JPH0725521B2 - Fuel reforming method for fuel cell - Google Patents

Fuel reforming method for fuel cell

Info

Publication number
JPH0725521B2
JPH0725521B2 JP63317214A JP31721488A JPH0725521B2 JP H0725521 B2 JPH0725521 B2 JP H0725521B2 JP 63317214 A JP63317214 A JP 63317214A JP 31721488 A JP31721488 A JP 31721488A JP H0725521 B2 JPH0725521 B2 JP H0725521B2
Authority
JP
Japan
Prior art keywords
reforming
combustion
gas
catalyst
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63317214A
Other languages
Japanese (ja)
Other versions
JPH02160602A (en
Inventor
幸雄 久保
芳明 高谷
孝志 亀田
誠一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP63317214A priority Critical patent/JPH0725521B2/en
Publication of JPH02160602A publication Critical patent/JPH02160602A/en
Publication of JPH0725521B2 publication Critical patent/JPH0725521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池の燃料ガスを製造する燃料改質装置
(リフォーマー)において、反応管外周部からの加熱に
触媒燃焼を用いて、低カロリーの燃料電池オフガスを安
定燃焼させて熱源として利用し、さらに吸熱反応に不足
する熱量を、反応管内部の触媒層での部分酸化反応によ
り補うようにして、燃料触媒の使用温度を常に耐熱限界
温度(約1000℃)以下に下げるようにした燃料電池用燃
料改質方法に関するものである。
The present invention relates to a fuel reformer for producing fuel gas for a fuel cell (reformer), which uses catalytic combustion for heating from the outer peripheral portion of a reaction tube, The calorie fuel cell off-gas is burned stably and used as a heat source, and the heat quantity that is insufficient for the endothermic reaction is supplemented by the partial oxidation reaction in the catalyst layer inside the reaction tube, so that the operating temperature of the fuel catalyst is always the heat-resistant limit. The present invention relates to a fuel reforming method for a fuel cell, which is configured to lower the temperature (about 1000 ° C.) or lower.

〔従来の技術〕[Conventional technology]

従来、燃料電池用のリフォーマーにおいては、燃料電池
オフガス(低カロリーガス)と助燃用ガス(天然ガスな
ど)とを混合した燃料ガスを、バーナーにより燃焼させ
て、リフォーマーの加熱源としていた。
Conventionally, in a reformer for a fuel cell, a fuel gas obtained by mixing a fuel cell off-gas (low-calorie gas) and an auxiliary combustion gas (natural gas or the like) is burned by a burner and used as a heating source of the reformer.

また、特開昭58−196849号公報には、触媒床に燃料、蒸
気及び予熱された空気の混合物を通過させる過程を含む
サーマル蒸気改質プロセスが記載されている。
JP-A-58-196849 also describes a thermal steam reforming process that includes passing a mixture of fuel, steam and preheated air through a catalyst bed.

この特開昭58−196849号公報のものは、触媒床に予熱さ
れた空気も導入されており、部分酸化反応(オート・サ
ーマル蒸気改質プロセス)によって、改質反応を行うた
めの反応熱が供給され、水素発生装置、特に燃料電池発
電プラント用の水素発生装置に適用されるものである。
In JP-A-58-196849, the preheated air is also introduced into the catalyst bed, and the reaction heat for carrying out the reforming reaction is reduced by the partial oxidation reaction (auto thermal steam reforming process). It is supplied and applied to hydrogen generators, especially hydrogen generators for fuel cell power plants.

この特開昭58−196849号公報のものは、0.01〜6%のロ
ジウムを含む触媒を上記の断熱型反応器に用いることに
より、この触媒の高活性という特徴が生かせるというも
のである。
This Japanese Patent Application Laid-Open No. 58-196849 discloses that a catalyst containing 0.01 to 6% rhodium can be used in the adiabatic reactor so that the high activity of the catalyst can be utilized.

また、実開昭62−170728号公報には、ガス精製装置7か
らのオフガスを触媒燃焼器11で燃焼させ、この燃焼ガス
を原料気化器3でメタノール及び水の気化に利用して、
燃焼ガス温度を下げた後、メタノール改質器4の加熱に
用いることにより、メタノール改質器4の反応触媒の耐
熱性限界に対応するようにしたメタノール改質水素製造
装置が記載されている。
Further, in Japanese Utility Model Application Laid-Open No. 62-170728, the off gas from the gas purifier 7 is burned in the catalytic combustor 11, and the combustion gas is used in the raw material vaporizer 3 to vaporize methanol and water.
There is described a methanol reforming hydrogen production apparatus adapted to meet the heat resistance limit of the reaction catalyst of the methanol reformer 4 by using it for heating the methanol reformer 4 after lowering the combustion gas temperature.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、低カロリーガスのバーナーでの安定燃焼は、技
術的にむずかしく、とくに、リフォーマーの負荷を変化
させる場合などでは、好ましくない点が発生していた。
However, stable combustion of low-calorie gas in a burner is technically difficult, and in particular, when changing the load of the reformer, unfavorable points have occurred.

特開昭58−196849号公報のものは、部分酸化反応を断熱
型反応器(オート・サーマル蒸気改質プロセス)で行う
ものがあるが、触媒燃焼を併用するものではない。すな
わち、反応器の外周からの加熱を併用する反応プロセス
を採用していないので、外周からの加熱のみでは、触媒
燃焼における触媒に耐熱限界(約1000℃)があるため
に、外周からの加熱温度に制約が生じ、外周からの加熱
の熱量負荷を低減することができず、燃焼触媒の操作温
度を実用温度域まで低減した反応装置・プロセスの構成
が困難である。
Some of Japanese Patent Laid-Open No. 58-196849 disclose a partial oxidation reaction in an adiabatic reactor (auto thermal vapor reforming process), but do not use catalytic combustion together. In other words, since the reaction process that uses heating from the outer circumference of the reactor is not adopted, the heating temperature from the outer circumference is high because only the heat from the outer circumference has a heat resistance limit (about 1000 ° C) for the catalyst in catalytic combustion. However, it is difficult to reduce the heat load of heating from the outer circumference, and it is difficult to construct a reactor / process in which the operating temperature of the combustion catalyst is reduced to a practical temperature range.

また、実開昭62−170728号公報記載の装置においては、
メタノール改質器4での触媒燃焼ではなく、燃焼ガス
(加熱用のガス)発生部としての触媒燃焼器11は、メタ
ノール改質器4とは分離している。このように、触媒燃
焼器11における燃焼触媒の使用温度を下げるという技術
的思想は何ら開示されていない。
Further, in the device described in Japanese Utility Model Publication No. 62-170728,
Instead of catalytic combustion in the methanol reformer 4, a catalytic combustor 11 serving as a combustion gas (heating gas) generation unit is separated from the methanol reformer 4. Thus, no technical idea of lowering the operating temperature of the combustion catalyst in the catalytic combustor 11 is disclosed.

この実開昭62−170728号公報には、触媒の耐熱性への配
慮について記載されているが、これは燃焼触媒について
ではなく、メタノールリフォーミング反応触媒について
である。すなわち、メタノールリフォーミング反応触媒
のシンタリング防止のため、燃焼ガスを原料気化器3で
メタノール及び水の気化に使用した後、温度を下げた状
態でメタノール改質器4の加熱ガスとして利用してい
る。
This Japanese Utility Model Application Laid-Open No. 62-170728 describes consideration of the heat resistance of the catalyst, but this is not for the combustion catalyst but for the methanol reforming reaction catalyst. That is, in order to prevent sintering of the methanol reforming reaction catalyst, the combustion gas is used for vaporizing methanol and water in the raw material vaporizer 3 and then used as a heating gas for the methanol reformer 4 in a state where the temperature is lowered. There is.

また、特開昭59−199502号公報及び特開昭58−23168号
公報には、炭化水素類を主成分とする改質原料ガスを反
応管に充填された改質触媒で水蒸気改質して水素リッチ
な燃料用改質ガスを製造する方法において、燃料電池オ
フガスを主成分とする低カロリーガスを反応管の外部に
充填された燃焼触媒で燃焼されることにより、改質触媒
層を加熱することが記載されている。しかし、これらの
公報に記載された発明では、負荷増加時に燃焼触媒が耐
熱限界温度を超え性能低下に至ることがある。すなわ
ち、これらの公報記載の発明は、燃焼触媒の特徴(メリ
ット)のみを捉えてなされたものであり、実用的な燃焼
触媒の耐熱限界の制約(デメリット)については、何等
考察されていない。
Further, in JP-A-59-199502 and JP-A-58-23168, a reforming raw material gas containing hydrocarbons as a main component is steam-reformed with a reforming catalyst filled in a reaction tube. In a method of producing a reformed gas for hydrogen-rich fuel, a reforming catalyst layer is heated by burning a low-calorie gas containing a fuel cell off-gas as a main component with a combustion catalyst filled outside a reaction tube. Is described. However, in the inventions described in these publications, when the load is increased, the combustion catalyst may exceed the heat resistant limit temperature and the performance may be deteriorated. That is, the inventions described in these publications have been made only by grasping the characteristics (merits) of the combustion catalyst, and have not considered any restrictions (demerits) on the practical heat resistance limit of the combustion catalyst.

本発明は上記の点に鑑みなされたもので、低カロリーガ
スの安定燃焼に有効な触媒燃焼を、改質装置の反応管の
外周からの加熱に用いるとともに、燃焼触媒の耐熱性
(現在の燃焼触媒の実用温度としては、約1000℃以下)
に対しては、リフォーミング触媒層での部分酸化反応を
併用することにより、リフォーミング吸熱反応に必要な
熱の一部(バーナー加熱の助熱分に相当)を補うこと
で、燃焼触媒の温度を下げて、リフォーマーへの触媒燃
焼技術の適用を可能とする燃料電池用燃料改質方法を提
供することを目的とするものである。
The present invention has been made in view of the above points, and uses catalytic combustion effective for stable combustion of low-calorie gas for heating from the outer periphery of the reaction tube of the reformer, and heat resistance of the combustion catalyst (current combustion (The practical temperature of the catalyst is about 1000 ° C or less)
For this, by using a partial oxidation reaction in the reforming catalyst layer together, a part of the heat necessary for the reforming endothermic reaction (corresponding to the auxiliary heat of burner heating) is supplemented, and the temperature of the combustion catalyst is increased. It is an object of the present invention to provide a fuel reforming method for a fuel cell, which enables the application of the catalytic combustion technology to a reformer.

〔課題を解決するための手段および作用〕[Means and Actions for Solving the Problems]

上記の目的を達成するために、本発明の燃料電池用燃料
改質方法は、図面に示すように、天然ガスを主成分とす
る改質原料ガスを、改質触媒を充填した燃料改質装置1
の反応管2に供給するとともに、反応管外部から改質触
媒層3を加熱し水蒸気改質して、水素リッチな燃料電池
用改質ガスを製造する水蒸気改質方法において、 改質触媒層3入口の改質原料ガス中に酸素または空気を
添加し、原料炭化水素の部分酸化により改質触媒層3内
部から加熱して反応場へ直接熱供給するとともに、燃料
電池4のオフガスを主成分とする低カロリーガスを反応
管2の外周で触媒燃焼させることにより、改質触媒層3
外部から加熱して、負荷増加時でも燃焼触媒の耐熱限界
温度以下で触媒燃焼させるものである。5は燃焼触媒層
である。
In order to achieve the above object, a fuel reforming method for a fuel cell according to the present invention is, as shown in the drawings, a fuel reforming apparatus in which a reforming raw material gas containing natural gas as a main component is filled with a reforming catalyst. 1
In the steam reforming method for producing a hydrogen-rich reformed gas for a fuel cell, the reforming catalyst layer 3 is heated from the outside of the reaction tube and steam-reformed from the outside of the reaction tube. Oxygen or air is added to the reforming raw material gas at the inlet, and it is heated from the inside of the reforming catalyst layer 3 by partial oxidation of the raw material hydrocarbon to directly supply heat to the reaction field, and the off gas of the fuel cell 4 is used as a main component. The catalytic reforming catalyst layer 3
It is heated from the outside and catalytically burned below the heat-resistant limit temperature of the burning catalyst even when the load increases. Reference numeral 5 is a combustion catalyst layer.

すなわち、本発明の方法における耐熱性は、メタノール
リフォーミング反応触媒ではなく、燃焼触媒に関するも
のである。本発明は、低カロリーガスの安定燃焼を図る
とともに、燃焼触媒を常に耐熱限界温度以下にするため
になされたもので、部分酸化の内部発熱と触媒燃焼とを
組み合わせることで、燃焼触媒の使用温度を下げること
ができ、かつ、燃料電池の負荷追従に有効であるように
構成することを特徴としている。
That is, the heat resistance in the method of the present invention relates not to the methanol reforming reaction catalyst but to the combustion catalyst. The present invention has been made in order to achieve stable combustion of low-calorie gas and to keep the temperature of the combustion catalyst always below the heat-resistant limit temperature.By combining internal heat generation of partial oxidation and catalytic combustion, the operating temperature of the combustion catalyst is reduced. It is characterized in that it can be lowered and is effective in following the load of the fuel cell.

本発明の方法において、燃焼触媒としては、Pt、Pd、Ru
O2、NiO、MnO2、Co3O4などを、コージライト、アルミ
ナ、シリカ、チタニアなどの一般に用いられている触媒
担体に担持させた酸化触媒が用いられる。
In the method of the present invention, as the combustion catalyst, Pt, Pd, Ru
An oxidation catalyst in which O 2 , NiO, MnO 2 , Co 3 O 4, etc. are supported on a commonly used catalyst carrier such as cordierite, alumina, silica, titania is used.

また、本発明の方法において、酸素または空気は、予め
改質原料ガス中に添加してもよく、あるいは、反応管2
の入口部に添加してもよい。
In the method of the present invention, oxygen or air may be added to the reforming raw material gas in advance, or the reaction tube 2
May be added to the inlet part of.

本発明の方法において、「部分酸化」とは、リフォーミ
ング原料に少量の酸素(または空気)を添加し、下記の
ような、一種の触媒酸化(燃焼)反応を併発させること
を言う。
In the method of the present invention, "partial oxidation" means adding a small amount of oxygen (or air) to the reforming raw material to cause a kind of catalytic oxidation (combustion) reaction as described below.

CH4+2O2→CO2+2H20 CH4+O2→CO2+2H2 CH4+1/2O2→CO+2H2 CO+1/2O2→CO2 H2+1/2O2→H2O 反応管2内に供給された天然ガス、水蒸気、酸素(また
は空気)は、つぎの反応式のように改質される。
CH 4 + 2O 2 → CO 2 + 2H 2 0 CH 4 + O 2 → CO 2 + 2H 2 CH 4 + 1 / 2O 2 → CO + 2H 2 CO + 1 / 2O 2 → CO 2 H 2 + 1 / 2O 2 → H 2 O In reaction tube 2 The supplied natural gas, water vapor, oxygen (or air) is reformed according to the following reaction formula.

CnH2n+2H2O→Cn-1H2(n-1)+3H2+CO2 CH4+2H2O→CO2+4H2(吸熱) CH4+H2O→CO+3H2(吸熱) CO+H2O→CO2+H2(発熱) 改質ガス(H2を主成分とし、CO、CO2、未反応CH4、H2O
を含むガス)は、燃料電池4に供給され、改質ガスのう
ち約70〜80%が発電のための電気化学反応に利用され
る。残りのオフガス(H2、CO、CO2、H2Oなどを含むガ
ス)は、燃焼用空気が添加された後、燃焼触媒層5に供
給され、触媒燃焼してリフォーミング反応熱源として利
用される。
C n H 2n + 2H 2 O → C n-1 H 2 (n-1) + 3H 2 + CO 2 CH 4 + 2H 2 O → CO 2 + 4H 2 (endotherm) CH 4 + H 2 O → CO + 3H 2 (endotherm) CO + H 2 O → CO 2 + H 2 (heat generation) Reformed gas (H 2 as main component, CO, CO 2 , unreacted CH 4 , H 2 O
Is supplied to the fuel cell 4, and about 70 to 80% of the reformed gas is used for the electrochemical reaction for power generation. The remaining off-gas (gas containing H 2 , CO, CO 2 , H 2 O, etc.) is supplied to the combustion catalyst layer 5 after the combustion air is added, and is catalytically burned to be used as a reforming reaction heat source. It

〔実施例〕〔Example〕

以下、本発明の実施例および比較例を挙げて説明する。 Hereinafter, examples and comparative examples of the present invention will be described.

実施例1 都市ガス13Aを脱硫後、改質原料として使用する天然ガ
スリフォーマーを用いて本発明の効果を確認した。
Example 1 After desulfurizing city gas 13A, the effect of the present invention was confirmed using a natural gas reformer used as a reforming raw material.

リフォーマー反応管内には、改質触媒として、ZrO2多孔
質担体に0.5wt%のRhを担持した触媒を充填し、外部か
らの加熱には、Pdをコージェライト担体に担持した燃焼
触媒を反応管の外部に充填し、ここで触媒燃焼した燃焼
ガスによる伝熱で、改質反応の熱源を供給した。
The reformer reaction tube was filled with a catalyst containing 0.5 wt% Rh in a ZrO 2 porous carrier as a reforming catalyst, and a combustion catalyst in which Pd was supported on a cordierite carrier was used as a reaction tube for external heating. The heat source of the reforming reaction was supplied by the heat transfer by the combustion gas which was charged outside the reactor and catalytically combusted there.

改質原料として、都市ガス供給量を1Nm3/Hとして、改質
ガスを発生し、これを燃料電池の燃料極に供給し、発電
を行った後、未反応ガスとして、H2、CO、CH4、CO2およ
びH2Oを含む燃料電池オフガス(発熱量≒1000kcal/N
m3)を、リフォーマーの燃焼触媒層に供給し、触媒燃焼
させた。この時の触媒燃焼温度は900℃となるように、
燃焼用空気流量の過剰率でコントロールし、燃焼触媒の
耐熱限界温度の100℃を越えないように制御した。この
ようなオフガスの燃焼加熱だけでは、リフォーミング吸
熱反応熱として熱量が不足し、触媒層温度が低下するた
め、都市ガス供給量を増量し、これの部分酸化発熱に見
合う分量の部分酸化反応用O2を改質触媒層に供給して、
触媒層内部から部分酸化反応による加熱を行い、リフォ
ーマー改質触媒温度を所定条件に設定することができ
た。
As the reforming raw material, the city gas supply rate is 1 Nm 3 / H, the reformed gas is generated, this is supplied to the fuel electrode of the fuel cell, and after power generation, H 2 , CO, as unreacted gas, Fuel cell off-gas containing CH 4 , CO 2 and H 2 O (calorific value ≈ 1000 kcal / N
m 3 ) was supplied to the combustion catalyst layer of the reformer and catalytically burned. At this time, the catalyst combustion temperature should be 900 ° C.
It was controlled by controlling the excess rate of the combustion air flow rate so as not to exceed the heat-resistant limit temperature of the combustion catalyst of 100 ° C. The combustion heat of such off-gas alone causes a shortage of heat as the reforming endothermic reaction heat, and the catalyst layer temperature decreases. Therefore, the city gas supply amount is increased, and the amount of partial oxidation reaction for the partial oxidation reaction corresponding to the partial oxidation heat generation is increased. By supplying O 2 to the reforming catalyst layer,
It was possible to set the reformer reforming catalyst temperature to a predetermined condition by heating from the inside of the catalyst layer by the partial oxidation reaction.

実施例2 実施例1と同一の装置を用い、燃焼電池の発電負荷を実
施例1の2倍にするために、リフォーマーの改質原料都
市ガスを、これに相当する量に増加した。この時、燃焼
触媒層へは燃料電池のオフガスを燃焼加熱用原料として
供給し、実施例1と同様の方法で、触媒燃焼温度の制御
を行った。
Example 2 Using the same apparatus as in Example 1, the reforming raw material city gas of the reformer was increased to an amount equivalent to this in order to double the power generation load of the combustion cell as compared with Example 1. At this time, the off gas of the fuel cell was supplied to the combustion catalyst layer as a raw material for combustion heating, and the catalyst combustion temperature was controlled in the same manner as in Example 1.

改質原料を2倍に急増すると、それまでのリフォーマー
の熱バランスが大きくくずれ、改質触媒層の温度が急激
に低下し、所定の燃焼電池発電負荷に相当する改質ガス
を発生させることができなくなるため、改質原料の増加
と同時に部分酸化用のO2を添加し、触媒層内部の部分酸
化反応による直接加熱を併用した。ここで、部分酸化反
応を発生させる原料都市ガスは、改質原料に付加して、
発生する改質ガス流量を、燃料電池発電負荷に相当する
分のH2発生量とするように制御した。
If the reforming raw material is rapidly increased to double, the heat balance of the reformer up to that point is largely lost, the temperature of the reforming catalyst layer is drastically lowered, and the reformed gas equivalent to a predetermined combustion battery power generation load may be generated. Since it is no longer possible, O 2 for partial oxidation was added at the same time as the amount of reforming raw material increased, and direct heating by partial oxidation reaction inside the catalyst layer was also used. Here, the raw material city gas that causes the partial oxidation reaction is added to the reforming raw material,
The flow rate of the reformed gas that was generated was controlled so that the amount of H 2 generated would correspond to the fuel cell power generation load.

上記の方法により、下記の比較例1のような、バーナー
による外部加熱のみで負荷制御するよりも、安全かつ迅
速・簡便に、リフォーマーの燃料電池発電負荷変化への
追従が可能となった。
According to the above method, it is possible to follow the reformer's change in the fuel cell power generation load safely, quickly and simply, as compared with load control only by external heating by a burner as in Comparative Example 1 below.

比較例1 都市ガス13Aを脱硫後、改質原料として使用する実施例
1および実施例2と同型の天然ガスリフォーマーにおい
て、外部からの加熱方法として、ノズルミックス型の通
常のバーナー燃焼加熱を用いる構造のリフォーマーで、
改質触媒としては、実施例1、実施例2と同一の0.5wt
%−Rh/ZrO2担体の触媒を用いて、実施例2と同様の負
荷を2倍にする試験を行った。
Comparative Example 1 In a natural gas reformer of the same type as that of Example 1 and Example 2 used as a reforming raw material after desulfurization of city gas 13A, a structure using normal burner combustion heating of nozzle mix type as an external heating method Is a reformer of
As the reforming catalyst, the same 0.5 wt% as in Example 1 and Example 2 was used.
Using a catalyst of% -Rh / ZrO 2 support, a test similar to that in Example 2 for doubling the load was conducted.

負荷を2倍にするために改質原料を急増すると、改質触
媒層の吸熱量が増え触媒層反応温度が急低下した。ここ
で、改質触媒層の温度を回復するために、バーナーの補
助燃料として供給する助燃用都市ガス流量を急増したた
め、燃焼ガス温度が異常に上昇し、これを制御するため
に助燃都市ガス流量と燃焼用空気流量との調整を行って
いたところ、バーナーが失火してしまったため、試験を
中断し再度点火し直し、バーナーの燃焼状態の監視を厳
重に行いながら、燃焼量を徐々に増加して行くと、改質
触媒層の温度を所定の温度に安定させるために2時間以
上費した。
When the amount of reforming raw material was rapidly increased to double the load, the endothermic amount of the reforming catalyst layer increased and the reaction temperature of the catalyst layer rapidly dropped. Here, in order to recover the temperature of the reforming catalyst layer, the flow rate of city gas for auxiliary combustion supplied as the auxiliary fuel of the burner suddenly increased, so the combustion gas temperature increased abnormally, and in order to control this, the flow rate of auxiliary city gas was increased. While adjusting the combustion air flow rate, the burner misfired, so the test was interrupted, the ignition was re-ignited, and the combustion amount was gradually increased while closely monitoring the combustion state of the burner. Then, it took more than 2 hours to stabilize the temperature of the reforming catalyst layer at a predetermined temperature.

さらに、同上の試験終了後、反応管を点検した結果、バ
ーナー温度がオーバーシュートした際に発生した熱反力
による亀裂が発生していた。
Furthermore, as a result of inspecting the reaction tube after completion of the above test, cracks due to thermal reaction force generated when the burner temperature overshooted were found.

〔発明の効果〕〔The invention's effect〕

本発明は上記のように構成されているので、つぎのよう
な効果を奏する。
Since the present invention is configured as described above, it has the following effects.

(1)低カロリーの燃料電池オフガスを、触媒燃焼によ
り安定燃焼させることができ、この際の燃焼熱を外部か
ら改質触媒層に与えることができる。改質触媒層で不足
する熱量は、反応管内部の触媒層での部分酸化反応によ
る熱により補うことができる。このため、燃焼触媒の温
度を負荷増加時でも、常に耐熱限界温度(約1000℃)以
下に下げることができ、燃焼触媒の耐熱性の問題を解決
することができる。
(1) Low-calorie fuel cell off-gas can be stably burned by catalytic combustion, and the combustion heat at this time can be given to the reforming catalyst layer from the outside. The heat quantity lacking in the reforming catalyst layer can be compensated by the heat due to the partial oxidation reaction in the catalyst layer inside the reaction tube. Therefore, even when the load of the combustion catalyst is increased, it is possible to always lower the heat-resistant limit temperature (about 1000 ° C.) or less, and it is possible to solve the problem of heat resistance of the combustion catalyst.

(2)反応管の外周から加熱のみでは、触媒燃焼におけ
る触媒に耐熱限界温度(約1000℃)があるために、外周
からの加熱温度に制約が生じるので、部分酸化の発熱に
より、反応器の内部でも改質(吸熱)反応に必要な反応
熱を直接反応場に供給し、これにより反応管の外周から
の触媒燃焼による加熱の熱量負荷を低減することがで
き、燃焼触媒の操作温度を実用温度域まで低減した反応
装置・プロセスの構成が容易に達成できる。
(2) Heating only from the outer circumference of the reaction tube limits the heating temperature from the outer circumference because the catalyst has a heat-resistant limit temperature (about 1000 ° C.) in catalytic combustion. Even inside, the reaction heat necessary for the reforming (endothermic) reaction is directly supplied to the reaction field, which can reduce the heat load of heating from the outer circumference of the reaction tube due to catalytic combustion, and the operating temperature of the combustion catalyst can be used practically. It is possible to easily achieve a reactor / process configuration that is reduced to the temperature range.

(3)燃料電池用のような、特に負荷変化を伴う用途に
おいて、本発明の方法が燃料電池の負荷制御技術にきわ
めて有効である。
(3) The method of the present invention is extremely effective for the load control technology of a fuel cell, especially in applications involving load changes, such as those for fuel cells.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の燃料電池用燃料改質方法を実施する装置
の一例を示すフローシートである。 1……燃料改質装置、2……反応管、3……改質触媒
層、4……燃料電池、5……燃焼触媒層
The drawings are flow sheets showing an example of an apparatus for carrying out the fuel reforming method for a fuel cell of the present invention. 1 ... Fuel reforming device, 2 ... Reaction tube, 3 ... Reforming catalyst layer, 4 ... Fuel cell, 5 ... Combustion catalyst layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀田 孝志 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 中西 誠一 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 (56)参考文献 特開 昭58−196849(JP,A) 特開 昭59−199502(JP,A) 特開 昭58−23168(JP,A) 特開 昭61−106402(JP,A) 特開 昭60−65472(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Kameda 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries Ltd. Kobe factory (72) Seiichi Nakanishi Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo 3-1, 1-1 Kawasaki Heavy Industries, Ltd. Kobe factory (56) Reference JP-A-58-196849 (JP, A) JP-A-59-199502 (JP, A) JP-A-58-23168 (JP, A) ) JP-A 61-106402 (JP, A) JP-A 60-65472 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】天然ガスを主成分とする改質原料ガスを、
改質触媒を充填した燃料改質装置(1)の反応管(2)
に供給するとともに、反応管外部から改質触媒層(3)
を加熱し水蒸気改質して、水素リッチな燃料電池用改質
ガスを製造する水蒸気改質方法において、 改質触媒層(3)入口の改質原料ガス中に酸素または空
気を添加し、原料炭化水素の部分酸化により改質触媒層
(3)内部から加熱して反応場へ直接熱供給するととも
に、燃料電池(4)オフガスを主成分とする低カロリー
ガスを反応管(2)の外周で触媒燃焼させることによ
り、改質触媒層(3)外部から加熱して、負荷増加時で
も燃焼触媒の耐熱限界温度以下で触媒燃焼させることを
特徴とする燃料電池用燃料改質方法。
1. A reforming raw material gas comprising natural gas as a main component,
Reaction tube (2) of fuel reformer (1) filled with reforming catalyst
To the reforming catalyst layer (3) from outside the reaction tube
In the steam reforming method for producing a hydrogen-rich reformed gas for a fuel cell by heating the same to steam-reform it, oxygen or air is added to the reforming raw material gas at the inlet of the reforming catalyst layer (3) to obtain the raw material. Partial oxidation of hydrocarbons heats the inside of the reforming catalyst layer (3) to directly supply heat to the reaction field, and at the same time, a low-calorie gas containing offgas as the main component of the fuel cell (4) at the outer periphery of the reaction tube (2). A fuel reforming method for a fuel cell, characterized in that the catalyst is heated from the outside of the reforming catalyst layer (3) by catalytic combustion, and catalytic combustion is carried out at a temperature not higher than the heat-resistant limit temperature of the combustion catalyst even when the load is increased.
JP63317214A 1988-12-15 1988-12-15 Fuel reforming method for fuel cell Expired - Fee Related JPH0725521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317214A JPH0725521B2 (en) 1988-12-15 1988-12-15 Fuel reforming method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317214A JPH0725521B2 (en) 1988-12-15 1988-12-15 Fuel reforming method for fuel cell

Publications (2)

Publication Number Publication Date
JPH02160602A JPH02160602A (en) 1990-06-20
JPH0725521B2 true JPH0725521B2 (en) 1995-03-22

Family

ID=18085742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317214A Expired - Fee Related JPH0725521B2 (en) 1988-12-15 1988-12-15 Fuel reforming method for fuel cell

Country Status (1)

Country Link
JP (1) JPH0725521B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605404C1 (en) * 1996-02-14 1997-04-17 Daimler Benz Ag Fuel cell system operating method
DE19755813C2 (en) 1997-12-16 2000-09-14 Dbb Fuel Cell Engines Gmbh Process for operating a steam reforming plant, thus operable reforming plant and fuel cell system operating method
DE19755815C2 (en) 1997-12-16 1999-12-09 Dbb Fuel Cell Engines Gmbh Process for steam reforming a hydrocarbon or hydrocarbon derivative, reformer that can be operated with it, and fuel cell operating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415484A (en) * 1982-04-26 1983-11-15 United Technologies Corporation Autothermal reforming catalyst
JPH02111601A (en) * 1988-10-20 1990-04-24 Fuji Electric Co Ltd Fuel modifying device of fuel cell

Also Published As

Publication number Publication date
JPH02160602A (en) 1990-06-20

Similar Documents

Publication Publication Date Title
JP5773240B2 (en) Gas generator and method for converting fuel to low oxygen gas and / or high hydrogen gas
US7438734B2 (en) Direct water vaporization for fuel processor startup and transients
US8397509B2 (en) Catalytic engine
US6929785B2 (en) Method and apparatus for preheating of a fuel cell micro-reformer
US20020114747A1 (en) Fuel processing system and apparatus therefor
JP2003502812A (en) Method for providing a pure hydrogen stream for a fuel cell
JP2010513835A (en) Hybrid combustor for fuel processing applications
JP2010513189A (en) Method for using a catalyst preburner in fuel processing applications
EP1148024A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
US20070065358A1 (en) Catalyst for partial oxidation reforming of fuel and fuel reforming apparatus and method using the catalyst
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP2000191304A (en) Liquid fuel evaporator and reformer for fuel cell using the same
JPH0725521B2 (en) Fuel reforming method for fuel cell
JP2001085039A (en) Fuel cell system
JP2002104808A (en) Method of reforming fuel
JPS63129002A (en) Internal heating fuel reformer
JP2001106513A (en) Fuel reforming device
JP2001115172A (en) Co-reforming apparatus
JP2004010411A (en) Method for starting and operating reforming device
JP2001080906A (en) Gaseous hydrogen generating device
JPH0927338A (en) Fuel cell power generating system
JP2002042851A (en) Fuel cell system
JP2001176533A (en) Fuel cell system and fuelcell cogeneration hot-water supply system
KR100665690B1 (en) Catalyst for partial oxidation reforming of fuel
US20020026748A1 (en) Method and device for generating a hydrogen-rich gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees