーコート塗布、スピコート塗布、
スプレー塗布、スクリーン印刷、ディップ塗布等の方法
が挙げられる。
As a method of applying the solution containing the organic indium compound, for example, bar coating, spin coating,
Examples thereof include spray coating, screen printing, dip coating and the like.

【0015】有機インジウム化合物含有溶液の塗布膜の
熱分解の方法は、電気炉等で、400〜1500°Cの
温度で、30分〜10時間行なう。焼成温度が、低いと
有機インジウム化合物の熱分解が不充分で導電性が低
く、高いと基板成分が酸化インジウム膜中に侵入し、導
電性が低くなる。焼成時間は、10時間以上行ってもか
まわないが、特に10時間以上行なう必要はない。焼成
の雰囲気は、空気中、窒素、酸素フロー中、窒素、酸素
置換雰囲気、減圧雰囲気等が挙げられる。焼成された酸
化物の膜厚は、0.05〜10μmが望ましい。これよ
り、薄いと導電性が低く、厚すぎると透明性が悪くな
る。また、膜厚を厚くするために、有機インジウム化合
物含有溶液の塗布、熱分解を、繰り返してもかまわな
い。
The method of pyrolyzing the coating film of the solution containing the organic indium compound is carried out in an electric furnace or the like at a temperature of 400 to 1500 ° C. for 30 minutes to 10 hours. When the baking temperature is low, the thermal decomposition of the organic indium compound is insufficient and the conductivity is low, and when the baking temperature is high, the substrate component penetrates into the indium oxide film to lower the conductivity. The firing time may be 10 hours or more, but it is not particularly required to be 10 hours or more. Examples of the firing atmosphere include air, nitrogen, an oxygen flow, nitrogen, an oxygen substitution atmosphere, and a reduced pressure atmosphere. The film thickness of the fired oxide is preferably 0.05 to 10 μm. If it is thinner than this, the conductivity is low, and if it is too thick, the transparency deteriorates. Further, in order to increase the film thickness, application of the solution containing an organic indium compound and thermal decomposition may be repeated.

【0016】次に、本発明による耐熱性透明導電性窓材
の一実施例について説明する。
Next, an embodiment of the heat-resistant transparent conductive window material according to the present invention will be described.

【0017】[実施例]本発明の一実施例としての、添
付図面の図1に模式的に示す断面構造を有する耐熱性透
明導電性窓材を作製するために、(C8 17COO)3
In0.5g、(C8 17COO)2 Sn0.013g をド
デカン1.857gに溶かす。この溶液をワイヤーバー
(#10)で、石英基板1に塗布し、45°Cで30分
間乾燥後、空気中で、800°C、1時間焼成して、I
2 3 /SnO2 膜2を得る。この膜2は、透明導電
体層であり、シート抵抗は、0.8kΩ/□、可視光透過
率は、95%、膜厚は、0.2μmであった。
[Example] In order to manufacture a heat-resistant transparent conductive window material having a cross-sectional structure schematically shown in FIG. 1 of the accompanying drawings as an example of the present invention, (C 8 H 17 COO) 3
0.5 g of In and 0.013 g of (C 8 H 17 COO) 2 Sn are dissolved in 1.857 g of dodecane. This solution was applied to the quartz substrate 1 with a wire bar (# 10), dried at 45 ° C for 30 minutes, and then baked in air at 800 ° C for 1 hour to give I
An n 2 O 3 / SnO 2 film 2 is obtained. This film 2 was a transparent conductor layer, had a sheet resistance of 0.8 kΩ / □, a visible light transmittance of 95%, and a film thickness of 0.2 μm.

【0018】この透明導電体層2を有する耐熱性透明導
電性窓材を、電気炉の窓材に使用した。900°Cで3
時間使用後、透明導電体層の抵抗値および外観上の変化
はみられなかった。
The heat-resistant transparent conductive window material having this transparent conductor layer 2 was used as a window material for an electric furnace. 3 at 900 ° C
After use for a period of time, no change was observed in the resistance value and appearance of the transparent conductor layer.

【0019】次に、本発明による効果を確認するため、
前述の本発明による[実施例]と比較しうるように、従
来方法によって同様の構造の窓材を作製してみた比較例
について説明する。
Next, in order to confirm the effect of the present invention,
A comparative example will be described in which a window member having a similar structure is manufactured by a conventional method so as to be compared with the above-mentioned [Example] according to the present invention.

【0020】[比較例]石英基板1に、In2 3 /S
nO2 を真空蒸着で、膜厚0.2μのITO透明導電体膜
を形成する。この膜の抵抗値は、0.2kΩ/□,可視光
透過率は94%であった。この透明導電体膜を含む耐熱
導電性窓材を電気炉の窓材に使用した。900°Cで3
時間、使用後、透明導電体層の抵抗値は、1.5kΩ/□
と高くなった。
[Comparative Example] On a quartz substrate 1, In 2 O 3 / S was added.
A 0.2 μm thick ITO transparent conductor film is formed by vacuum evaporation of nO 2 . The resistance value of this film was 0.2 kΩ / □, and the visible light transmittance was 94%. The heat-resistant conductive window material containing this transparent conductor film was used as a window material for an electric furnace. 3 at 900 ° C
The resistance value of the transparent conductor layer after use for 1.5 hours is 1.5 kΩ / □
Became high.

【0021】また、真空蒸着のITO透明導電体膜(従
来法)と塗布熱分解法のITO透明導電体膜(本発明)
の耐熱性を比べると図2のように、塗布熱分解法のIT
O透明導電体膜は、熱処理によって、抵抗値が変わらな
いのに対して、真空蒸着のITO透明導電体膜は、抵抗
が高くなる。真空蒸着のITO透明導電体膜の他に、ス
パッタ法で作製したITO透明導電体膜においても真空
蒸着と同様に熱処理によって、抵抗値の上昇する現象が
みられた。
Further, an ITO transparent conductor film of vacuum vapor deposition (conventional method) and an ITO transparent conductor film of coating pyrolysis method (present invention).
When comparing the heat resistance of the
The resistance value of the O transparent conductor film does not change by heat treatment, whereas the resistance of the vacuum vapor deposition ITO transparent conductor film increases. In addition to the vacuum-deposited ITO transparent conductor film, the ITO transparent conductor film produced by the sputtering method also showed a phenomenon in which the resistance value was increased by the heat treatment similarly to the vacuum deposition.

【0022】[0022]

【発明の効果】以上述べたように、本発明によれば、透
明基板上に有機インジウム金属化合物含有溶液を、塗布
や印刷により付与し、その後熱分解して、酸化インジウ
ム含有透明導電体膜を形成するものであり、比較的高温
プロセスを用いて透明導電体膜を作製するため、耐熱性
透明導電性窓材として、高温条件下でも、その導電性を
変化させることなく使用できるという効果を奏する。
As described above, according to the present invention, a solution containing an organic indium metal compound is applied onto a transparent substrate by coating or printing, and then thermally decomposed to form an indium oxide-containing transparent conductor film. Since the transparent conductor film is formed using a relatively high temperature process, it has an effect that it can be used as a heat resistant transparent conductive window material even under high temperature conditions without changing its conductivity. .

【0023】また、本発明によれば、塗布熱分解法によ
り透明導電体層を作製することによって、スパッタや蒸
着などの複雑な装置を用いずに簡単に大面積化が可能
で、かつ、エッチングプロセスなしで、塗布、スクリー
ン印刷などの簡単なプロセスにより、パターン形成が可
能な透明導電体層を作製することができる。また、塗布
熱分解法により作製した透明導電体層を含む耐熱性透明
導電性窓材を、加熱処理あるいは塗布熱分解法で、他の
膜を積層することも可能である。
Further, according to the present invention, by forming the transparent conductor layer by the coating pyrolysis method, it is possible to easily increase the area without using a complicated apparatus such as sputtering or vapor deposition, and to perform etching. It is possible to prepare a patternable transparent conductor layer by a simple process such as coating or screen printing without any process. Further, the heat-resistant transparent conductive window material including the transparent conductor layer produced by the coating pyrolysis method can be laminated with another film by heat treatment or the coating pyrolysis method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての耐熱性透明導電性窓
材の構造を示す断面模式図である。
FIG. 1 is a schematic sectional view showing the structure of a heat-resistant transparent conductive window material as one embodiment of the present invention.

【図2】従来法と本発明による透明導電体膜の抵抗変化
を比較して示す図である。
FIG. 2 is a view showing a resistance change between a conventional method and a transparent conductor film according to the present invention in comparison.

【符号の説明】[Explanation of symbols]

1 石英基板 2 透明導電体層 1 Quartz substrate 2 Transparent conductor layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性透明基板上に、有機インジウム化
合物含有溶液を、付与、熱分解して、形成した酸化イン
ジウム系透明導電体層を有することを特徴とする耐熱性
透明導電性窓材。
1. A heat-resistant transparent conductive window material, comprising an indium oxide-based transparent conductor layer formed by applying and thermally decomposing an organic indium compound-containing solution on a heat-resistant transparent substrate.
JP16785593A 1993-06-24 1993-07-07 Heat-resistant transparent electrically conductive window material Pending JPH0725615A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16785593A JPH0725615A (en) 1993-07-07 1993-07-07 Heat-resistant transparent electrically conductive window material
US08/607,202 US5643369A (en) 1993-06-24 1996-02-26 Photoelectric conversion element having an infrared transmissive indium-tin oxide film
US08/688,196 US5805333A (en) 1993-06-24 1996-07-29 Photoelectric conversion element having an infrared transmissive indium film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16785593A JPH0725615A (en) 1993-07-07 1993-07-07 Heat-resistant transparent electrically conductive window material

Publications (1)

Publication Number Publication Date
JPH0725615A true JPH0725615A (en) 1995-01-27

Family

ID=15857345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16785593A Pending JPH0725615A (en) 1993-06-24 1993-07-07 Heat-resistant transparent electrically conductive window material

Country Status (1)

Country Link
JP (1) JPH0725615A (en)

Similar Documents

Publication Publication Date Title
US4187340A (en) Method of forming patterned transparent electro-conductive film on the substrate of liquid crystal display
JP2004084064A (en) Composition and solution for forming transparent conductive film and method for forming transparent conductive film
JPH056289B2 (en)
US3759743A (en) Method of applying coarings of tin oxide upon transparent substrates
KR910000408B1 (en) Method for making transparent conductive film
JP4377003B2 (en) Method for adjusting sheet resistance value of transparent conductive film and method for forming transparent conductive film
JPH0725615A (en) Heat-resistant transparent electrically conductive window material
JP2002133956A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for transparent conductive film
JPH0220707B2 (en)
JP3208794B2 (en) Composition for forming transparent conductive film and method for forming transparent conductive film
JPH05166414A (en) Transparent conductive film and forming method thereof
CN107195389B (en) The preparation method of metal oxynitride transparent conductive film
JP2958384B2 (en) Method for producing multilayer film including transparent conductor film
JP2959014B2 (en) Method for manufacturing transparent electrode substrate
JPS6143805B2 (en)
JP3144951B2 (en) Method of manufacturing heat reflection window
JPS639327B2 (en)
JP2539294B2 (en) Method for producing translucent conductive zinc oxide film
JP3091606B2 (en) Method for producing composition for forming transparent conductive film and method for forming transparent conductive film
JPH0220706B2 (en)
JPH05116941A (en) Production of electric conductive transparent film
JPH07161235A (en) Transparent conductive film and its manufacture
Richards et al. Highly photoconducting O2‐doped CdS films deposited by spray pyrolysis
JP3112496B2 (en) Method for producing transparent photoconductive metal oxide laminated film
JPH0696619A (en) Composition for forming transparent conductive film and method therefor