JPH07256107A - Production of noble metal alloy catalyst - Google Patents

Production of noble metal alloy catalyst

Info

Publication number
JPH07256107A
JPH07256107A JP6073936A JP7393694A JPH07256107A JP H07256107 A JPH07256107 A JP H07256107A JP 6073936 A JP6073936 A JP 6073936A JP 7393694 A JP7393694 A JP 7393694A JP H07256107 A JPH07256107 A JP H07256107A
Authority
JP
Japan
Prior art keywords
noble metal
alloy catalyst
metal alloy
temperature
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6073936A
Other languages
Japanese (ja)
Inventor
Haruko Sasaki
晴子 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP6073936A priority Critical patent/JPH07256107A/en
Publication of JPH07256107A publication Critical patent/JPH07256107A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a method for producing a noble metal alloy catalyst by which the control of an alloy compsn. is facilitated and a desired alloy compsn. can be obtd. by increasing the rate of carrying of a heavy metal by the control of the temp. of a plating soln. during a reaction. CONSTITUTION:A noble metal or noble metal alloy catalyst carried on a powdery carrier is dispersed in hot water to prepare a catalyst slurry. A plating soln. of pH 10.5-13.0 contg. a heavy metallic salt, a chelating agent. and a reducing agent is prepd. and put in the catalyst slurry and electroless plating is carried out at a low temp. The resultant noble metal or noble metal alloy catalyst plated with the heavy metal and carried on the carrier is washed, dried and subjected to alloying treatment by heating in a required atmosphere. A reduction reaction of the heavy metallic salt is allowed to proceed slowly and a point of time when the reduction reaction finishes practically and teaching does not occur yet is easily ascertained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池等に用いられ
る、重金属を含有した貴金属合金触媒の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a noble metal alloy catalyst containing heavy metals, which is used in fuel cells and the like.

【0002】[0002]

【従来の技術】従来、この種の貴金属合金触媒の製造方
法としては、下記のような方法が考えられていた。この
方法は、先ず、カーボン粉末に担持した白金又は白金合
金触媒を沸騰した熱水中に分散し、放冷して触媒スラリ
ーとする。一方、クロム、マンガン、鉄、コバルト、ニ
ッケル、銅の1種又は2種の重金属塩、キレート剤及び
還元剤の混合液をめっき浴建てしてpH10.5〜13.0程度
のめっき浴を調製する。次いで、上記めっき浴を前記触
媒スラリーに一気に投入し、一時間撹拌して無電解めっ
きした後ろ過し、洗浄液が中性になるまで水で数回洗浄
して60℃の温度で乾燥する。次に、重金属がめっきされ
て担体に担持された白金又は白金合金を水素気流下にお
いて 900℃の温度で加熱して合金化処理を行なう方法で
ある。上記方法で製造する白金合金触媒のうち、白金又
は白金合金にニッケル及び/又はコバルトを担持する場
合、無電解めっきのめっき液を調製するための混合液
は、例えば塩化ニッケル及び/又は塩化コバルト、キレ
ート剤としての酒石酸ナトリウム及び還元剤としての塩
化ヒドラジンを含む。そして、この混合液をpH調整し
てめっき液とするには、混合する薬品が溶けきって溶液
になっていればでき、50%NaOH(水酸化ナトリウ
ム)溶液を用いて調製するものであり、調製されためっ
き液を用いて無電解めっきするには、めっき液を触媒ス
ラリーに投入後、ニッケル及び/又はコバルトの還元が
十分に終了するように1時間撹拌して行なうものであ
る。
2. Description of the Related Art Conventionally, the following method has been considered as a method for producing a noble metal alloy catalyst of this type. In this method, first, a platinum or platinum alloy catalyst supported on carbon powder is dispersed in boiling hot water and allowed to cool to obtain a catalyst slurry. On the other hand, a mixed solution of one or two heavy metal salts of chromium, manganese, iron, cobalt, nickel and copper, a chelating agent and a reducing agent is built in the plating bath to prepare a plating bath having a pH of about 10.5 to 13.0. Then, the plating bath is poured into the catalyst slurry all at once, stirred for 1 hour to perform electroless plating, filtered, washed several times with water until the washing liquid becomes neutral, and dried at a temperature of 60 ° C. Next, a method of performing alloying treatment by heating platinum or a platinum alloy, which is plated with a heavy metal and supported on a carrier, at a temperature of 900 ° C. under a hydrogen stream. Among the platinum alloy catalysts produced by the above method, in the case of supporting nickel and / or cobalt on platinum or a platinum alloy, a mixed solution for preparing a plating solution for electroless plating is, for example, nickel chloride and / or cobalt chloride, It contains sodium tartrate as a chelating agent and hydrazine chloride as a reducing agent. Then, in order to adjust the pH of this mixed solution into a plating solution, it is possible if the chemicals to be mixed are completely dissolved into a solution, which is prepared using a 50% NaOH (sodium hydroxide) solution. The electroless plating using the prepared plating solution is performed by adding the plating solution to the catalyst slurry and then stirring for 1 hour so that the reduction of nickel and / or cobalt is sufficiently completed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
貴金属合金触媒の製造方法では、重金属の担持が十分と
ならず、所望の合金組成を得ることができないと共に、
合金組成のコントロールが困難となる不具合がある。こ
の重金属の担持率に影響する因子としては、めっき反応
が起こっているときのめっき液の温度が高すぎるためと
考えられる。すなわち、反応中のめっき液の温度が高い
と、還元反応が速く進む反面、一旦担持された重金属が
速いスピードで溶け出すからである。又、上記他の因子
としては、pH調整前の混合液の熟成が不十分で、キレ
ート剤による重金属のキレート化が十分になされていな
いためと考えられる。そこで、本発明は、反応中のめっ
き液の温度を抑制して重金属の担持率を高めることによ
り、所望の合金組成を得ることができると共に、合金組
成のコントロールを容易にし得る貴金属合金触媒の製造
方法を提供することを目的とする。又、本発明の他の目
的は、反応中のめっき液の温度の制御に加えて、pH調
整前の混合液の熟成を十分に行なって重金属の担持率を
一層高めることにより、より一層所望の合金組成を得る
ことができると共に、合金組成のコントロールをより一
層容易にし得る貴金属合金触媒の製造方法の提供にあ
る。
However, in the conventional method for producing a noble metal alloy catalyst, supporting of heavy metals is not sufficient, and a desired alloy composition cannot be obtained, and
There is a problem that it is difficult to control the alloy composition. It is considered that the factor affecting the loading rate of the heavy metal is that the temperature of the plating solution during the plating reaction is too high. That is, when the temperature of the plating solution during the reaction is high, the reduction reaction proceeds rapidly, but the heavy metal once supported melts at a high speed. Further, it is considered that the other factor is that the ripening of the mixed solution before the pH adjustment is insufficient and the chelating of the heavy metal by the chelating agent is not sufficient. Therefore, in the present invention, by suppressing the temperature of the plating solution during the reaction and increasing the loading rate of heavy metals, a desired alloy composition can be obtained, and at the same time, the production of a noble metal alloy catalyst that can facilitate control of the alloy composition. The purpose is to provide a method. Further, another object of the present invention is to further increase the load of heavy metals by controlling the temperature of the plating solution during the reaction and further aging the mixed solution before pH adjustment to further increase the heavy metal loading rate. An object of the present invention is to provide a method for producing a noble metal alloy catalyst capable of obtaining an alloy composition and further facilitating control of the alloy composition.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の第1の貴金属合金触媒の製造方法は、粉末
状の担体に担持された貴金属又は貴金属合金触媒を熱水
中に分散して触媒スラリーとする一方、重金属塩、キレ
ート剤及び還元剤の混合液から成るめっき浴を建浴して
pH10.5〜13.0のめっき液を調製し、このめっき液を前
記触媒スラリーに投入して低温で無電解めっきし、重金
属がめっきされて担体に担持された貴金属又は貴金属合
金触媒を洗浄、乾燥した後、所要雰囲気下で加熱して合
金化処理することを特徴とする。前記担体は、カーボン
等が用いられる。前記貴金属又は貴金属合金触媒は、白
金又は白金合金触媒であることが好ましい。又、前記重
金属塩は、塩化ニッケル及び/又は塩化コバルトであ
り、キレート剤は酒石酸ナトリウム、還元剤は塩化ヒド
ラジンであることが好ましい。一方、第2の貴金属又は
貴金属合金触媒の製造方法は、第1の方法において、前
記めっき浴の建浴時、pH調整前に、混合液を十分に撹
拌することを特徴とする。なお、前記撹拌時間は30分乃
至90分であることが好ましい。前記低温の無電解めっき
のめっき液の温度が、5〜40℃であることが好ましい。
前記低温の無電解めっきのめっき液のより好ましい温度
は、20〜30℃である。前記所要雰囲気は、水素気流中で
あることが好ましい。又、前記合金化処理の加熱温度
は、 800〜1100℃前後であることが好ましい。さらに、
前記合金化処理のより好ましい加熱温度は 900〜 950℃
である。
In order to solve the above problems, the first method for producing a noble metal alloy catalyst according to the present invention comprises dispersing a noble metal or noble metal alloy catalyst supported on a powdery carrier in hot water. While preparing a catalyst slurry, a plating bath composed of a mixed solution of a heavy metal salt, a chelating agent and a reducing agent is prepared to prepare a plating solution having a pH of 10.5 to 13.0, and the plating solution is added to the catalyst slurry. The method is characterized in that electroless plating is performed at a low temperature, a noble metal or noble metal alloy catalyst, which is plated with a heavy metal and supported on a carrier, is washed and dried, and then heated in a required atmosphere to be alloyed. Carbon or the like is used as the carrier. The noble metal or noble metal alloy catalyst is preferably platinum or a platinum alloy catalyst. Further, it is preferable that the heavy metal salt is nickel chloride and / or cobalt chloride, the chelating agent is sodium tartrate, and the reducing agent is hydrazine chloride. On the other hand, the second method for producing a noble metal or noble metal alloy catalyst is characterized in that, in the first method, the mixed solution is sufficiently stirred at the time of establishing the plating bath and before adjusting the pH. The stirring time is preferably 30 minutes to 90 minutes. The temperature of the low-temperature electroless plating solution is preferably 5 to 40 ° C.
A more preferable temperature of the low temperature electroless plating solution is 20 to 30 ° C. The required atmosphere is preferably a hydrogen stream. The heating temperature of the alloying treatment is preferably around 800 to 1100 ° C. further,
A more preferable heating temperature for the alloying treatment is 900 to 950 ° C.
Is.

【0005】[0005]

【作用】本発明の第1の貴金属合金触媒の製造方法にお
いては、重金属の還元反応が比較的ゆっくり進み、還元
反応が一通り終了し、まだ溶出が起こらない時点の見極
めが容易となる。一方、第2の貴金属合金触媒の製造方
法においては、第1の方法の作用に加えて、混合液の熟
成が十分となり、重金属がキレート剤とキレート化して
還元され易い形となる。10分未満だと、キレート化が不
完全であり、90分を超えてもそれ以上キレート化は進ま
ず、時間が無駄である。前記低温の無電解めっきのめっ
き液の温度が5℃未満であると、還元反応が遅くなりす
ぎて時間がかかり、40℃を超えると還元反応が速くなっ
て見極めが困難となる。又、合金化処理の加熱温度が、
800℃未満であると、合金化が不十分となり、900℃を
超えると、合金組成が粒子によってバラつくという問題
が生じる。さらに装置設計上からは 900〜 950℃の範囲
が好ましい。
In the first method for producing a noble metal alloy catalyst of the present invention, the reduction reaction of heavy metals proceeds relatively slowly, the reduction reaction is completed, and it is easy to determine when elution does not occur. On the other hand, in the second method for producing a noble metal alloy catalyst, in addition to the action of the first method, the ripening of the mixed solution is sufficient, and the heavy metal is chelated with the chelating agent and easily reduced. If it is less than 10 minutes, the chelation is incomplete, and if it exceeds 90 minutes, the chelation does not proceed any more and the time is wasted. If the temperature of the low-temperature electroless plating solution is lower than 5 ° C, the reduction reaction becomes too slow and takes a long time, and if it exceeds 40 ° C, the reduction reaction becomes fast and it becomes difficult to determine. Moreover, the heating temperature of the alloying treatment is
If it is less than 800 ° C, alloying becomes insufficient, and if it exceeds 900 ° C, there arises a problem that the alloy composition varies depending on particles. Further, from the viewpoint of device design, the range of 900 to 950 ° C is preferable.

【0006】[0006]

【実施例】以下、本発明の実施例について比較例及び従
来例と共に説明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples and conventional examples.

【0007】[0007]

【実施例1】カーボン粉末を担体としてこれに白金2.92
gを担持させた、カーボン担持白金触媒13.8gを沸騰し
た熱水 200mlで濡らし、撹拌しながら超音波ホモジナイ
ザーで2分間分散させて触媒スラリーとし、その後21℃
まで冷却した。次に、重金属塩として塩化ニッケル1.90
g及び塩化コバルト1.89gキレート剤として酒石酸ナト
リウム 28.93g、並びに還元剤として塩酸ヒドラジン 1
3.20gを純水に溶解して 300mlの混合液とし、この混合
液をそのまま約19℃の温度で60分間撹拌した。次いで、
混合液に50%NaOH溶液を加えてpH調整し、途中冷
却しながら、pH12.9、液温24.3℃のめっき液を調製し
た。次に、めっき液を前記触媒スラリーに全量一度に投
入し、20分間撹拌しながら無電解めっきを行なった。無
電解めっき中のスラリーめっき液の温度は24〜26℃であ
った。そして、ニッケル及びコバルトがめっきされたカ
ーボン担持白金触媒をろ取し、洗浄水が中性になるまで
数回水洗いした後、60℃の温度で乾燥し、最後に水素気
流中において 900℃の温度で加熱して白金粒子とこれに
めっきされたニッケル及びコバルトの合金化処理を行な
った。
[Example 1] Platinum 2.92 using carbon powder as a carrier
13.8 g of carbon-supported platinum catalyst supporting g of the catalyst was wetted with 200 ml of boiling hot water and dispersed with an ultrasonic homogenizer for 2 minutes while stirring to form a catalyst slurry, then at 21 ° C.
Cooled down. Next, nickel chloride 1.90 as a heavy metal salt.
g and cobalt chloride 1.89 g Sodium tartrate 28.93 g as a chelating agent, and hydrazine hydrochloride as a reducing agent 1
3.20 g was dissolved in pure water to prepare a 300 ml mixed solution, and this mixed solution was stirred as it was at a temperature of about 19 ° C. for 60 minutes. Then
A 50% NaOH solution was added to the mixed solution to adjust the pH, and a plating solution having a pH of 12.9 and a solution temperature of 24.3 ° C. was prepared while cooling halfway. Next, the plating solution was added to the catalyst slurry all at once, and electroless plating was performed while stirring for 20 minutes. The temperature of the slurry plating solution during electroless plating was 24 to 26 ° C. The nickel- and cobalt-plated carbon-supported platinum catalyst was collected by filtration, washed with water several times until the washing water became neutral, dried at a temperature of 60 ° C, and finally at a temperature of 900 ° C in a hydrogen stream. Then, the platinum particles were alloyed with nickel and cobalt plated thereon.

【0008】めっき後の廃液の原子吸光分析を行なった
ところ、ニッケルは投入量の 4.6%、コバルトは投入量
の 3.6%だけが残存し、白金は検出されなかった。又、
得られた白金合金触媒中の合金組成について、ICP発
光分析と原子吸光分析を行なったところ、白金50.0原子
%、ニッケル25.5原子%、及びコバルト24.5原子%であ
った。
Atomic absorption spectrometry of the waste liquid after plating revealed that only 4.6% of the input amount of nickel and 3.6% of the input amount of cobalt remained, and platinum was not detected. or,
The alloy composition in the obtained platinum alloy catalyst was analyzed by ICP emission spectrometry and atomic absorption spectrometry. As a result, platinum was 50.0 atomic%, nickel was 25.5 atomic%, and cobalt was 24.5 atomic%.

【0009】[0009]

【実施例2】カーボン粉末を担体としてこれに白金2.80
gを担持させた、カーボン担持白金触媒13.3gを沸騰し
た熱水 200mlで濡らし、撹拌しながら超音波ホモジナイ
ザーで2分間分散させて触媒スラリーとし、その後20℃
まで冷却した。次に重金属塩として塩化コバルト3.80
g、キレート剤として酒石酸ナトリウム29.14g及び還
元剤として塩酸ヒドラジン 13.29gを純水に溶解して 3
20mlの混合液とし、この混合液をそのまま約17℃の温度
で40分間撹拌した。次いで、混合液に50%NaOH溶液
を加えてpH調整し、途中冷却しながらpH12.8、液温
23.8℃のめっき液を調製した。次にめっき液を前記触媒
スラリーに全量一度に投入し25分間撹拌しながら無電解
めっきを行なった。無電解めっき中のスラリーめっき液
の温度は22〜24℃であった。そして、コバルトがめっき
されたカーボン担持白金触媒をろ取し、洗浄水が中性に
なるまで数回水洗した後、60℃の温度で乾燥し、最後に
水素気流中において900℃の温度で加熱して白金粒子と
これにめっきされたコバルトの合金化処理を行なった。
Example 2 Carbon powder was used as a carrier on which platinum 2.80 was applied.
13.3 g of carbon-supported platinum catalyst supporting g of water was wetted with 200 ml of boiling hot water and dispersed with an ultrasonic homogenizer for 2 minutes while stirring to make a catalyst slurry, then at 20 ° C.
Cooled down. Next, as a heavy metal salt, cobalt chloride 3.80
g, 29.14 g of sodium tartrate as a chelating agent, and 13.29 g of hydrazine hydrochloride as a reducing agent are dissolved in pure water.
A 20 ml mixed solution was prepared, and this mixed solution was directly stirred at a temperature of about 17 ° C. for 40 minutes. Next, add 50% NaOH solution to the mixed solution to adjust the pH, and while cooling on the way to pH 12.8,
A plating solution at 23.8 ° C was prepared. Next, the plating solution was added to the catalyst slurry all at once, and electroless plating was performed while stirring for 25 minutes. The temperature of the slurry plating solution during electroless plating was 22 to 24 ° C. The cobalt-plated carbon-supported platinum catalyst was collected by filtration, washed with water several times until the washing water became neutral, dried at a temperature of 60 ° C, and finally heated at a temperature of 900 ° C in a hydrogen stream. Then, an alloying treatment of platinum particles and cobalt plated on the platinum particles was performed.

【0010】めっき後の廃液の原子吸光分析を行なった
ところ、コバルトは投入量の 6.2%だけが残存し、白金
は検出されなかった。又、得られた白金合金触媒中の合
金組成について、IPC発光分光分析と原子吸光分析を
行なったところ、白金48.9%、コバルト51.1原子%であ
った。
Atomic absorption spectrometry of the waste liquid after plating revealed that only 6.2% of the input amount of cobalt remained and platinum was not detected. Further, when the alloy composition in the obtained platinum alloy catalyst was subjected to IPC emission spectroscopic analysis and atomic absorption spectrometry, the results were 48.9% platinum and 51.1 atomic% cobalt.

【0011】[0011]

【実施例3】カーボン粉末を担体としてこれに白金3.62
gを担持させた、カーボン担持白金触媒 140gを沸騰し
た熱水 200mlで濡らし、撹拌しながら超音波ホモジナイ
ザーで2分間分散させて触媒スラリーとし、その後20℃
まで冷却した。次に、重金属塩として塩化コバルト4.68
g、キレート剤として酒石酸ナトリウム 35.88g、及び
還元剤として塩酸ヒドラジン 16.37gを純水に溶解して
390mlの混合液とし、この混合液をそのまま約17℃の温
度で80分間撹拌した。次いで、混合液に50%NaOH溶
液を加えてpH調整し、途中冷却しながらpH12.9、液
温27.9℃のめっき液を調製した。次にめっき液を前記触
媒スラリーに全量一度に投入し、15分間撹拌しながら無
電解めっきを行なった。無電解めっき中のスラリーめっ
き液の温度は、26〜28℃であった。そして、コバルトが
めっきされたカーボン担持白金触媒をろ取し、洗浄水が
中性になるまで水洗した後、60℃の温度で乾燥し、最後
に、水素気流中において900℃の温度で加熱して白金粒
子とこれにめっきされたコバルトの合金化処理を行なっ
た。
Example 3 Carbon powder was used as a carrier and platinum 3.62 was added thereto.
140g of carbon-supported platinum catalyst carrying g was wetted with 200ml of boiling hot water and dispersed with an ultrasonic homogenizer for 2 minutes with stirring to make a catalyst slurry, then at 20 ° C.
Cooled down. Then, as a heavy metal salt, cobalt chloride 4.68
g, 35.88 g of sodium tartrate as a chelating agent, and 16.37 g of hydrazine hydrochloride as a reducing agent are dissolved in pure water.
A 390 ml mixed solution was prepared, and this mixed solution was directly stirred at a temperature of about 17 ° C. for 80 minutes. Next, a 50% NaOH solution was added to the mixed solution to adjust the pH, and a plating solution having a pH of 12.9 and a solution temperature of 27.9 ° C. was prepared while cooling halfway. Next, the plating solution was added to the catalyst slurry all at once, and electroless plating was performed while stirring for 15 minutes. The temperature of the slurry plating solution during electroless plating was 26 to 28 ° C. The cobalt-plated carbon-supported platinum catalyst was collected by filtration, washed with water until the washing water became neutral, dried at a temperature of 60 ° C, and finally heated at a temperature of 900 ° C in a hydrogen stream. The platinum particles were alloyed with the plated cobalt.

【0012】めっき液の廃液の原子吸光分析を行なった
ところ、コバルトは投入量の 6.0%だけが残存し、白金
は検出されなかった。又、得られた白金合金触媒中の合
金組成について、IPC発光分光分析と原子吸光分析を
行なったところ、白金49.6原子%、コバルト50.4原子%
であった。
Atomic absorption spectrometry of the waste liquid of the plating solution revealed that only 6.0% of the input amount of cobalt remained and platinum was not detected. Further, the alloy composition in the obtained platinum alloy catalyst was subjected to IPC emission spectroscopic analysis and atomic absorption spectrometry, whereby platinum 49.6 atomic% and cobalt 50.4 atomic% were obtained.
Met.

【0013】[0013]

【比較例1】カーボン粉末を担体としてこれに白金2.89
gを担持させた、カーボン担持白金触媒13.7gを沸騰し
た熱水 200mlで濡らし、撹拌しながら超音波ホモジナイ
ザーで2分間分散させて触媒スラリーとし、その後28℃
まで冷却した。次に、重金属塩として塩化ニッケル1.97
g及び塩化コバルト1.96g、キレート剤として酒石酸ナ
トリウム 29.99g、並びに還元剤として塩化ヒドラジン
13.68gを純水に溶解して 330mlの混合液とした。次い
で、混合液に50%NaOH溶液を加えてpH調整し、p
H12.7のめっき液を調製した。次にめっき液を前記触媒
スラリーに全量一度に投入し、5分間撹拌しながら無電
解めっきを行なった。無電解めっき中のスラリーめっき
液の温度は、31〜32℃であった。そして、ニッケル及び
コバルトがめっきされたカーボン担持白金触媒をろ取
し、洗浄水が中性になるまで水洗した後、60℃の温度で
乾燥し、最後に、水素気流中において 900℃の温度で加
熱して白金粒子とこれにめっきされたニッケル及びコバ
ルトの合金化処理を行なった。
[Comparative Example 1] Platinum 2.89 was prepared by using carbon powder as a carrier.
13.7 g of carbon-supported platinum catalyst supporting g of water was wetted with 200 ml of boiling hot water and dispersed with an ultrasonic homogenizer for 2 minutes with stirring to form a catalyst slurry, and then 28 ° C.
Cooled down. Next, nickel chloride 1.97 as a heavy metal salt.
g and cobalt chloride 1.96 g, sodium tartrate as a chelating agent 29.99 g, and hydrazine chloride as a reducing agent
13.68 g was dissolved in pure water to prepare a 330 ml mixed solution. Then, add 50% NaOH solution to the mixed solution to adjust the pH, and p
A H12.7 plating solution was prepared. Next, the plating solution was added to the catalyst slurry all at once, and electroless plating was performed while stirring for 5 minutes. The temperature of the slurry plating solution during electroless plating was 31 to 32 ° C. The nickel- and cobalt-plated carbon-supported platinum catalyst was collected by filtration, washed with water until the washing water became neutral, dried at a temperature of 60 ° C, and finally at a temperature of 900 ° C in a hydrogen stream. The platinum particles and the nickel and cobalt plated on the platinum particles were alloyed by heating.

【0014】めっき後の廃液の原子吸光分析を行なった
ところ、ニッケルは投入量の34.6%、コバルトは投入量
の 4.8%が残存し、白金は検出されなかった。又、得ら
れた白金合金触媒中の合金組成について、IPC発光分
光分析と原子吸光分析を行なったところ、白金53.8原子
%、ニッケル19.3原子%、及びコバルト26.9原子%であ
った。
Atomic absorption spectrometry of the waste liquid after plating revealed that 34.6% of the input amount of nickel and 4.8% of the input amount of cobalt remained, and platinum was not detected. When the alloy composition in the obtained platinum alloy catalyst was subjected to IPC emission spectroscopy and atomic absorption spectrometry, platinum was 53.8 at%, nickel was 19.3 at%, and cobalt was 26.9 at%.

【0015】[0015]

【比較例2】カーボン粉末を担体としてこれに白金2.87
gを担持させた、カーボン担持白金触媒13.8gを沸騰し
た熱水 200mlで濡らし、撹拌しながら超音波ホモジナイ
ザーで2分間分散させて触媒スラリーとし、その後13℃
まで冷却した。次に、重金属塩として塩化ニッケル1.95
g及び塩化コバルト1.94g、キレート剤として酒石酸ナ
トリウム 29.79g、及び還元剤として塩酸ヒドラジン 1
3.59gを純水に溶解して 330mlの混合液とした。次い
で、混合液に50%NaOH溶液を加えてpH調整し、途
中冷却しながらpH12.9、液温16.0℃のめっき液を調製
した。次にめっき液を前記触媒スラリーに全量一度に投
入し、15分間撹拌しながら無電解めっきを行なった。無
電解めっき中のスラリーめっき液の温度は、15〜16℃で
あった。そして、ニッケル及びコバルトがめっきされた
カーボン担持白金触媒をろ取し、洗浄水が中性になるま
で水洗した後、60℃の温度で乾燥し、最後に、水素気流
中において 900℃の温度で加熱して白金粒子とこれにめ
っきされたニッケル及びコバルトの合金化処理を行なっ
た。
[Comparative Example 2] Platinum 2.87 was prepared by using carbon powder as a carrier.
13.8g of carbon-supported platinum catalyst carrying g was wetted with 200ml of boiling hot water and dispersed with an ultrasonic homogenizer for 2 minutes with stirring to make a catalyst slurry, then at 13 ° C.
Cooled down. Next, as a heavy metal salt, nickel chloride 1.95
g and cobalt chloride 1.94 g, sodium tartrate 29.79 g as a chelating agent, and hydrazine hydrochloride 1 as a reducing agent 1
3.59 g was dissolved in pure water to prepare a 330 ml mixed solution. Next, a 50% NaOH solution was added to the mixed solution to adjust the pH, and a plating solution having a pH of 12.9 and a solution temperature of 16.0 ° C. was prepared while cooling halfway. Next, the plating solution was added to the catalyst slurry all at once, and electroless plating was performed while stirring for 15 minutes. The temperature of the slurry plating solution during electroless plating was 15 to 16 ° C. The nickel- and cobalt-plated carbon-supported platinum catalyst was collected by filtration, washed with water until the washing water became neutral, dried at a temperature of 60 ° C, and finally at a temperature of 900 ° C in a hydrogen stream. The platinum particles and the nickel and cobalt plated on the platinum particles were alloyed by heating.

【0016】めっき後の廃液の原子吸光分析を行なった
ところ、ニッケルは投入量の26.8%、コバルトは投入量
の 6.0%が残存し、白金は検出されなかった。又、得ら
れた白金合金触媒中の合金組成について、IPC発光分
光分析と原子吸光分析を行なったところ、白金52.6原子
%、ニッケル20.8原子%、及びコバルト26.6原子%であ
った。
When atomic absorption analysis of the waste liquid after plating was carried out, 26.8% of the input amount of nickel and 6.0% of the input amount of cobalt remained, and platinum was not detected. Further, the alloy composition in the obtained platinum alloy catalyst was subjected to IPC emission spectroscopic analysis and atomic absorption spectrometric analysis. As a result, platinum was 52.6 at%, nickel was 20.8 at%, and cobalt was 26.6 at%.

【0017】[0017]

【比較例3】カーボン粉末を担体としてこれに白金2.90
gを担持させた、カーボン担持白金触媒13.7gを沸騰し
た熱水 200mlで濡らし、撹拌しながら超音波ホモジナイ
ザーで2分間分散させて触媒スラリーとし、その後22℃
まで冷却した。次に、重金属塩として塩化ニッケル1.97
g及び塩化コバルト1.96g、キレート剤として酒石酸ナ
トリウム 30.10g、及び還元剤として塩酸ヒドラジン 1
3.73gを純水に溶解して 330mlの混合液とした。次い
で、混合液に50%NaOH溶液を加えてpH調整し、途
中冷却しながらpH12.8、液温24.2℃のめっき液を調製
した。次にめっき液を前記触媒スラリーに全量一度に投
入し、60分間撹拌しながら無電解めっきを行なった。反
応は18分で終了し、かつ無電解めっき中のスラリーめっ
き液の温度は、24〜26℃であった。そして、ニッケル及
びコバルトがめっきされたカーボン担持白金触媒をろ取
し、洗浄水が中性になるまで水洗した後、60℃の温度で
乾燥し、最後に、水素気流中において 900℃の温度で加
熱して白金粒子とこれにめっきされたニッケル及びコバ
ルトの合金化処理を行なった。
[Comparative Example 3] Platinum 2.90 was used with carbon powder as a carrier.
13.7 g of carbon-supported platinum catalyst supporting g of water was wetted with 200 ml of boiling hot water and dispersed with an ultrasonic homogenizer for 2 minutes while stirring to make a catalyst slurry, then at 22 ° C.
Cooled down. Next, nickel chloride 1.97 as a heavy metal salt.
g and cobalt chloride 1.96 g, sodium tartrate as a chelating agent 30.10 g, and hydrazine hydrochloride as a reducing agent 1
3.73 g was dissolved in pure water to prepare a 330 ml mixed solution. Next, a 50% NaOH solution was added to the mixed solution to adjust the pH, and a plating solution having a pH of 12.8 and a solution temperature of 24.2 ° C. was prepared while cooling halfway. Next, the plating solution was added to the catalyst slurry all at once, and electroless plating was performed while stirring for 60 minutes. The reaction was completed in 18 minutes, and the temperature of the slurry plating solution during electroless plating was 24 to 26 ° C. The nickel- and cobalt-plated carbon-supported platinum catalyst was collected by filtration, washed with water until the washing water became neutral, dried at a temperature of 60 ° C, and finally at a temperature of 900 ° C in a hydrogen stream. The platinum particles and the nickel and cobalt plated on the platinum particles were alloyed by heating.

【0018】めっき後の廃液の原子吸光分析を行なった
ところ、ニッケルは投入量の14.5%、コバルトは投入量
の10.6%が残存し、白金は検出されなかった。又、得ら
れた白金合金触媒中の合金組成について、IPC発光分
光分析と原子吸光分析を行なったところ、白金51.1原子
%、ニッケル23.8原子%、及びコバルト25.1原子%であ
った。
Atomic absorption spectrometry of the waste liquid after plating revealed that 14.5% of the input amount of nickel and 10.6% of the input amount of cobalt remained, and platinum was not detected. When the alloy composition in the obtained platinum alloy catalyst was subjected to IPC emission spectroscopy and atomic absorption spectrometry, the results were 51.1 at% platinum, 23.8 at% nickel, and 25.1 at% cobalt.

【0019】[0019]

【従来例】カーボン粉末を担体としてこれに白金2.86g
を担持させた、カーボン担持白金触媒13.7gを沸騰した
熱水 200mlで濡らし、撹拌しながら超音波ホモジナイザ
ーで2分間分散させて触媒スラリーとした。次に、重金
属塩として塩化ニッケル1.95g及び塩化コバルト1.94
g、キレート剤として酒石酸ナトリウム 29.72g、及び
還元剤として塩酸ヒドラジン 13.16gを純水に溶解して
330mlの混合液とした。次いで、混合液に50%NaOH
溶液を加えてpH調整し、液温65.4℃のめっき液を調製
した。次にめっき液を前記触媒スラリーに全量一度に投
入し、60分間撹拌しながら無電解めっきを行なった。そ
して、ニッケル及びコバルトがめっきされたカーボン担
持白金触媒をろ取し、洗浄水が中性になるまで水洗した
後、60℃の温度で乾燥し、最後に、水素気流中において
900℃の温度で加熱して白金粒子とこれにめっきされた
ニッケル及びコバルトの合金化処理を行なった。
[Prior art example] Carbon powder used as a carrier 2.86 g of platinum
13.7 g of the carbon-supported platinum catalyst carrying C was wetted with 200 ml of boiling hot water, and was dispersed with an ultrasonic homogenizer for 2 minutes while stirring to obtain a catalyst slurry. Next, as a heavy metal salt, 1.95 g of nickel chloride and 1.94 of cobalt chloride.
g, 29.72 g of sodium tartrate as a chelating agent, and 13.16 g of hydrazine hydrochloride as a reducing agent are dissolved in pure water.
A mixed solution of 330 ml was prepared. Then add 50% NaOH to the mixture.
The solution was added to adjust the pH to prepare a plating solution having a solution temperature of 65.4 ° C. Next, the plating solution was added to the catalyst slurry all at once, and electroless plating was performed while stirring for 60 minutes. Then, the carbon-supported platinum catalyst plated with nickel and cobalt was collected by filtration, washed with water until the washing water became neutral, dried at a temperature of 60 ° C., and finally, in a hydrogen stream.
It was heated at a temperature of 900 ° C. to alloy the platinum particles with nickel and cobalt plated on them.

【0020】めっき後の廃液の原子吸光分析を行なった
ところ、ニッケルは投入量の98.4%、コバルトは投入量
の74.8%が残存し、白金は検出されなかった。又、得ら
れた白金合金触媒中の合金組成について、IPC発光分
光分析と原子吸光分析を行なったところ、白金87.3原子
%、ニッケル 0.5原子%、及びコバルト12.2原子%であ
った。
When the atomic absorption analysis of the waste liquid after plating was carried out, 98.4% of the input amount of nickel and 74.8% of the input amount of cobalt remained, and platinum was not detected. When the alloy composition in the obtained platinum alloy catalyst was subjected to IPC emission spectroscopy and atomic absorption spectrometry, platinum was 87.3 atomic%, nickel was 0.5 atomic%, and cobalt was 12.2 atomic%.

【0021】[0021]

【発明の効果】以上説明したように、本発明の第1の貴
金属合金触媒の製造方法によれば、重金属の還元方法が
比較的ゆっくり進み、還元反応が一通り終了し、まだ溶
出が起こらない時点の見極めが容易となるので、重金属
の担持率を高めることにより、所望の合金組成を得るこ
とができると共に、合金組成のコントロールを容易にす
ることができる。又、第2の貴金属合金触媒の製造方法
によれば、第1の方法の効果に加え、混合液の熟成が十
分となり、重金属がキレート剤とキレート化して還元さ
れ易い形となるので、より一層所望の合金組成を得るこ
とができると共に、合金組成のコントロールをより一層
容易にすることができる。
As described above, according to the first method for producing a noble metal alloy catalyst of the present invention, the method for reducing heavy metals proceeds relatively slowly, the reduction reaction is completed, and elution does not occur yet. Since it is easy to determine the time point, a desired alloy composition can be obtained and the alloy composition can be easily controlled by increasing the loading ratio of the heavy metal. Further, according to the second method for producing a noble metal alloy catalyst, in addition to the effect of the first method, the ripening of the mixed solution is sufficient, and the heavy metal is chelated with the chelating agent and easily reduced, so The desired alloy composition can be obtained, and the alloy composition can be controlled more easily.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 粉末状の担体に担持された貴金属又は貴
金属合金触媒を熱水中に分散して触媒スラリーとする一
方、重金属塩、キレート剤及び還元剤の混合液から成る
めっき浴を建浴してpH10.5〜13.0のめっき液を調製
し、このめっき液を前記触媒スラリーに投入して低温で
無電解めっきし、重金属がめっきされて、担体に担持さ
れた貴金属又は貴金属合金触媒を洗浄、乾燥した後、所
要雰囲気下で加熱して合金化処理することを特徴とする
貴金属合金触媒の製造方法。
1. A plating bath comprising a mixture of a heavy metal salt, a chelating agent and a reducing agent, while a precious metal or precious metal alloy catalyst supported on a powdery carrier is dispersed in hot water to form a catalyst slurry. To prepare a plating solution with a pH of 10.5 to 13.0, put this plating solution in the catalyst slurry and perform electroless plating at low temperature, and wash the noble metal or noble metal alloy catalyst carried on the carrier by plating heavy metals. A method for producing a precious metal alloy catalyst, which comprises drying and then heating in a required atmosphere for alloying treatment.
【請求項2】 前記担体が、カーボンであることを特徴
とする請求項1記載の貴金属合金触媒の製造方法。
2. The method for producing a noble metal alloy catalyst according to claim 1, wherein the carrier is carbon.
【請求項3】 前記貴金属又は貴金属合金触媒が、白金
又は白金合金触媒であることを特徴とする請求項1又は
2記載の貴金属合金触媒の製造方法。
3. The method for producing a noble metal alloy catalyst according to claim 1, wherein the noble metal or noble metal alloy catalyst is platinum or a platinum alloy catalyst.
【請求項4】 前記重金属塩が塩化ニッケル及び/又は
塩化コバルトであり、キレート剤が酒石酸ナトリウム、
還元剤が塩酸ヒドラジンであることを特徴とする請求項
1、2又は3記載の貴金属合金触媒の製造方法。
4. The heavy metal salt is nickel chloride and / or cobalt chloride, and the chelating agent is sodium tartrate.
The method for producing a noble metal alloy catalyst according to claim 1, 2 or 3, wherein the reducing agent is hydrazine hydrochloride.
【請求項5】 前記めっき浴の建浴時、pH調整前に混
合液を十分に撹拌することを特徴とする請求項1、2、
3又は4記載の貴金属合金触媒の製造方法。
5. The mixed solution is sufficiently stirred before adjusting the pH when the plating bath is set up.
3. The method for producing the noble metal alloy catalyst according to 3 or 4.
【請求項6】 前記めっき浴の建浴時、pH調整前に混
合液を30分乃至90分撹拌することを特徴とする請求項
1、2、3、4又は5記載の貴金属合金触媒の製造方
法。
6. The production of the noble metal alloy catalyst according to claim 1, wherein the mixed solution is stirred for 30 to 90 minutes before the pH adjustment during the construction of the plating bath. Method.
【請求項7】 前記低温の無電解めっきのめっき液の温
度が5〜40℃であることを特徴とする請求項1、2、
3、4、5又は6記載の貴金属合金触媒の製造方法。
7. The low-temperature electroless plating solution has a temperature of 5 to 40 ° C.,
The method for producing a noble metal alloy catalyst according to 3, 4, 5 or 6.
【請求項8】 前記低温の無電解めっきのめっき液の温
度が20〜30℃であることを特徴とする請求項1、2、
3、4、5又は6記載の貴金属合金触媒の製造方法。
8. The temperature of a plating solution for the low-temperature electroless plating is 20 to 30 ° C.,
The method for producing a noble metal alloy catalyst according to 3, 4, 5 or 6.
【請求項9】 前記所要雰囲気が、水素気流であること
を特徴とする請求項1、2、3、4、5、6、7又は8
記載の貴金属合金触媒の製造方法。
9. The required atmosphere is a hydrogen gas flow, 1, 2, 3, 4, 5, 6, 7 or 8.
A method for producing the noble metal alloy catalyst described.
【請求項10】 前記合金化処理の加熱温度が、 800℃〜
1100℃前後であることを特徴とする請求項1、2、3、
4、5、6、7、8又は9記載の貴金属合金触媒の製造
方法。
10. The heating temperature of the alloying treatment is 800 ° C.
The temperature is around 1100 ° C, Claims 1, 2, 3,
4. A method for producing a noble metal alloy catalyst according to 4, 5, 6, 7, 8 or 9.
【請求項11】 前記合金化処理の加熱温度が 900℃〜 9
50℃であることを特徴とする請求項1、2、3、4、
5、6、7、8又は9記載の貴金属合金触媒の製造方
法。
11. The heating temperature of the alloying treatment is 900 ° C. to 9 ° C.
50 ° C., Claims 1, 2, 3, 4,
A method for producing a noble metal alloy catalyst according to 5, 6, 7, 8 or 9.
JP6073936A 1994-03-18 1994-03-18 Production of noble metal alloy catalyst Pending JPH07256107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6073936A JPH07256107A (en) 1994-03-18 1994-03-18 Production of noble metal alloy catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6073936A JPH07256107A (en) 1994-03-18 1994-03-18 Production of noble metal alloy catalyst

Publications (1)

Publication Number Publication Date
JPH07256107A true JPH07256107A (en) 1995-10-09

Family

ID=13532510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6073936A Pending JPH07256107A (en) 1994-03-18 1994-03-18 Production of noble metal alloy catalyst

Country Status (1)

Country Link
JP (1) JPH07256107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017428A1 (en) * 2000-08-22 2002-02-28 Hitachi Maxell, Ltd. Air-hydrogen cell
JP2003142112A (en) * 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk Catalyst for air electrode of high polymer solid electrolyte type fuel cell and its manufacturing method
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017428A1 (en) * 2000-08-22 2002-02-28 Hitachi Maxell, Ltd. Air-hydrogen cell
US6905794B2 (en) 2000-08-22 2005-06-14 Hitachi Maxell, Ltd. Air-hydrogen battery
JP2003142112A (en) * 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk Catalyst for air electrode of high polymer solid electrolyte type fuel cell and its manufacturing method
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same

Similar Documents

Publication Publication Date Title
CN112808288B (en) Nitrogen-phosphorus or nitrogen-phosphorus-sulfur co-doped carbon-loaded metal single-atom catalyst and microwave-assisted preparation method thereof
WO2018064960A1 (en) Method for preparing loading-type nano-metal material using microwave-assisted carbon template method
JPH01210037A (en) Method of forming alloy on carrier
WO2021253712A1 (en) Novel metal composite oxide catalyst and preparation method therefor
CN102554264B (en) Preparation method of palladium-silver alloy powder for conductive paste
CN107790184A (en) A kind of catalyst of Pd/UiO 66 of Pd metal nanocrystal kernels with controllable appearance and preparation method thereof
CN101817079A (en) Method for preparing framework coating powder of silver-tungsten carbide contact material
JPH06505668A (en) Alloy catalyst production method
JPH04141236A (en) Platinoid catalyst and its manufacturing process
JP2015000398A (en) Production method of platinum core shell catalyst, and fuel cell using the same
CN108525663B (en) Active carbon loaded ruthenium-based ammonia synthesis catalyst and preparation method thereof
JPH07256107A (en) Production of noble metal alloy catalyst
JPH067679A (en) Production of platinum alloy catalyst for phosphoric acid type fuel cell
JPH01210036A (en) Method for manufacturing carrier supported metal catalyst of large surface area
JP3195180B2 (en) Method for producing electrode catalyst for fuel cell
CN115888716A (en) Metal organic framework-ionic liquid composite catalyst, preparation method and application
CN109433194B (en) Nano palladium catalyst and preparation method and application thereof
WO2022158990A1 (en) Method of synthesis of carbon-supported platinum group metal or metal alloy nanoparticles
JP6403046B2 (en) Method for producing catalyst for fuel cell, catalyst using the same and fuel cell
CN109126822B (en) Carbon nanotube-gold copper alloy composite material and preparation method and application thereof
JPH08173810A (en) Production of platinum alloy catalyst
JP3683623B2 (en) Method for producing platinum-supported catalyst
JPH06124712A (en) Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JPH06132033A (en) Manufacture of platinum alloy catalyst for fuel cell
JP7426679B2 (en) Core-shell catalyst post-treatment method and system