JPH07254752A - Optical semiconductor element - Google Patents

Optical semiconductor element

Info

Publication number
JPH07254752A
JPH07254752A JP4455794A JP4455794A JPH07254752A JP H07254752 A JPH07254752 A JP H07254752A JP 4455794 A JP4455794 A JP 4455794A JP 4455794 A JP4455794 A JP 4455794A JP H07254752 A JPH07254752 A JP H07254752A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
optical
semiconductor
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4455794A
Other languages
Japanese (ja)
Inventor
Haruhiko Kuwazuka
治彦 鍬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4455794A priority Critical patent/JPH07254752A/en
Publication of JPH07254752A publication Critical patent/JPH07254752A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable constituting an inversion polarization structure for phase matching which is easy for manufacturing, regarding an optical parametric semiconductor element. CONSTITUTION:The optical semiconductor element is provided with a laminated semiconductor 1 in which a first intrinsic semiconductor layer 1a, an N-type semiconductor layer 1b, a second intrinsic semiconductor layer 1c and a P-type semiconductor layer ld are repeatedly laminated in order. A first depletion layer 2a containing the first intrinsic semiconductor layer 1a and a second depletion layer 2b containing the second intrinsic semiconductor layer 1c are formed. The distance (d) between the nearest depletion layer 2b and depletion layer 2a is set as d=(lambda4).costheta/(nAP-nAS where TRAP is the average refractive index to excited light generated between the two deplation layers, nAS is the average refractive index to a signal light generated between the two deplation layers, and theta is the angle which the excited light and the signal light propagating in the laminated semiconductor 1 form with the normal of the lamination surface of the laminated semiconductor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光励起によりパラメトリ
ック励振する光半導体素子に関する。光励起によりパラ
メトリック励振する素子,例えば光パラメトリック増幅
器は,理論上高S/N比の増幅器を実現できることが明
らかにされている(J. Opt. Soc. Am. B/Vol.4,No.10/Oc
tober 1987 Squeezed States 特集記事を参照) 。ま
た,アイドラ光を用いた波長変換,さらには,アイドラ
光と信号光との位相共役関係を利用したファイバ伝送の
分散の補償等が可能となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device which is parametrically excited by optical excitation. It has been clarified that an element that parametrically excites by optical pumping, such as an optical parametric amplifier, can theoretically realize an amplifier with a high S / N ratio (J. Opt. Soc. Am. B / Vol. 4, No. 10 / Oc
tober 1987 Squeezed States feature article). In addition, wavelength conversion using idler light, and further, dispersion compensation of fiber transmission using the phase conjugate relationship between idler light and signal light can be performed.

【0002】このように,パラメトリック励振する素子
は,従来のレーザ増幅器又は電気的増幅器では実現が難
しかった特性を実現できることから,将来の光応用機器
の飛躍的性能向上をもたらすものと期待されている。
As described above, an element for parametric excitation can realize characteristics that are difficult to realize by a conventional laser amplifier or electric amplifier, and is expected to bring about a dramatic improvement in performance of optical application equipment in the future. .

【0003】とくに,現在通信用に多用されている1.
55μm帯の光パラメトリック増幅器の実現は,高感度
受信機の実現による長距離通信,又は波長多重通信を可
能とすることから強く実現が期待されている。
In particular, it is now widely used for communication.
The realization of an optical parametric amplifier in the 55 μm band is strongly expected because it enables long-distance communication or wavelength-division multiplex communication by realizing a high-sensitivity receiver.

【0004】[0004]

【従来の技術】従来,光励起によりパラメトリック励振
する素子には,絶縁性の誘電体,例えばLiNbO3
はKDP(KH2 PO4 )が用いられていた。しかし,
これらの誘電体は2次の非線型感受率が非常に小さく,
励起光と信号光との相互作用が極めて弱い。このため,
十分な光増幅をするためには,非常に強い励起光と長い
作用域とを必要とし,実用に耐えない。
2. Description of the Related Art Conventionally, an insulating dielectric material such as LiNbO 3 or KDP (KH 2 PO 4 ) has been used for an element which is parametrically excited by optical excitation. However,
These dielectrics have a very low second-order nonlinear susceptibility,
The interaction between the excitation light and the signal light is extremely weak. For this reason,
In order to perform sufficient optical amplification, a very strong excitation light and a long working area are required, which is not practical.

【0005】他方,禁制帯幅が異なる半導体薄膜を積層
した量子井戸構造を有する半導体に電界を印加した状態
で,大きな2次の非線型感受率を生ずることが理論的に
予測されている。従って,誘電体としてかかる量子井戸
構造を有する半導体を用いることで,弱い励起光と短い
作用域とで十分な増幅度が得られる光半導体素子を実現
できると考えられ,これを実現するための構造が提案さ
れている。
On the other hand, it is theoretically predicted that a large second-order nonlinear susceptibility is generated in a state where an electric field is applied to a semiconductor having a quantum well structure in which semiconductor thin films having different forbidden band widths are laminated. Therefore, it is considered that by using a semiconductor having such a quantum well structure as a dielectric, it is possible to realize an optical semiconductor device that can obtain a sufficient amplification degree with weak pumping light and a short working region. Is proposed.

【0006】以下,従来提案された,光励起によりパラ
メトリック励振する光半導体素子の構造を説明する。先
ず,誘電体を用いた光パラメトリック増幅器の構造を説
明する。
The structure of a conventionally proposed optical semiconductor device that is parametrically excited by optical excitation will be described below. First, the structure of an optical parametric amplifier using a dielectric will be described.

【0007】図4は従来例斜視図であり,誘電体を用い
た光パラメトリック増幅器の構造を表している。図4を
参照して,誘電体,例えばLiNbO3 単結晶45の表
面に一定幅のイオン注入領域44が縞状に等間隔に形成
される。さらに,単結晶45表面にイオン注入領域44
に直交する光導波路41が形成されている。この光導波
路41の一端から信号光と励起光とを重畳した入力光4
2を入射し,光導波路41を作用域として光パラメトリ
ック増幅により信号光が増幅され,他端から出力光43
として取り出す。
FIG. 4 is a perspective view of a conventional example and shows the structure of an optical parametric amplifier using a dielectric. Referring to FIG. 4, ion-implanted regions 44 having a constant width are formed in stripes at equal intervals on the surface of a dielectric, for example, a LiNbO 3 single crystal 45. Furthermore, the ion implantation region 44 is formed on the surface of the single crystal 45.
An optical waveguide 41 that is orthogonal to is formed. Input light 4 in which signal light and excitation light are superposed from one end of the optical waveguide 41
2, the signal light is amplified by the optical parametric amplification with the optical waveguide 41 as the working region, and the output light 43 is output from the other end.
Take out as.

【0008】単結晶45中の分極方向46は表面を向く
ように分極させる。一方イオン注入領域44は,イオン
注入に伴い分極方向46が反転する。従って,光導波路
41を進行する光は,縞状のイオン注入領域41の周期
毎に分極方向46が反転した誘電体領域中を透過する。
かかる分極方向の反転を必要とするのは以下の理由によ
る。
The polarization direction 46 in the single crystal 45 is polarized so as to face the surface. On the other hand, in the ion implantation region 44, the polarization direction 46 is reversed with the ion implantation. Therefore, the light propagating in the optical waveguide 41 is transmitted through the dielectric region in which the polarization direction 46 is inverted for each period of the striped ion implantation region 41.
The reason why the polarization direction is required to be inverted is as follows.

【0009】図6は光バラメトリック増幅器の構造説明
図であり,分極反転構造とその作用を表している。図6
(a)は光パラメトリック増幅器の分極構造を表してい
る。一定距離dで分極方向が反転する縞状の分極構造
に,信号光21と励起光23とを重畳して同時に入射す
る。信号光21は励起光23によりパラメトリック励振
され進行途中で増幅される。
FIG. 6 is a structural explanatory view of an optical parametric amplifier, showing a polarization inversion structure and its action. Figure 6
(A) shows the polarization structure of the optical parametric amplifier. The signal light 21 and the pumping light 23 are simultaneously superimposed and incident on a striped polarization structure in which the polarization direction is inverted at a constant distance d. The signal light 21 is parametrically excited by the pumping light 23, and is amplified on the way.

【0010】しかし,誘電体の屈折率分散のため,波長
が異なる信号光21と励起光23とでは屈折率が異な
り,同一距離を進行しても光路差が異なる結果,信号光
21と励起光23とで位相差を生ずる。図6(b)は進
行距離に対する信号光と励起光との位相差を表したもの
である。なお,位相差は信号光の位相を単位としラジア
ンであらわしている。 一様な分極中では,図6(b)
を参照して,進行距離に比例して信号光と励起光との位
相差が大きくなる。その結果,進行距離dにおいて,位
相差はπ/2ラジアン,即ちλs /4となる。ここでλ
s は信号光の波長である。
However, due to the dispersion of the refractive index of the dielectric, the signal light 21 and the pumping light 23 having different wavelengths have different refractive indexes, and the optical path difference is different even if they travel the same distance. A phase difference occurs with 23. FIG. 6B shows the phase difference between the signal light and the excitation light with respect to the traveling distance. The phase difference is expressed in radians with the phase of the signal light as a unit. Figure 6 (b) during uniform polarization
Referring to, the phase difference between the signal light and the pump light increases in proportion to the traveling distance. As a result, at the traveling distance d, the phase difference becomes π / 2 radians, that is, λ s / 4. Where λ
s is the wavelength of the signal light.

【0011】図6(c)はπ/2ラジアンの位相差を生
じた場合の分極の様子を対比したものである。(c−
1)及び(c−3)は,それぞれ位相差0とπ/2のと
きの信号光と励起光の電界強度を,(c−2)及び(c
−4)はそれぞれ位相差0とπ/2のとき,光で励起さ
れる分極の大きさを表している。なお,図6(c)は励
起光の波長が信号光の1/2の場合の例示である。
FIG. 6 (c) is a comparison of polarization states when a phase difference of π / 2 radians is generated. (C-
1) and (c-3) show the electric field strengths of the signal light and the pumping light when the phase difference is 0 and π / 2, respectively (c-2) and (c-2).
-4) represents the magnitude of polarization excited by light when the phase difference is 0 and π / 2, respectively. It should be noted that FIG. 6C is an example when the wavelength of the pumping light is ½ of the signal light.

【0012】図6(c−1)及び(c−3)を参照し
て,信号光21に対して励起光23の位相は信号光のπ
/2だけ遅れる。従って,図6(c−2)及び(c−
4)を参照して,励起光21と信号光の電界強度の和E
の2乗,E2 は,位相がπ遅れる。電界で励起される分
極の大きさは,E2 に比例するから,分極の時間変化も
πだけ遅れる。
Referring to FIGS. 6C-1 and 6C-3, the phase of the pump light 23 with respect to the signal light 21 is π of the signal light.
Delayed by / 2. Therefore, FIGS. 6C-2 and 6C-
4), the sum E of the electric field strengths of the pumping light 21 and the signal light E
The phase of the square of E 2 is delayed by π. Since the magnitude of the polarization excited by the electric field is proportional to E 2 , the time change of the polarization is delayed by π.

【0013】この結果,進行距離dだけ離れた所では,
信号光に対して分極の方向が逆相となり,信号光を減衰
する方向に作用する。反転した縞状の分極構造は,かか
る不都合を解消するためのものである。
As a result, at a place separated by the traveling distance d,
The polarization direction is opposite to that of the signal light, and acts so as to attenuate the signal light. The inverted striped polarization structure is for eliminating such inconvenience.

【0014】即ち,反転した分極構造は,図6(b)を
参照して,信号光と励起光との位相差がπ/2に達する
距離dの幅を持つ縞状に構成される。従って,位相差が
π/2の2点では必ず分極方向が逆になる。このように
分極方向が逆のとき,2次の非線型感受率の符合は反転
し,電界で励起される分極の大きさは正負反対になる。
即ち位相をπだけ進めたと同様になり,電界で励起され
る分極と信号光との位相差は消滅する。このため,信号
光と励起光との位相差を生じても,導波路に沿い続けて
増幅することができる。
That is, the inverted polarization structure is formed in a striped pattern having a width of a distance d at which the phase difference between the signal light and the pump light reaches π / 2 with reference to FIG. 6B. Therefore, the polarization directions are always opposite at the two points where the phase difference is π / 2. In this way, when the polarization directions are opposite, the sign of the second-order nonlinear susceptibility is reversed, and the magnitude of the polarization excited by the electric field is the opposite of positive and negative.
That is, the phase is advanced by π, and the phase difference between the polarization excited by the electric field and the signal light disappears. Therefore, even if there is a phase difference between the signal light and the pump light, it is possible to continue amplification along the waveguide.

【0015】かかる事情は,半導体を用いた装置でも同
様である。図5は従来例断面図であり,半導体を用いた
光パラメトリック増幅器の構造を表している。なお,図
5(a)はその一例であり,図5(b)はさらに改良さ
れた例である。
The same applies to the device using the semiconductor. FIG. 5 is a cross-sectional view of a conventional example, showing the structure of an optical parametric amplifier using a semiconductor. Note that FIG. 5 (a) is an example thereof, and FIG. 5 (b) is a further improved example.

【0016】図5(a)を参照して,上下に半導体から
なる電界印加層47が設けられた光導波路41を,半導
体基板49上に形成する。光導波路41は量子井戸構造
の半導体からなり,電界の印加により分極し,大きな2
次の非線型感受率を有する。電界印加層47は,光導波
路41に沿ってn型領域とp型領域とが交互に等間隔に
配置された半導体層であって,上下の電界印加層47
は,そのn型及びp型領域が互いに反対導電型の領域に
対向するようにこれらの領域が形成される。又,n型及
びp型領域のそれぞれに接続する2の配線48が設けら
れる。
Referring to FIG. 5A, an optical waveguide 41 having an electric field applying layer 47 made of a semiconductor provided on the upper and lower sides is formed on a semiconductor substrate 49. The optical waveguide 41 is made of a semiconductor having a quantum well structure and is polarized by the application of an electric field.
It has the following non-linear susceptibility. The electric field applying layer 47 is a semiconductor layer in which n-type regions and p-type regions are alternately arranged at equal intervals along the optical waveguide 41.
These regions are formed such that the n-type and p-type regions face regions of opposite conductivity type. Also, two wirings 48 are provided which are connected to the n-type and p-type regions, respectively.

【0017】この素子では,光導波路41の上下に対向
するn型領域とp型領域との間に電圧を加え,光導波路
41中に上下方向の電界を発生させる。この電界は,n
型領域とp型領域との縞状領域の間隔に応じて反転する
から,図6(a)に示す反転した分極領域が光路に沿っ
て縞状に並ぶ分極構造が実現する。従って,n型領域と
p型領域との幅を,信号光と励起光との位相差がπ/2
とすることで,光パラメトリック増幅をすることができ
る。
In this element, a voltage is applied between the n-type region and the p-type region facing the upper and lower sides of the optical waveguide 41 to generate an electric field in the vertical direction in the optical waveguide 41. This electric field is n
Since the inversion occurs depending on the distance between the striped regions of the mold region and the p-type region, a polarization structure in which the inverted polarization regions are arranged in stripes along the optical path as shown in FIG. 6A is realized. Therefore, the width between the n-type region and the p-type region is set so that the phase difference between the signal light and the pump light is π / 2.
By doing so, optical parametric amplification can be performed.

【0018】しかし,光導波路41を電界印加層47の
上に形成することは,結晶性,不純物分布の観点からみ
て,製作が極めて困難である。さらに,下側の電界印加
層47と接続する配線48を形成することも容易ではな
い。そのため,容易に製造できるように改良された構造
が考案された。
However, it is extremely difficult to form the optical waveguide 41 on the electric field applying layer 47 from the viewpoint of crystallinity and impurity distribution. Further, it is not easy to form the wiring 48 connected to the lower electric field application layer 47. Therefore, an improved structure was devised so that it could be easily manufactured.

【0019】図5(b)を参照して,改良された構造で
は,下側の電界印加層47を設けない。そして電界は,
光導波路41上の電界印加層47中の各p,n領域と基
板49との間に印加した電位により発生させる。
With reference to FIG. 5B, in the improved structure, the lower electric field applying layer 47 is not provided. And the electric field is
It is generated by the potential applied between the p and n regions in the electric field applying layer 47 on the optical waveguide 41 and the substrate 49.

【0020】この構造は,製作は容易になる。しかし,
基板49を一方の電極として利用するため,基板49は
導電性,例えばn型でなければならない。その結果,基
板49と逆導電型のp型領域には,小さな電位を印加し
ても大きな電界を生ずるが,他方,基板49と同じ導電
型のn型領域には,大きな電位を印加しなければ必要な
電界が光導波路41内に発生しない。かかる事情から実
際上,必要な耐圧を有する構造を持つ素子を実現するこ
とは難しかった。
This structure is easy to manufacture. However,
In order to utilize the substrate 49 as one of the electrodes, the substrate 49 must be conductive, for example n-type. As a result, a large electric field is generated in the p-type region having the opposite conductivity type to the substrate 49 even if a small potential is applied, while a large potential is applied to the n-type region having the same conductivity type as the substrate 49. If so, the necessary electric field is not generated in the optical waveguide 41. Under such circumstances, it was practically difficult to realize an element having a structure having a required breakdown voltage.

【0021】上述したように,光励起のパラメトリック
励振を利用する光素子に半導体を用いることは極めて難
しい。さらに,上述した素子は,表面に形成された反転
した分極構造を利用することから,表面近くに形成され
た光導波路を必要とし,3次元の光学系を構成すのに適
当ではない。
As described above, it is extremely difficult to use a semiconductor for an optical device that utilizes parametric excitation of optical excitation. Furthermore, since the above-mentioned device utilizes the inverted polarization structure formed on the surface, it requires an optical waveguide formed near the surface and is not suitable for constructing a three-dimensional optical system.

【0022】[0022]

【発明が解決しようとする課題】上述したように,誘電
体表面に光導波路及び分極の反転した領域を形成する従
来の光励起でパラメトリック励振する光素子は,強い励
起光と長い作用域を必要とするという問題がある。
As described above, the conventional optical device for forming an optical waveguide and a region where the polarization is inverted on the dielectric surface, which is parametrically excited by photoexcitation, requires strong excitation light and a long working range. There is a problem of doing.

【0023】また,半導体を利用する光半導体素子で
は,反転した分極構造を発生させるための構造が,素子
製作を難しくするという欠点がある。さらに,これらの
光素子は表面の光導波路を利用するため,3次元の光学
系の構成に適さないという欠点もある。
Further, in an optical semiconductor device using a semiconductor, the structure for generating an inverted polarization structure has a drawback that the device fabrication is difficult. Further, since these optical elements utilize the optical waveguide on the surface, there is a drawback that they are not suitable for the construction of a three-dimensional optical system.

【0024】本発明は,p層及びn層を交互に含む半導
体層を積層し,そのp層とn層との間に生ずる空乏層中
の電界を利用して分極するもので,半導体の堆積により
容易に製造でき,また半導体を用いて弱い励起光と短い
作用域で動作し,さらに半導体表面から入射する光を取
り扱える構造を有し,光励起でパラメトリック励振する
光半導体素子を提供することを目的としている。
According to the present invention, semiconductor layers including alternating p-layers and n-layers are stacked and polarized by utilizing the electric field in the depletion layer generated between the p-layers and the n-layers. To provide an optical semiconductor device that can be easily manufactured by using a semiconductor, has a structure that can operate in a short action region and weak excitation light using a semiconductor, and can handle light incident from the semiconductor surface, and that is parametrically excited by optical excitation. I am trying.

【0025】[0025]

【課題を解決するための手段】図1は本発明の原理説明
図であり,図1(a)は,積層半導体の一部分の断面と
励起光及び信号光の進行方向とを表している。図1
(b)は,図1(a)中のAB間の積層半導体のエネル
ギーバンド構造を表している。なお,図中,EC V
F はそれぞれ伝導帯下端,価電子帯上端,及びフェルミ
エネルギを表している。
FIG. 1 illustrates the principle of the present invention.
FIG. 1A is a cross-sectional view of a part of the laminated semiconductor and FIG.
The traveling directions of the excitation light and the signal light are shown. Figure 1
(B) is the energy of the laminated semiconductor between AB in FIG. 1 (a).
It represents the geeband structure. In the figure, ECE VE
FIs the conduction band bottom, valence band top, and Fermi, respectively.
It represents energy.

【0026】図2は本発明の実施例断面図であり,図2
(a)は第一実施例に係る光パラメトリック増幅器の構
造を表している。上記課題を解決するために,図1を参
照して,本発明の第一の構成は,励起光及び波長λの信
号光を重畳して入射しパラメトリック励振する光半導体
素子において,該励起光及び該信号光に対して透明な第
一の真性半導体層1a,n型半導体層1b,該励起光及
び該信号光に対して透明な第二の真性半導体層1c及び
p型半導体層1dが,この順に複数回繰り返し積層され
て構成された積層半導体1を有し,該第一の真性半導体
層1aの下に接する該p型半導体層1dと,該第一の真
性半導体層1aの上に接する該n型半導体層1bとの間
に第一の空乏層2aが形成され,該第二の真性半導体層
1cの下に接する該n型半導体層1bと,該第二の真性
半導体層1cの上に接する該p型半導体層1dとの間に
第二の空乏層2bが形成され,該空乏層2a,2b上面
から最近接の該空乏層2b,2a上面に至る距離dは,
その間の該励起光に対する平均屈折率をnAP,その間の
該信号光に対する平均屈折率をnAS,並びに該積層半導
体1中を伝播する該励起光及び該信号光が該積層半導体
1の積層面の法線となす角をθとして, d=(λ/4)・sinθ/(nAP−nAS) であることを特徴として構成し,及び,第二の構成は,
第一の構成の光半導体素子において,該第一の真性半導
体層1a及び該第二の真性半導体層1cは,禁制帯幅の
異なる半導体薄膜を積層して構成された量子井戸構造を
有することを特徴として構成し,及び,第三の構成は,
第一又は第二の構成の光半導体素子において,該n型半
導体層1b及び該p型半導体層1dは,該n型半導体層
1b及び該p型半導体層1dが空乏化する厚さであるこ
とを特徴として構成し,及び,第四の構成は,第一,第
二意又は第三の構成の光半導体素子において,該n型半
導体層1b及び該p型半導体層1dのうち少なくとも一
方は,該第一の真性半導体層1a及び該第二の真性半導
体層1cよりも大きな禁制帯幅を有することを特徴とし
て構成し,及び,第五の構成は,図2(a)を参照し
て,第一,第二,第三又は第四の構成の光半導体素子に
おいて,該積層半導体1は,該励起光を透過し該信号光
を反射する反射層3上に設けられることを特徴として構
成する。
FIG. 2 is a sectional view of an embodiment of the present invention.
(A) shows the structure of the optical parametric amplifier according to the first embodiment. In order to solve the above-mentioned problems, referring to FIG. 1, the first configuration of the present invention is an optical semiconductor device in which pumping light and signal light having a wavelength λ are superposed and incident to perform parametric excitation. The first intrinsic semiconductor layer 1a transparent to the signal light, the n-type semiconductor layer 1b, the second intrinsic semiconductor layer 1c transparent to the excitation light and the signal light, and the p-type semiconductor layer 1d are The laminated semiconductor 1 is formed by repeatedly stacking a plurality of times in order, and the p-type semiconductor layer 1d that is in contact with the first intrinsic semiconductor layer 1a is in contact with the p-type semiconductor layer 1d that is in contact with the first intrinsic semiconductor layer 1a. A first depletion layer 2a is formed between the n-type semiconductor layer 1b and the n-type semiconductor layer 1b which is in contact with the second intrinsic semiconductor layer 1c and above the second intrinsic semiconductor layer 1c. A second depletion layer 2b is formed between the contacting p-type semiconductor layer 1d and the p-type semiconductor layer 1d. Layer 2a, the depletion layer 2b nearest from 2b top, the distance d that leads to 2a top,
An average refractive index for the excitation light during that period is n AP , an average refractive index for the signal light during that period is n AS , and the excitation light and the signal light propagating in the laminated semiconductor 1 are laminated surfaces of the laminated semiconductor 1. The angle formed with the normal of is θ, and d = (λ / 4) · sin θ / (n AP −n AS ), and the second configuration is
In the optical semiconductor device having the first structure, the first intrinsic semiconductor layer 1a and the second intrinsic semiconductor layer 1c have a quantum well structure formed by stacking semiconductor thin films having different forbidden band widths. As a feature, and the third configuration is
In the optical semiconductor element having the first or second configuration, the n-type semiconductor layer 1b and the p-type semiconductor layer 1d have a thickness such that the n-type semiconductor layer 1b and the p-type semiconductor layer 1d are depleted. And a fourth configuration is an optical semiconductor device of the first, second or third configuration, wherein at least one of the n-type semiconductor layer 1b and the p-type semiconductor layer 1d is The first intrinsic semiconductor layer 1a and the second intrinsic semiconductor layer 1c are characterized by having a larger forbidden band width, and the fifth constitution is described with reference to FIG. In the optical semiconductor element having the first, second, third or fourth configuration, the laminated semiconductor 1 is characterized in that it is provided on a reflective layer 3 which transmits the excitation light and reflects the signal light. .

【0027】[0027]

【作用】本発明の第一の構成では,図1(a)を参照し
て,真性半導体層1a,1cを挟んでn型半導体層1b
とp型半導体層1dとが交互に積層されている。このた
め真性半導体1a,1cを挟むpn接合が形成され,図
1(b)を参照して,真性半導体層1a,1cのエネル
ギーバンドは傾斜し,真性半導体層1a,1cは空乏化
する。
In the first structure of the present invention, referring to FIG. 1A, the n-type semiconductor layer 1b is sandwiched by the intrinsic semiconductor layers 1a and 1c.
And p-type semiconductor layers 1d are alternately stacked. Therefore, pn junctions sandwiching the intrinsic semiconductors 1a and 1c are formed, and referring to FIG. 1B, the energy bands of the intrinsic semiconductor layers 1a and 1c are inclined and the intrinsic semiconductor layers 1a and 1c are depleted.

【0028】この空乏化した真性半導体層1a,1c中
に発生する電界により,真性半導体層は分極される。空
乏層中の電界は,n型半導体層1bからp型半導体層1
dの方向へ向くから,図1(a)を参照して,分極の方
向は,第一の真性半導体層1a中では下向きに,第二の
真性半導体層1c中では上向きになる。従って,積層半
導体1中に,真性半導体層1a,1cの設置周期で反転
する層状の分極層から構成された分極構造が形成され
る。
The electric field generated in the depleted intrinsic semiconductor layers 1a and 1c polarizes the intrinsic semiconductor layers. The electric field in the depletion layer changes from the n-type semiconductor layer 1b to the p-type semiconductor layer 1b.
Since it is oriented in the direction of d, referring to FIG. 1A, the polarization direction is downward in the first intrinsic semiconductor layer 1a and upward in the second intrinsic semiconductor layer 1c. Therefore, in the laminated semiconductor 1, there is formed a polarization structure composed of layered polarization layers which are inverted at the installation period of the intrinsic semiconductor layers 1a and 1c.

【0029】この分極層は,空乏層中の電界により半導
体が分極されて生じたもので,空乏層間の距離dで等間
隔に平行に形成される。なお,後述するようにp型及び
n型半導体層1b,1dを真性半導体層1a,1cに比
べて薄くすることが好ましい。このとき距離dは真性半
導体層1a,1c間の距離に実質的に等しい。
The polarization layer is generated by the polarization of the semiconductor by the electric field in the depletion layer, and is formed in parallel at equal distances d between the depletion layers. Note that it is preferable to make the p-type and n-type semiconductor layers 1b and 1d thinner than the intrinsic semiconductor layers 1a and 1c, as described later. At this time, the distance d is substantially equal to the distance between the intrinsic semiconductor layers 1a and 1c.

【0030】積層半導体1の上面から入射光42として
入射された励起光及び信号光は,それぞれの電界が積層
半導体1中で重畳して分極を引き起こし,パラメトリッ
ク励振による信号光の増幅,変調等がなされる。
The excitation light and the signal light incident as the incident light 42 from the upper surface of the laminated semiconductor 1 are superposed in the laminated semiconductor 1 to cause polarization, and the amplification and modulation of the signal light due to parametric excitation are caused. Done.

【0031】積層半導体1中における,励起光の屈折率
P と信号光の屈折率nS は異なるから,層状の分極構
造の一層から次の反転した分極層まで伝播する間に, Δ=∫(nP −nS )ds, の光路差Δを生ずる。ここで,積分は分極層間距離を通
過する伝播経路に沿ってなされる。
Since the refractive index n P of the excitation light and the refractive index n S of the signal light in the laminated semiconductor 1 are different, Δ = ∫ while propagating from one layer of the layered polarization structure to the next inverted polarization layer. An optical path difference Δ of (n P −n S ) ds, is generated. Here, the integration is performed along the propagation path that passes through the polarization interlayer distance.

【0032】本構成では,該積層半導体1の積層面への
入射角θで入射する,即ち分極層へ入射角θで入射する
励起光及び信号光の分極層間の平均屈折率, nAP=(1/d)・∫nP ・cosθ・ds, nAS=(1/d)・∫nS ・cosθ・ds, を用いて,空乏層間隔dが,
In the present configuration, the average refractive index between the polarization layers of the excitation light and the signal light that is incident on the laminated surface of the laminated semiconductor 1 at the incident angle θ, that is, is incident on the polarized layer at the incident angle θ, n AP = ( 1 / d) · ∫n P · cosθ · ds, n AS = (1 / d) · ∫n S · cosθ · ds, the depletion layer spacing d is

【0033】[0033]

【数1】d=(λ/4)・cosθ/(nAP−nAS) なる関係を満たすように,積層半導体1を構成する。こ
の条件ではΔ=λ/4となる。ここでλは信号光の積層
半導体中の波長である。なお,波長λは屈折率により変
わるが,ここでのλ/4は,位相差がπ/2ラジアンで
あるという意味である。
## EQU1 ## The laminated semiconductor 1 is configured so as to satisfy the relationship of d = (λ / 4) · cos θ / (n AP −n AS ). Under this condition, Δ = λ / 4. Here, λ is the wavelength of the signal light in the laminated semiconductor. The wavelength λ varies depending on the refractive index, and λ / 4 here means that the phase difference is π / 2 radians.

【0034】従って,分極が上向き又は下向きの分極層
で増幅等された信号光は,次の逆向きに分極した分極層
に入射するとき,励起光と信号光との位相が反転する関
係になる。一方入射する分極層の分極方向も反転するた
め,上層で反転した位相が補償され,上層の増幅等に続
けて増幅等が行われる。
Therefore, when the signal light amplified by the polarization layer having the upward or downward polarization is incident on the next polarization layer polarized in the opposite direction, the phases of the excitation light and the signal light are inverted. . On the other hand, since the polarization direction of the incident polarization layer is also inverted, the inverted phase is compensated in the upper layer, and the amplification and the like are performed subsequently to the amplification and the like of the upper layer.

【0035】既述のように,空乏層はpn接合により生
ずるから,分極層の間隔を決定する空乏層間隔dは,真
性半導体層1a,1cの厚さ,p型及びn型半導体層の
厚さと不純物濃度,並びに,これらの層のエネルギバン
ド構造に依存する。
As described above, since the depletion layer is formed by the pn junction, the depletion layer distance d that determines the distance between the polarization layers is determined by the thickness of the intrinsic semiconductor layers 1a and 1c, the thickness of the p-type and n-type semiconductor layers. And the concentration of impurities and the energy band structure of these layers.

【0036】良く知られているように,これらの厚さ,
濃度,エネルギバンド構造は,半導体層を堆積して製造
することで,精密に製造することができる。例えば分子
線エピタキシャル法,有機金属気相堆積法,原子層一層
ごとに堆積する気相成長法,さらには通常の気相成長法
により,容易に精密な厚さの層を重畳して堆積すること
ができる。
As is well known, these thicknesses,
The concentration and energy band structure can be precisely manufactured by depositing and manufacturing a semiconductor layer. For example, a molecular beam epitaxial method, a metal organic vapor phase deposition method, a vapor phase growth method in which each atomic layer is deposited, and an ordinary vapor phase growth method can be used to easily superimpose layers with precise thicknesses. You can

【0037】さらに,本構成では,分極構造を製作する
ためには,特別な拡散領域の形成或いは表面加工の必要
もなく,上記のように半導体層を精密に堆積することで
足りるから,製作工程は簡単であり,しかも精密な構造
とすることができる。
Further, in the present structure, in order to manufacture the polarized structure, it is not necessary to form a special diffusion region or surface processing, and it is sufficient to precisely deposit the semiconductor layer as described above. Is simple and can have a precise structure.

【0038】なお,本構成において,第一の真性半導体
層1aと第二の真性半導体層1cとは必ずしも同じ厚さ
である必要はない。また空乏層間距離dも異なることが
ある。かかる場合であっても,平均屈折率とdとが上記
1式を満たす構造の積層半導体であれはよい。
In this configuration, the first intrinsic semiconductor layer 1a and the second intrinsic semiconductor layer 1c do not have to have the same thickness. The depletion layer distance d may also be different. Even in such a case, a laminated semiconductor having a structure in which the average refractive index and d satisfy the above formula 1 may be used.

【0039】本構成では,真性半導体層1a,1cは励
起光及び信号光に対して透明な禁制帯幅の広い半導体か
ら構成される。他方,n型及びp型半導体層1b,1d
は,通常は真性半導体層1a,1cに比べて薄いから,
多少の吸収があっても,積層半導体1中を通過する励起
光及び信号光の吸収は実質的に問題とならない。
In this structure, the intrinsic semiconductor layers 1a and 1c are made of a semiconductor having a wide band gap which is transparent to the excitation light and the signal light. On the other hand, the n-type and p-type semiconductor layers 1b and 1d
Is usually thinner than the intrinsic semiconductor layers 1a and 1c,
Even if there is some absorption, absorption of the excitation light and the signal light passing through the laminated semiconductor 1 does not substantially pose a problem.

【0040】本発明の第二の構成では,真性半導体層1
a,1cは,禁制帯幅の異なる半導体薄膜を積層した量
子井戸構造のエネルギバンドを有する層を含む。かかる
量子井戸構造を有する半導体は,公知のように非常に大
きな2次の非線型感受率を有する。従って,本構成の光
半導体素子は,弱い励起光により十分に励起され,また
短い作用域でも十分に増幅等がなされるから素子を小型
にすることができる。
In the second configuration of the present invention, the intrinsic semiconductor layer 1
Each of a and 1c includes a layer having an energy band of a quantum well structure in which semiconductor thin films having different forbidden band widths are stacked. A semiconductor having such a quantum well structure has a very large second-order nonlinear susceptibility as is known. Therefore, the optical semiconductor device of this configuration is sufficiently excited by weak excitation light, and is sufficiently amplified even in a short working range, so that the device can be downsized.

【0041】なお,かかる薄層を積層した量子井戸構造
の半導体であっても,本構成では半導体層の堆積工程の
みで簡単に製造することができる。本発明の第三の構成
では,n型半導体層1b及びp型半導体層1dは,その
厚さ全体が空乏化する薄い層とする。これによりn型及
びp型半導体層1b,1d中のキャリアは出払うから,
光吸収が少なく損失の小さな光半導体素子が実現され
る。
Even in the case of a semiconductor having a quantum well structure in which such thin layers are laminated, this structure can be easily manufactured only by the step of depositing the semiconductor layer. In the third configuration of the present invention, the n-type semiconductor layer 1b and the p-type semiconductor layer 1d are thin layers whose entire thickness is depleted. As a result, carriers in the n-type and p-type semiconductor layers 1b and 1d are ejected,
An optical semiconductor device with low light absorption and low loss is realized.

【0042】本発明の第四の構成では,n型及びp型半
導体層1b,1dの一方又は両方を真性半導体層1a,
1cよりも大きな禁制帯幅の半導体から構成する。この
構成では,励起光及び信号光のn型及びp型半導体層1
b,1dにおける吸収が小さい。
In the fourth structure of the present invention, one or both of the n-type and p-type semiconductor layers 1b and 1d is used as the intrinsic semiconductor layer 1a,
It is composed of a semiconductor having a forbidden band width larger than 1c. In this configuration, the n-type and p-type semiconductor layers 1 for pumping light and signal light are
Absorption at b and 1d is small.

【0043】さらに,エネルギバンドの傾斜が大きくな
るから,n型及びp型半導体層1b,1dが空乏化し易
い。このため,n型及びp型半導体層1b,1dを厚く
することで,不純物濃度が同じでも空乏層の電界を大き
くすることができる。
Further, since the inclination of the energy band becomes large, the n-type and p-type semiconductor layers 1b and 1d are easily depleted. Therefore, by increasing the thickness of the n-type and p-type semiconductor layers 1b and 1d, the electric field of the depletion layer can be increased even if the impurity concentration is the same.

【0044】本発明の第五の構成では,図2(a)を参
照して,パラメトリック励振が行われる積層半導体1層
の下に,該励起光を透過し該信号光を反射する反射層3
を設ける。
In the fifth configuration of the present invention, referring to FIG. 2A, a reflection layer 3 which transmits the excitation light and reflects the signal light is provided below the laminated semiconductor 1 layer in which parametric excitation is performed.
To provide.

【0045】積層半導体1の上面から入射した励起光と
信号光とは,反射層3で信号光のみが反射され,再び積
層半導体1上面から出力信号光22として出射される。
他方,励起光は,反射層3を透過し,反射する信号光2
2と分離される。
With respect to the excitation light and the signal light incident from the upper surface of the laminated semiconductor 1, only the signal light is reflected by the reflective layer 3, and the signal light 22 is emitted again from the upper surface of the laminated semiconductor 1.
On the other hand, the excitation light passes through the reflection layer 3 and is reflected by the signal light 2
Separated from 2.

【0046】この構成は,積層半導体1の反射光を取り
扱えば足りるので,反射層3と積層半導体1との堆積だ
けで製造することができ,素子構造が単純で製造し易い
という利点がある。また,出力信号光22に励起光23
を含まないので,本構成に係る光半導体素子を光学素子
として使用するに便宜である。
Since this structure needs only to handle the reflected light of the laminated semiconductor 1, it can be manufactured only by depositing the reflective layer 3 and the laminated semiconductor 1, and has an advantage that the element structure is simple and easy to manufacture. In addition, the pumping light 23 is added to the output signal light 22.
Therefore, it is convenient to use the optical semiconductor element according to this configuration as an optical element.

【0047】なお,上述した本発明の構成は,表面導波
路等の表面を伝播させる手段を必要としない。従って,
本発明に係る素子は,通常の立体的な光部品と同様に使
用でき,3次元の光学系を組むのに便宜である。
The above-described configuration of the present invention does not require a means for propagating the surface such as a surface waveguide. Therefore,
The device according to the present invention can be used in the same manner as an ordinary three-dimensional optical component and is convenient for constructing a three-dimensional optical system.

【0048】[0048]

【実施例】本発明を実施例を参照して説明する。第一実
施例は,アイドラ光と信号光との波長が同一の縮退パラ
メトリック増幅器に関する。以下,その製造とその使用
方法を説明する。
EXAMPLES The present invention will be described with reference to examples. The first embodiment relates to a degenerate parametric amplifier in which the idler light and the signal light have the same wavelength. The production and use of the method will be described below.

【0049】図2(a)を参照して,MBE法(分子線
エピタキシャル法)により,n型GaAs基板4上に半
導体の多層膜からなる反射層3を堆積する。この反射層
3は,半導体層1中を伝播し,入射角θで反射層3に入
射する入射光42のうち,波長λの信号光を反射し,波
長λ/2の励起光を透過する反射型フィルターを構成す
る。
Referring to FIG. 2A, a reflective layer 3 made of a semiconductor multilayer film is deposited on an n-type GaAs substrate 4 by the MBE method (molecular beam epitaxial method). The reflection layer 3 reflects the signal light of the wavelength λ and transmits the excitation light of the wavelength λ / 2 of the incident light 42 that propagates in the semiconductor layer 1 and enters the reflection layer 3 at the incident angle θ. Form a type filter.

【0050】次いで,反射層3上に,MBE法により積
層半導体1を堆積する。積層半導体1は,図1(a)を
参照して,第一の真性半導体層1a,n型半導体層1
b,第二の真性半導体層1c及びp型半導体層1dが,
この順に堆積された上記4層を単位として50単位繰り
返されている。
Next, the laminated semiconductor 1 is deposited on the reflective layer 3 by the MBE method. As shown in FIG. 1A, the laminated semiconductor 1 includes a first intrinsic semiconductor layer 1a and an n-type semiconductor layer 1
b, the second intrinsic semiconductor layer 1c and the p-type semiconductor layer 1d are
Fifty units are repeated with the four layers deposited in this order as a unit.

【0051】第一の真性半導体層1a及び第二の真性半
導体層1bは,厚さ5nmのAlAsの障壁層と厚さ5nm
のAlGaAsの井戸層とを交互に堆積したもので,1
5層の井戸層と14層の障壁層から構成される。かかる
真性半導体層1a,1bの伝導電子濃度は,例えば1×
1015cm-3である。
The first intrinsic semiconductor layer 1a and the second intrinsic semiconductor layer 1b are composed of a barrier layer of AlAs having a thickness of 5 nm and a thickness of 5 nm.
AlGaAs well layers are alternately deposited.
It is composed of 5 well layers and 14 barrier layers. The conduction electron concentration of the intrinsic semiconductor layers 1a and 1b is, for example, 1 ×
It is 10 15 cm -3 .

【0052】n型半導体層1bは,第一の真性半導体層
1a上に堆積された,厚さ5nmのn型AlAs層からな
り,その伝導電子濃度は例えば4×1018cm-3である。
p型半導体層1dは,第二の真性半導体層1a上に堆積
された,厚さ5nmのp型AlAs層からなり,その正孔
濃度は例えば4×1018cm-3である。かかるp型及びn
型半導体層1b,1dは,層全体が空乏化する。
The n-type semiconductor layer 1b is an n-type AlAs layer with a thickness of 5 nm deposited on the first intrinsic semiconductor layer 1a, and the conduction electron concentration thereof is, for example, 4 × 10 18 cm -3 .
The p-type semiconductor layer 1d is formed of a p-type AlAs layer with a thickness of 5 nm deposited on the second intrinsic semiconductor layer 1a, and its hole concentration is, for example, 4 × 10 18 cm −3 . Such p-type and n
The entire type semiconductor layers 1b and 1d are depleted.

【0053】図3は本発明の実施例光増幅器であり,第
一実施例に係る光半導体素子を用いたパラメトリック光
増幅器の構成を表している。図2(a)及び図3を参照
して,波長1.55μmの信号光と,波長0.775μ
mの励起光を,3方向カプラ7を用いて重畳し,入射光
42とし,積層半導体1表面に入射する。
FIG. 3 shows an optical amplifier according to an embodiment of the present invention, and shows the configuration of a parametric optical amplifier using the optical semiconductor device according to the first embodiment. Referring to FIGS. 2A and 3, the signal light having a wavelength of 1.55 μm and the wavelength of 0.775 μm
The excitation light of m is superposed by using the three-way coupler 7 to be incident light 42, which is incident on the surface of the laminated semiconductor 1.

【0054】当初,入射角を略88°に設定し,出力信
号光22の強度を観測しつつ,基板4を入射面に垂直な
回転軸回りに回転させ、入射角が数1を満たして,出力
信号光22の強度が最大となる入射角に設定する。
Initially, the incident angle was set to about 88 °, and while observing the intensity of the output signal light 22, the substrate 4 was rotated around the rotation axis perpendicular to the incident surface, and the incident angle satisfied the formula 1, The incident angle is set to maximize the intensity of the output signal light 22.

【0055】本実施例では,積層半導体1の構造におい
て,空乏層間距離d又は屈折率の絶対値が設計値からず
れていても,入射角の微調整により簡単に最適条件に設
定することができる。さらに,設計値と異なる波長の信
号光に対しても入射角を変更するだけで容易に適用する
ことができる。
In the present embodiment, in the structure of the laminated semiconductor 1, even if the depletion interlayer distance d or the absolute value of the refractive index deviates from the design value, it is possible to easily set the optimum condition by fine adjustment of the incident angle. . Furthermore, it can be easily applied to signal light having a wavelength different from the designed value by simply changing the incident angle.

【0056】なお,第一実施例において,AlAsに代
えてAlInP,AlGaAsに代えてGaInPとす
ることができる。これにより,1.55μmより短波長
の信号光,例えば波長1.3μmの信号光の増幅等をす
ることができる。
In the first embodiment, AlAs may be replaced by AlInP, and AlGaAs may be replaced by GaInP. As a result, signal light having a wavelength shorter than 1.55 μm, for example, signal light having a wavelength of 1.3 μm can be amplified.

【0057】本発明の第二実施例は,透過型のパラメト
リック増幅器に関する。図2(b)は本発明の第二実施
例に係る光パラメトリック増幅器の構造を表している。
The second embodiment of the present invention relates to a transmission type parametric amplifier. FIG. 2B shows the structure of the optical parametric amplifier according to the second embodiment of the present invention.

【0058】先ず,図2(b)を参照して,絶縁性Ga
As基板4上に,第一実施例と同じ積層半導体1を同様
の方法により堆積する。次いで,基板4の裏面(積層半
導体1が堆積されていない面。)の中央部を,異方性エ
ッチングして断面台形状の窪み6を形成する。その結
果,積層半導体1は,周囲を基板1から形成された枠上
に固定され,中央部の下面にエッチングで薄片化された
基板1が付着する。この薄片化した基板は,エッチング
の際に積層半導体1を保護するために残される。
First, referring to FIG. 2B, the insulating Ga
The same laminated semiconductor 1 as that of the first embodiment is deposited on the As substrate 4 by the same method. Next, the central portion of the back surface of the substrate 4 (the surface on which the laminated semiconductor 1 is not deposited) is anisotropically etched to form a recess 6 having a trapezoidal cross section. As a result, the laminated semiconductor 1 has its periphery fixed on a frame formed from the substrate 1, and the substrate 1 thinned by etching adheres to the lower surface of the central portion. The thinned substrate is left to protect the laminated semiconductor 1 during etching.

【0059】励起光と信号光とは,重畳して入射光42
とし,積層半導体1表面から入射し,窪み6の上面に残
された薄片化された基板1を透過し,基板1の下方に射
出される。入射角の調整は第一実施例と同様である。
The pumping light and the signal light are superimposed on each other to make incident light 42
Then, the light enters from the surface of the laminated semiconductor 1, passes through the thinned substrate 1 left on the upper surface of the recess 6, and is emitted below the substrate 1. The adjustment of the incident angle is the same as in the first embodiment.

【0060】本実施例では,透過型のため,立体の光学
系を組むのに便利である。なお,本実施例の出力光は,
信号光の他励起光を含んでいる。この出力光中の励起光
を減少するために,薄片化された基板を,信号光を透過
しかつ励起光を吸収する半導体から形成することができ
る。例えば,基板の表面にかかる吸収特性を有するエピ
タキシャル層を堆積したのち,積層半導体1を堆積して
よい。さらに,この基板よりも大きな禁制帯幅を有する
エピタキシャル層をエッチングのストッパとすることも
できる。
In this embodiment, since it is a transmission type, it is convenient to construct a three-dimensional optical system. The output light of this embodiment is
It contains pumping light in addition to signal light. In order to reduce the excitation light in this output light, the sliced substrate can be formed from a semiconductor that transmits the signal light and absorbs the excitation light. For example, the laminated semiconductor 1 may be deposited after depositing an epitaxial layer having such absorption characteristics on the surface of the substrate. Further, an epitaxial layer having a forbidden band width larger than that of this substrate can be used as an etching stopper.

【0061】[0061]

【発明の効果】上述したように,本発明によれば,反転
した分極を有する分極層の積層構造を,半導体の積層に
より構成する。従って,製造が容易な光半導体素子を実
現することができる。
As described above, according to the present invention, the laminated structure of the polarized layers having the inverted polarization is constituted by the laminated semiconductor. Therefore, an optical semiconductor device that is easy to manufacture can be realized.

【0062】また,2次の非線型感受率の大きな量子井
戸構造を有する半導体を用いることが容易にできるの
で,励起光が弱くかつ小さな素子で十分作用する光半導
体素子を提供できる。
Further, since it is possible to easily use a semiconductor having a quantum well structure having a large second-order non-linear susceptibility, it is possible to provide an optical semiconductor element which emits weak excitation light and operates sufficiently with a small element.

【0063】従って,本発明は,光機器の性能向上に寄
与するところが大きい。
Therefore, the present invention greatly contributes to the performance improvement of the optical device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 本発明の実施例断面図FIG. 2 is a sectional view of an embodiment of the present invention.

【図3】 本発明の実施例光増幅器FIG. 3 is an optical amplifier according to an embodiment of the present invention.

【図4】 従来例斜視図FIG. 4 is a perspective view of a conventional example.

【図5】 従来例断面図FIG. 5 is a sectional view of a conventional example.

【図6】 光パラメトリック増幅器の構造説明図FIG. 6 is a structural explanatory view of an optical parametric amplifier.

【符号の説明】[Explanation of symbols]

1 積層半導体 1a 第一の真性半導体層 1b n型半導体層 1c 第二の真性半導体層 1d p型半導体層 2a 第一の空乏層 2b 第二の空乏層 3 反射層 4 基板 5 分極 6 窪み 7 3方向カプラ 21 信号光 22 出力信号光 23 励起光 41 光導波路 42 入射光 43 出力光 44 イオン注入領域 45 単結晶 46 分極方向 47 電界印加層 48 配線 49 基板 DESCRIPTION OF SYMBOLS 1 Laminated semiconductor 1a 1st intrinsic semiconductor layer 1b n-type semiconductor layer 1c 2nd intrinsic semiconductor layer 1d p-type semiconductor layer 2a 1st depletion layer 2b 2nd depletion layer 3 reflective layer 4 substrate 5 polarization 6 depression 7 7 3 Directional coupler 21 Signal light 22 Output signal light 23 Excitation light 41 Optical waveguide 42 Incident light 43 Output light 44 Ion implantation region 45 Single crystal 46 Polarization direction 47 Electric field applying layer 48 Wiring 49 Substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 励起光及び波長λの信号光を重畳して
入射しパラメトリック励振する光半導体素子において,
該励起光及び該信号光に対して透明な第一の真性半導体
層(1a),n型半導体層(1b),該励起光及び該信
号光に対して透明な第二の真性半導体層(1c)及びp
型半導体層(1d)が,この順に複数回繰り返し積層さ
れて構成された積層半導体(1)を有し,該第一の真性
半導体層(1a)の下に接する該p型半導体層(1d)
と,該第一の真性半導体層(1a)の上に接する該n型
半導体層(1b)との間に第一の空乏層(2a)が形成
され,該第二の真性半導体層(1c)の下に接する該n
型半導体層(1b)と,該第二の真性半導体層(1c)
の上に接する該p型半導体層(1d)との間に第二の空
乏層(2b)が形成され,該空乏層(2a,2b)上面
から最近接の該空乏層(2b,2a)上面に至る距離d
は,その間の該励起光に対する平均屈折率をnAP,その
間の該信号光に対する平均屈折率をnAS,並びに該積層
半導体(1)中を伝播する該励起光及び該信号光が該積
層半導体(1)の積層面の法線となす角をθとして, d=(λ/4)・cosθ/(nAP−nAS) であることを特徴とする光半導体素子。
1. An optical semiconductor device in which pumping light and signal light having a wavelength λ are superposed and incident to perform parametric excitation,
A first intrinsic semiconductor layer (1a) transparent to the excitation light and the signal light, an n-type semiconductor layer (1b), and a second intrinsic semiconductor layer (1c transparent to the excitation light and the signal light. ) And p
The p-type semiconductor layer (1d) has a laminated semiconductor (1) formed by repeatedly laminating the type semiconductor layer (1d) a plurality of times in this order, and is in contact with the bottom of the first intrinsic semiconductor layer (1a).
And a first depletion layer (2a) is formed between the first intrinsic semiconductor layer (1a) and the n-type semiconductor layer (1b) in contact with the second intrinsic semiconductor layer (1c). The n touching under
-Type semiconductor layer (1b) and the second intrinsic semiconductor layer (1c)
A second depletion layer (2b) is formed between the upper surface of the depletion layer (2b) and the p-type semiconductor layer (1d) that is in contact with the upper surface of the depletion layer (2a, 2b). Distance to
Is the average refractive index for the pumping light during that period n AP , the average refractive index for the signal light during that period is n AS , and the excitation light and the signal light propagating through the laminated semiconductor (1) are the laminated semiconductor. An optical semiconductor device characterized in that d = (λ / 4) · cos θ / (n AP −n AS ), where θ is an angle formed with the normal to the laminated surface of (1).
【請求項2】 請求項1記載の光半導体素子において,
該第一の真性半導体層(1a)及び該第二の真性半導体
層(1c)は,禁制帯幅の異なる半導体薄膜を積層して
構成された量子井戸構造を有することを特徴とする光半
導体素子。
2. The optical semiconductor element according to claim 1,
An optical semiconductor device characterized in that the first intrinsic semiconductor layer (1a) and the second intrinsic semiconductor layer (1c) have a quantum well structure formed by stacking semiconductor thin films having different forbidden band widths. .
【請求項3】 請求項1又は請求項2記載の光半導体素
子において,該n型半導体層(1b)及び該p型半導体
層(1d)は,該n型半導体層(1b)及び該p型半導
体層(1d)が空乏化する厚さであることを特徴とする
光半導体素子。
3. The optical semiconductor device according to claim 1, wherein the n-type semiconductor layer (1b) and the p-type semiconductor layer (1d) are the n-type semiconductor layer (1b) and the p-type semiconductor layer. An optical semiconductor device, wherein the semiconductor layer (1d) has a depleting thickness.
【請求項4】 請求項1,請求項2又は請求項3記載の
光半導体素子において,該n型半導体層(1b)及び該
p型半導体層(1d)のうち少なくとも一方は,該第一
の真性半導体層(1a)及び該第二の真性半導体層(1
c)よりも大きな禁制帯幅を有することを特徴とする光
半導体素子。
4. The optical semiconductor element according to claim 1, 2 or 3, wherein at least one of the n-type semiconductor layer (1b) and the p-type semiconductor layer (1d) is the first semiconductor layer. The intrinsic semiconductor layer (1a) and the second intrinsic semiconductor layer (1
An optical semiconductor device having a forbidden band width larger than that of c).
【請求項5】 請求項1,請求項2,請求項3又は請求
項4記載の光半導体素子において,該積層半導体(1)
は,該励起光を透過し該信号光を反射する反射層(3)
上に設けられることを特徴とする光半導体素子。
5. An optical semiconductor element according to claim 1, claim 2, claim 3 or claim 4, wherein the laminated semiconductor (1)
Is a reflection layer (3) that transmits the excitation light and reflects the signal light
An optical semiconductor device provided on the above.
JP4455794A 1994-03-16 1994-03-16 Optical semiconductor element Withdrawn JPH07254752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4455794A JPH07254752A (en) 1994-03-16 1994-03-16 Optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4455794A JPH07254752A (en) 1994-03-16 1994-03-16 Optical semiconductor element

Publications (1)

Publication Number Publication Date
JPH07254752A true JPH07254752A (en) 1995-10-03

Family

ID=12694808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4455794A Withdrawn JPH07254752A (en) 1994-03-16 1994-03-16 Optical semiconductor element

Country Status (1)

Country Link
JP (1) JPH07254752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062473A (en) * 2015-09-23 2017-03-30 富士通株式会社 Harmonic generation and phase sensitive amplification using Bragg reflection waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062473A (en) * 2015-09-23 2017-03-30 富士通株式会社 Harmonic generation and phase sensitive amplification using Bragg reflection waveguide

Similar Documents

Publication Publication Date Title
JP3325825B2 (en) Three-dimensional periodic structure, method for producing the same, and method for producing film
EP0431527B1 (en) Optical coupling device using wavelength selective optical coupler
US6798795B2 (en) Ultra-compact room temperature rapidly tunable infrared sources
JPH0348476A (en) Semiconductor light emitting element
US5229878A (en) Method and apparatus for modulating light using semiconductor element having quantum well structure
JPH07254752A (en) Optical semiconductor element
JPH04229823A (en) Semiconductor device
JPH1197799A (en) Fabrication of semiconductor device
JPH02226232A (en) Directional coupler type optical switch
JP2012022159A (en) Wavelength conversion element
US5153688A (en) Method and device for controlling interference of electron waves by light in which a transverse magnetic wave is applied
JP3285651B2 (en) Quantum well-based waveguide optical receivers of semiconductor materials, especially for coherent communication systems with variable polarization
US10895764B1 (en) Dielectric electro-optic phase shifter
JP2836050B2 (en) Optical wavelength filter and device using the same
JPS63133105A (en) Optical filter element
JPH06204549A (en) Waveguide type photodetector, manufacture thereof and driving method thereof
JPS6051822A (en) Light control element and its manufacture
JP7318434B2 (en) Optical semiconductor device, optical transceiver using the same, and method for manufacturing optical semiconductor device
WO2023238184A1 (en) Optical modulator
JP2662170B2 (en) Semiconductor optical switching device
JPS59113424A (en) Light frequency converting element
JPS62229990A (en) Manufacture of semiconductor light emitting element
CN115692518A (en) On-chip integrated structure
WO2019163559A1 (en) Optical modulator
JP3309461B2 (en) Method for manufacturing quantum wire, quantum wire, and quantum effect device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605