JPH07254734A - Method of adjusting superconducting device and its adjusting equipment - Google Patents

Method of adjusting superconducting device and its adjusting equipment

Info

Publication number
JPH07254734A
JPH07254734A JP6046089A JP4608994A JPH07254734A JP H07254734 A JPH07254734 A JP H07254734A JP 6046089 A JP6046089 A JP 6046089A JP 4608994 A JP4608994 A JP 4608994A JP H07254734 A JPH07254734 A JP H07254734A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting device
electrode pattern
laser light
bandpass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6046089A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
厚志 田中
Takuya Uzumaki
拓也 渦巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6046089A priority Critical patent/JPH07254734A/en
Publication of JPH07254734A publication Critical patent/JPH07254734A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method adjusting of a superconducting device and its adjusting equipment which can easily adjust frequency characteristics and prevent deterioration of super-conducting characteristics, by continuously performing the measurement and the adjustment working of a superconducting device in the same circumstance of a cooling state. CONSTITUTION:The title equipment is provided with the following; a vacuum chamber (holding vessel) 12 which accommodates a bandpass filter (superconducting device) 11 in which an electrode pattern is formed, and keeps the filter at a superconduction realizing temperature realizing a superconducting state, a network analyzer (measuring means) 13 which measures electric characteristics of the bandpass filter 11 in the vacuum chamber 12, a glass window (laser light incidence port) 17 formed in the vacuum chamber 12, and an excimer laser oscillator (laser light irradiating means) 14 which irradiates laser light L from the glass window 17 toward an electrode pattern. By irradiating the laser light L, the electrode pattern is worked, and electric characteristics are adjusted to be in a desired value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超伝導デバイスにおけ
る電気的特性の調整方法及びその調整装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for adjusting electric characteristics of a superconducting device.

【0002】[0002]

【従来の技術】従来、酸化物超伝導体デバイス、特に高
周波デバイスを形成する際に、周波数特性を所望のもの
とするための超伝導デバイスの電気的特性の調整方法が
知られている。超伝導体は、常伝導体に比べて著しく表
面抵抗が低いことから、超伝導体を高周波デバイスに適
用した場合には、低損失で周波数選択性が強い高周波デ
バイスが実現できる可能性があり、共振器、バンドパス
フィルタ及び高周波フィルタ等への応用を目指して研究
が行われている。
2. Description of the Related Art Conventionally, there is known a method of adjusting electrical characteristics of a superconducting device for obtaining desired frequency characteristics when forming an oxide superconductor device, particularly a high frequency device. Since a superconductor has a significantly lower surface resistance than a normal conductor, when a superconductor is applied to a high frequency device, a high frequency device with low loss and strong frequency selectivity may be realized. Research is being conducted with the aim of application to resonators, bandpass filters, high-frequency filters, and the like.

【0003】ところで、周波数特性を所望のものとする
ためには調整が不可欠であるが、当然のことながら、超
伝導デバイスの周波数特性は、超伝導状態が実現する低
温状態でなければ測定することができない。また、周波
数特性の調整に際しては、直接超伝導デバイスに触れて
機械的且つ物理的な操作をする必要がある。即ち、超伝
導デバイスの周波数特性の調整に際しては、形成工程終
了後の超伝導デバイスを測定系に実装して冷却し超伝導
状態とした上で、その伝送特性をネットワークアナライ
ザを用いて測定し、設計値に基づく所要の仕様を満たし
ているか否かを確認する。
By the way, adjustment is indispensable in order to obtain a desired frequency characteristic, but it goes without saying that the frequency characteristic of a superconducting device should be measured unless it is in a low temperature state where a superconducting state is realized. I can't. Further, when adjusting the frequency characteristics, it is necessary to directly touch the superconducting device to perform mechanical and physical operations. That is, when adjusting the frequency characteristics of the superconducting device, the superconducting device after the formation process is mounted in a measurement system and cooled to a superconducting state, and then its transmission characteristics are measured using a network analyzer, Check whether the required specifications based on the design values are met.

【0004】そして、周波数特性が所要の仕様を満たし
ていない場合には、電極のパターンに予め作りこんでお
いた調整用パターンを加工して周波数特性の調整をした
後、再び冷却し超伝導状態を実現した上で再度測定す
る。以後、周波数特性が所望の範囲に入るまで上記操作
を繰り返す。
When the frequency characteristic does not meet the required specifications, the adjustment pattern prepared in advance in the electrode pattern is processed to adjust the frequency characteristic, and then cooled again to be in a superconducting state. And then measure again. After that, the above operation is repeated until the frequency characteristic falls within a desired range.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
超伝導デバイスの周波数特性の調整は、超伝導デバイス
の周波数特性を測定する測定工程と、電極の調整用パタ
ーンを調整する調整加工工程とを別個に行うため、その
都度、実装して冷却しなければならず、超伝導デバイス
の周波数特性を所望のものにする調整に多くの時間と手
間とを必要とするという問題点があった。
However, in the conventional adjustment of the frequency characteristic of the superconducting device, the measuring step of measuring the frequency characteristic of the superconducting device and the adjustment processing step of adjusting the adjustment pattern of the electrode are separately performed. Therefore, it has to be mounted and cooled each time, and it takes a lot of time and labor to adjust the frequency characteristics of the superconducting device to a desired value.

【0006】同時に、超伝導デバイスに対して常温と低
温の熱サイクルを繰り返すこととなるため、超伝導特性
が劣化するという問題点もあった。本発明は、上記問題
点に鑑みてなされたものであり、その目的は、超伝導デ
バイスの測定と調整加工とを冷却状態の同一環境で連続
して行うことにより、周波数特性の調整を容易に行うと
共に超伝導特性の劣化を防止することができる超伝導デ
バイスの調整方法及びその調整装置を提供することにあ
る。
At the same time, since the superconducting device is repeatedly subjected to thermal cycles at room temperature and low temperature, there is a problem that the superconducting characteristics are deteriorated. The present invention has been made in view of the above problems, and an object thereof is to perform measurement and adjustment processing of a superconducting device continuously in the same environment in a cooled state, thereby facilitating adjustment of frequency characteristics. An object of the present invention is to provide a method for adjusting a superconducting device and an adjusting apparatus for the same, which can prevent deterioration of superconducting properties while performing the method.

【0007】[0007]

【課題を解決するための手段】上記目的は、電極パター
ンが形成された超伝導デバイスを、超伝導状態を実現す
る超伝導実現温度に保持し、前記超伝導デバイスの電気
的特性を測定する測定工程と、前記超伝導実現温度に保
持したまま、前記超伝導デバイスにレーザ光を照射して
前記電極パターンを加工し、前記電気的特性を所望値に
調整する調整工程とを有することを特徴とする超伝導デ
バイスの調整方法により達成される。
[Means for Solving the Problems] The above-mentioned object is a measurement for holding a superconducting device having an electrode pattern at a superconducting realization temperature for realizing a superconducting state, and measuring electrical characteristics of the superconducting device. A step of adjusting the electrical characteristics to desired values by irradiating the superconducting device with a laser beam to process the electrode pattern while maintaining the superconducting realization temperature. It is achieved by the method for adjusting a superconducting device.

【0008】また、電極パターンが形成された超伝導デ
バイスを収容し、超伝導状態を実現する超伝導実現温度
に保持する保持容器と、前記保持容器内の前記超伝導デ
バイスの電気的特性を測定する測定手段と、前記保持容
器に設けられたレーザ光入射口と、前記レーザ光入射口
から前記電極パターンに向けてレーザ光を照射するレー
ザ光照射手段とを有し、前記レーザ光の照射により前記
電極パターンを加工して前記電気的特性を所望値に調整
することを特徴とする超伝導デバイスの調整装置により
達成される。
Further, a holding container for accommodating the superconducting device on which the electrode pattern is formed and holding the superconducting device at a superconducting realization temperature for realizing a superconducting state, and the electrical characteristics of the superconducting device in the holding container are measured. Measuring means, a laser light incident port provided in the holding container, and a laser light irradiation means for irradiating a laser beam from the laser light incident port toward the electrode pattern, by irradiation of the laser beam This is achieved by a superconducting device adjusting apparatus characterized by processing the electrode pattern to adjust the electrical characteristics to desired values.

【0009】[0009]

【作用】本発明によれば、電極パターンが形成された超
伝導デバイスを、超伝導状態を実現する超伝導実現温度
に保持し、前記超伝導デバイスの電気的特性を測定する
測定工程と、前記超伝導実現温度に保持したまま、前記
超伝導デバイスにレーザ光を照射して前記電極パターン
を加工し、前記電気的特性を所望値に調整する調整工程
とを有することにより、超伝導デバイスの測定と調整加
工とを超伝導実現温度に保持したままの同一環境で連続
して行うことが可能となり、電気的特性の調整を短時間
且つ高精度で行うと共に超伝導特性の劣化を防止するこ
とができる。
According to the present invention, a superconducting device having an electrode pattern formed thereon is maintained at a superconducting realization temperature for realizing a superconducting state, and a measuring step for measuring the electrical characteristics of the superconducting device, While maintaining the superconducting realization temperature, the superconducting device is irradiated with laser light to process the electrode pattern, and an adjusting step of adjusting the electrical characteristics to desired values is performed, thereby measuring the superconducting device. And adjustment processing can be performed continuously in the same environment while maintaining the superconducting realization temperature, electrical characteristics can be adjusted in a short time with high accuracy, and deterioration of superconducting characteristics can be prevented. it can.

【0010】また、電極パターンが形成された超伝導デ
バイスを収容し、超伝導状態を実現する超伝導実現温度
に保持する保持容器と、前記保持容器内の前記超伝導デ
バイスの電気的特性を測定する測定手段と、前記保持容
器に設けられたレーザ光入射口と、前記レーザ光入射口
から前記電極パターンに向けてレーザ光を照射するレー
ザ光照射手段とを有することにより、超伝導デバイスを
保持容器内で超伝導実現温度に保持したまま、測定手段
で超伝導デバイスの電気的特性を測定すると共に、レー
ザ光照射手段が出射したレーザ光をレーザ光入射口から
超伝導デバイスに照射して電極パターンを加工し、電気
的特性を所望値に調整することができる。
Further, a holding container for accommodating the superconducting device on which the electrode pattern is formed and holding the superconducting device at a superconducting realization temperature for realizing a superconducting state, and electric characteristics of the superconducting device in the holding container are measured. To hold the superconducting device by having a measuring means, a laser light entrance provided in the holding container, and a laser light irradiating means for irradiating the laser light from the laser light entrance toward the electrode pattern. While maintaining the superconducting realization temperature in the container, the electrical characteristics of the superconducting device are measured by the measuring means, and the laser light emitted by the laser light irradiating means is irradiated onto the superconducting device from the laser light entrance to the electrode. The pattern can be processed to adjust the electrical characteristics to desired values.

【0011】[0011]

【実施例】以下、本発明の一実施例による超伝導デバイ
スの調整装置を図面を参照して説明する。図1に示すよ
うに、超伝導デバイスの調整装置10は、バンドパスフ
ィルタ(超伝導デバイス)11を収容する真空チャンバ
(保持容器)12と、バンドパスフィルタ11の電気的
特性を測定するネットワークアナライザ(測定手段)1
3と、バンドパスフィルタ11の電極パターンに向けて
レーザ光を照射するエキシマレーザ発振器(レーザ光照
射手段)14とを有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A superconducting device adjusting apparatus according to an embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a superconducting device adjusting apparatus 10 includes a vacuum chamber (holding container) 12 that houses a bandpass filter (superconducting device) 11, and a network analyzer that measures the electrical characteristics of the bandpass filter 11. (Measuring means) 1
3 and an excimer laser oscillator (laser light irradiation means) 14 for irradiating the electrode pattern of the bandpass filter 11 with laser light.

【0012】バンドパスフィルタ11は、酸化物超伝導
体を用いた高周波デバイスであり、周波数依存性が極め
て強いデバイスである。このような高周波デバイスとし
ては、他に、共振器、ハイパスフィルタ等がある。バン
ドパスフィルタ11には、所望の設計仕様値に基づく電
極パターンが形成されている。電極パターンは、図2に
示すように、酸化マグネシウム(MgO)からなる基板
11a上に形成された超伝導膜(Y−Ba−Cu−O)
にレジストを塗布して、フォトリソグラフィ技術により
パターニングを行い、その後、アルゴン(Ar)のイオ
ンミリングにより、超伝導膜をパターニングして形成さ
れる。
The bandpass filter 11 is a high frequency device using an oxide superconductor and has a very strong frequency dependence. Other examples of such a high frequency device include a resonator and a high pass filter. On the bandpass filter 11, an electrode pattern based on a desired design specification value is formed. As shown in FIG. 2, the electrode pattern is a superconducting film (Y-Ba-Cu-O) formed on a substrate 11a made of magnesium oxide (MgO).
Is coated with a resist, patterning is performed by a photolithography technique, and then the superconducting film is patterned by ion milling with argon (Ar).

【0013】この電極パターンは、例えば、入力部マイ
クロストリップライン11bの先端に形成されたエレメ
ント11cと、エレメント11cに対向方向に位置して
出力部マイクロストリップライン11dの先端に形成さ
れたエレメント11eと、両エレメント11c,11e
間に挟持され且つ並設されたエレメント11fとを有し
ている。
This electrode pattern includes, for example, an element 11c formed at the tip of the input microstrip line 11b, and an element 11e formed at the tip of the output microstrip line 11d located in the direction opposite to the element 11c. , Both elements 11c, 11e
It has the element 11f pinched | interposed between and arranged in parallel.

【0014】真空チャンバ12は、高真空排気系15に
連通する排気口16を有する密閉容器により形成されて
おり、室内空間と室外とを隔てる外壁12aの一部に組
み込まれたガラス窓(レーザ光入射口)17を有してい
る。真空チャンバ12内は、高真空排気系15により真
空状態に保持することができる。また、真空チャンバ1
2の内部には、ガラス窓17に対向して、バンドパスフ
ィルタ11を載置可能な冷却ステージ18が設置されて
おり、冷却ステージ18は、チャンバ12外の冷凍機1
9に接続されている。この冷却ステージ18を介して、
バンドパスフィルタ11を、超伝導状態を実現する超伝
導実現温度に冷却し、且つその温度に保持することがで
きる。
The vacuum chamber 12 is formed by a closed container having an exhaust port 16 communicating with a high vacuum exhaust system 15, and a glass window (laser light) incorporated in a part of an outer wall 12a separating an indoor space from an outdoor space. It has an entrance 17). The inside of the vacuum chamber 12 can be maintained in a vacuum state by the high vacuum exhaust system 15. Also, the vacuum chamber 1
A cooling stage 18 on which the bandpass filter 11 can be placed is installed inside the chamber 2 so as to face the glass window 17, and the cooling stage 18 is provided outside the chamber 12.
9 is connected. Through this cooling stage 18,
The bandpass filter 11 can be cooled to and maintained at the superconducting realization temperature at which the superconducting state is realized.

【0015】ネットワークアナライザ13は、発振器2
0を有しており、発振器20からの動作信号入力により
動作状態にあるバンドパスフィルタ11の周波数特性
(透過特性及び反射特性)を、分析し測定する。発振器
20には、測定治具21が接続されており、測定治具2
1は、バンドパスフィルタ11を固定保持することがで
きると共に、真空チャンバ12の開閉部(図示せず)を
介して、バンドパスフィルタ11を真空チャンバ12内
の冷却ステージ18に載置することができる。
The network analyzer 13 includes an oscillator 2
The frequency characteristic (transmission characteristic and reflection characteristic) of the bandpass filter 11 which has 0 and is in the operating state by the operation signal input from the oscillator 20 is analyzed and measured. A measurement jig 21 is connected to the oscillator 20, and the measurement jig 2
1, the bandpass filter 11 can be fixedly held, and the bandpass filter 11 can be mounted on the cooling stage 18 in the vacuum chamber 12 via the opening / closing part (not shown) of the vacuum chamber 12. it can.

【0016】また、測定治具21には、バンドパスフィ
ルタ11の電極(図示せず)を接続することにより、バ
ンドパスフィルタ11を発振器20に接続することがで
きる接続部(図示せず)が設けられている。エキシマレ
ーザ発振器14は、電極パターンに向けてレーザ光Lを
出射する。出射されたレーザ光Lは、真空チャンバ12
外に設置したミラー22を経てガラス窓17を通過し、
真空チャンバ12内に進入してバンドパスフィルタ11
のエレメント11f先端を照射する。
Further, the measuring jig 21 has a connecting portion (not shown) capable of connecting the bandpass filter 11 to the oscillator 20 by connecting an electrode (not shown) of the bandpass filter 11. It is provided. The excimer laser oscillator 14 emits laser light L toward the electrode pattern. The emitted laser light L is applied to the vacuum chamber 12
After passing through the glass window 17 through the mirror 22 installed outside,
The bandpass filter 11 is introduced into the vacuum chamber 12.
The tip of the element 11f is irradiated.

【0017】このレーザ光Lを照射することにより、超
伝導膜は絶縁体に変換されることから、エレメント11
fの実効長が短縮されることとなり、透過周波数帯域を
高周波側にシフトさせることができる。従って、レーザ
光Lの照射により、電極パターンを加工してバンドパス
フィルタ11の周波数特性を所望値に調整することがで
きる。なお、エレメント11fは、調整可能に、予め長
めに電極パターンに作り込まれている。
By irradiating this laser beam L, the superconducting film is converted into an insulator, so that the element 11
Since the effective length of f is shortened, the transmission frequency band can be shifted to the high frequency side. Therefore, by irradiating the laser beam L, the electrode pattern can be processed to adjust the frequency characteristic of the bandpass filter 11 to a desired value. The element 11f is preliminarily formed in a long electrode pattern so as to be adjustable.

【0018】次に、超伝導デバイスの調整方法を、図3
のフローチャートを参照して説明する。先ず、バンドパ
スフィルタ11を測定治具21に実装し、接続部とバン
ドパスフィルタ11の電極を接続した後、測定治具21
を真空チャンバ12内にセットして、バンドパスフィル
タ11を冷却ステージ18に載置固定する(ステップS
1)。
Next, a method for adjusting a superconducting device will be described with reference to FIG.
This will be described with reference to the flowchart in FIG. First, the bandpass filter 11 is mounted on the measurement jig 21, and after the connection part and the electrode of the bandpass filter 11 are connected, the measurement jig 21
Is set in the vacuum chamber 12, and the bandpass filter 11 is mounted and fixed on the cooling stage 18 (step S
1).

【0019】続いて、真空チャンバ12を排気し高真空
状態にした後、超伝導状態が実現する超伝導実現温度ま
で冷却し(真空引き及び冷却)、バンドパスフィルタ1
1を例えば77.3Kの冷却状態に保持する(ステップ
S2)。その後、発振器20を作動させ、ネットワーク
アナライザ13により、バンドパスフィルタ11の透過
特性を測定する(ステップS3)。測定結果である透過
特性(調整前の透過特性a)を、図4に示す。なお、図
中、縦軸は透過損失(Sパラメータ)を、横軸は周波数
をそれぞれ表す。
Subsequently, the vacuum chamber 12 is evacuated to a high vacuum state, and then cooled to a superconducting realization temperature at which the superconducting state is realized (vacuum drawing and cooling), and the bandpass filter 1
1 is maintained in a cooled state of, for example, 77.3K (step S2). After that, the oscillator 20 is operated, and the transmission characteristic of the bandpass filter 11 is measured by the network analyzer 13 (step S3). The transmission characteristic (transmission characteristic a before adjustment) as the measurement result is shown in FIG. In the figure, the vertical axis represents transmission loss (S parameter) and the horizontal axis represents frequency.

【0020】ここに、バンドパスフィルタ11の超伝導
状態における周波数特性が測定される。次に、測定結果
と設計値(所望の透過特性b、図4参照)との比較を行
い(ステップS4)、試料のバンドパスフィルタ11が
仕様を満たしているかどうかを判定する(ステップS
5)。
Here, the frequency characteristic of the bandpass filter 11 in the superconducting state is measured. Next, the measurement result is compared with the design value (desired transmission characteristic b, see FIG. 4) (step S4), and it is determined whether the bandpass filter 11 of the sample satisfies the specifications (step S).
5).

【0021】判定の結果、仕様を満足しない場合、レー
ザ光Lを照射して電極パターンを修正するバンドパスフ
ィルタ11の加工を行う(ステップS6)。レーザ光L
の照射後、バンドパスフィルタ11の温度が安定するの
を待って、再び透過特性を測定する(ステップS3)。
そして、設計値との比較を行って(ステップS4)仕様
を満たしているかどうかを判定し(ステップS5)、依
然として周波数特性が低周波側にずれている場合には、
測定結果が所望状態となる迄修正及び測定を繰り返すこ
とにより、バンドパスフィルタ11の調整を行う。
If the result of the determination is that the specifications are not satisfied, the bandpass filter 11 for irradiating the laser beam L to correct the electrode pattern is processed (step S6). Laser light L
After the irradiation, the temperature of the bandpass filter 11 is stabilized and the transmission characteristics are measured again (step S3).
Then, it is compared with the design value (step S4) to determine whether or not the specifications are satisfied (step S5). If the frequency characteristic is still shifted to the low frequency side,
The bandpass filter 11 is adjusted by repeating the correction and measurement until the measurement result reaches the desired state.

【0022】一方、判定の結果、仕様を満足する場合、
バンドパスフィルタ11の調整を終了する(ステップS
7)。ここで、電極パターンの修正について説明する。
判定の結果、測定結果である調整前の透過特性aが、設
計値である所望の透過特性bに比べ低周波側にずれてい
るのが確認された(図4参照)ので、電極パターンの一
部にレーザ光Lを照射する。エキシマレーザ発振器14
から、真空チャンバ12内のバンドパスフィルタ11に
向けて出射されたレーザ光Lが、エレメント11f先端
を照射すると、超伝導膜が絶縁体に変換されて(図2、
斜線部参照)エレメント11fの実効長が短縮されるこ
ととなり、透過周波数帯域を高周波側にシフトさせるこ
とができる。その結果、仕様を満足させる調整後の透過
特性c(図4参照)を得ることができる。
On the other hand, if the result of the determination satisfies the specifications,
The adjustment of the bandpass filter 11 is completed (step S
7). Here, the modification of the electrode pattern will be described.
As a result of the determination, it was confirmed that the transmission characteristic a before the adjustment, which is the measurement result, is deviated to the low frequency side as compared with the desired transmission characteristic b which is the design value (see FIG. 4). The part is irradiated with laser light L. Excimer laser oscillator 14
Then, when the laser beam L emitted toward the bandpass filter 11 in the vacuum chamber 12 irradiates the tip of the element 11f, the superconducting film is converted into an insulator (FIG. 2, FIG.
The shaded portion) The effective length of the element 11f is shortened, and the transmission frequency band can be shifted to the high frequency side. As a result, it is possible to obtain the adjusted transmission characteristic c (see FIG. 4) that satisfies the specifications.

【0023】この際、レーザ光Lが照射されるバンドパ
スフィルタ11は、真空チャンバ12内に配置されたま
まであり、冷却状態に保持された測定工程に続いて、冷
却状態を保持したまま調整加工工程を経ることとなる。
従って、バンドパスフィルタ11は、真空チャンバ12
内において超伝導実現温度に保持したまま、レーザ光L
を照射して電極パターンを加工し、周波数特性を所望値
に調整することができる。
At this time, the bandpass filter 11 to which the laser beam L is irradiated is still arranged in the vacuum chamber 12 and, following the measuring step in which the cooling state is maintained, the adjustment processing is performed while maintaining the cooling state. It goes through the process.
Therefore, the bandpass filter 11 is used in the vacuum chamber 12
Laser light L while maintaining the superconducting realization temperature inside
Can be irradiated to process the electrode pattern and adjust the frequency characteristic to a desired value.

【0024】このように、バンドパスフィルタ11を超
伝導状態が実現する超伝導実現温度に保持したまま、電
気的特性を評価する測定工程と、その電気的特性を所望
のものにする調整加工工程とを連続して行うことによ
り、調整に必要な時間、工程を大幅に低減することがで
きる。更に、レーザ光Lを照射することにより電極パタ
ーンを加工するため、周波数特性の調整に際し、直接超
伝導デバイスに触れて機械的且つ物理的な操作をする必
要がないことから、調整に多くの時間と手間とを要しな
いばかりか調整の精度を飛躍的に向上させることができ
る。
As described above, the measurement process of evaluating the electrical characteristics while the bandpass filter 11 is maintained at the superconducting realization temperature at which the superconducting state is realized, and the adjustment processing step of making the electric characteristics desired. By continuously performing and, the time and process required for the adjustment can be significantly reduced. Furthermore, since the electrode pattern is processed by irradiating the laser beam L, it is not necessary to directly touch the superconducting device to perform mechanical and physical operations when adjusting the frequency characteristics, and therefore it takes a lot of time for adjustment. Not only does this save time and labor, but the accuracy of adjustment can be dramatically improved.

【0025】その上、測定及び調整加工工程において、
バンドパスフィルタ11は一度冷却すれば良く、余分な
熱サイクルを加えることがないため、バンドパスフィル
タ11の特性の劣化を防止することができる。なお、本
発明は上記実施例に限らず種々の変形が可能であり、例
えば、バンドパスフィルタの代わりに、共振器、ハイパ
スフィルタ等の酸化物超伝導体を用いた高周波デバイス
にも適用することができる。
Moreover, in the measurement and adjustment processing steps,
Since the bandpass filter 11 need only be cooled once and no extra heat cycle is applied, deterioration of the characteristics of the bandpass filter 11 can be prevented. Note that the present invention is not limited to the above-described embodiments and can be variously modified. For example, the present invention can be applied to a high-frequency device using an oxide superconductor such as a resonator or a high-pass filter instead of a bandpass filter. You can

【0026】[0026]

【発明の効果】以上の通り、本発明によれば、超伝導デ
バイスの測定と調整加工とを冷却状態の同一環境で連続
して行うことにより、周波数特性の調整を容易に行うと
共に超伝導特性の劣化を防止することができる。
As described above, according to the present invention, the frequency characteristics can be easily adjusted and the superconducting characteristics can be easily adjusted by continuously measuring and adjusting the superconducting device in the same environment in a cooled state. Can be prevented from deteriorating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるバンドパスフィルタの
調整装置の概略構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a schematic configuration of a bandpass filter adjusting apparatus according to an embodiment of the present invention.

【図2】バンドパスフィルタの平面説明図である。FIG. 2 is an explanatory plan view of a bandpass filter.

【図3】バンドパスフィルタの調整方法を示すフローチ
ャートである。
FIG. 3 is a flowchart showing a method of adjusting a bandpass filter.

【図4】バンドパスフィルタの透過特性を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing transmission characteristics of a bandpass filter.

【符号の説明】[Explanation of symbols]

10…超伝導デバイスの調整装置 11…バンドパスフィルタ(超伝導デバイス) 11a…基板 11b…入力部マイクロストリップライン 11c…エレメント 11d…出力部マイクロストリップライン 11e…エレメント 11f…エレメント 12…真空チャンバ(保持容器) 12a…外壁 13…ネットワークアナライザ(測定手段) 14…エキシマレーザ発振器(レーザ光照射手段) 15…高真空排気系 16…排気口 17…ガラス窓(レーザ光入射口) 18…冷却ステージ 19…冷凍機 20…発振器 21…測定治具 22…ミラー L…レーザ光 a…調整前の透過特性 b…所望の透過特性 c…調整後の透過特性 10 ... Adjustment device for superconducting device 11 ... Bandpass filter (superconducting device) 11a ... Substrate 11b ... Input microstripline 11c ... Element 11d ... Output microstripline 11e ... Element 11f ... Element 12 ... Vacuum chamber (holding) Container 12a ... Outer wall 13 ... Network analyzer (measuring means) 14 ... Excimer laser oscillator (laser light irradiation means) 15 ... High-vacuum exhaust system 16 ... Exhaust port 17 ... Glass window (laser light incident port) 18 ... Cooling stage 19 ... Refrigerator 20 ... Oscillator 21 ... Measuring jig 22 ... Mirror L ... Laser light a ... Transmission characteristics before adjustment b ... Desired transmission characteristics c ... Transmission characteristics after adjustment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極パターンが形成された超伝導デバイ
スを、超伝導状態を実現する超伝導実現温度に保持し、
前記超伝導デバイスの電気的特性を測定する測定工程
と、 前記超伝導実現温度に保持したまま、前記超伝導デバイ
スにレーザ光を照射して前記電極パターンを加工し、前
記電気的特性を所望値に調整する調整工程とを有するこ
とを特徴とする超伝導デバイスの調整方法。
1. A superconducting device on which an electrode pattern is formed is maintained at a superconducting temperature for realizing a superconducting state,
Measuring step of measuring the electrical characteristics of the superconducting device, while maintaining the superconducting realization temperature, irradiating the superconducting device with laser light to process the electrode pattern, the electrical characteristics to a desired value. An adjusting method for a superconducting device, comprising:
【請求項2】 電極パターンが形成された超伝導デバイ
スを収容し、超伝導状態を実現する超伝導実現温度に保
持する保持容器と、 前記保持容器内の前記超伝導デバイスの電気的特性を測
定する測定手段と、 前記保持容器に設けられたレーザ光入射口と、 前記レーザ光入射口から前記電極パターンに向けてレー
ザ光を照射するレーザ光照射手段とを有し、 前記レーザ光の照射により前記電極パターンを加工して
前記電気的特性を所望値に調整することを特徴とする超
伝導デバイスの調整装置。
2. A holding container for accommodating a superconducting device having an electrode pattern formed thereon and holding the superconducting device at a superconducting realization temperature for realizing a superconducting state, and measuring electrical characteristics of the superconducting device in the holding container. Measuring means, a laser beam entrance provided in the holding container, and a laser beam irradiating means for irradiating a laser beam from the laser beam entrance to the electrode pattern, by irradiating the laser beam A device for adjusting a superconducting device, characterized by processing the electrode pattern to adjust the electrical characteristics to desired values.
JP6046089A 1994-03-16 1994-03-16 Method of adjusting superconducting device and its adjusting equipment Withdrawn JPH07254734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6046089A JPH07254734A (en) 1994-03-16 1994-03-16 Method of adjusting superconducting device and its adjusting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6046089A JPH07254734A (en) 1994-03-16 1994-03-16 Method of adjusting superconducting device and its adjusting equipment

Publications (1)

Publication Number Publication Date
JPH07254734A true JPH07254734A (en) 1995-10-03

Family

ID=12737269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6046089A Withdrawn JPH07254734A (en) 1994-03-16 1994-03-16 Method of adjusting superconducting device and its adjusting equipment

Country Status (1)

Country Link
JP (1) JPH07254734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609290B1 (en) 1999-04-20 2003-08-26 Nec Corporation Superconductor filter device and manufacturing method thereof
JP2004207504A (en) * 2002-12-25 2004-07-22 Fujitsu Ltd Method and apparatus for adjusting device characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609290B1 (en) 1999-04-20 2003-08-26 Nec Corporation Superconductor filter device and manufacturing method thereof
JP2004207504A (en) * 2002-12-25 2004-07-22 Fujitsu Ltd Method and apparatus for adjusting device characteristics
JP4495397B2 (en) * 2002-12-25 2010-07-07 富士通株式会社 Device characteristic adjustment apparatus and characteristic adjustment method thereof

Similar Documents

Publication Publication Date Title
Hurle Line‐Reversal Studies of the Sodium Excitation Process Behind Shock Waves in N2
US6750976B2 (en) Device for manufacturing semiconductor device and method of manufacturing the same
MacDonald et al. Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters
KR101795523B1 (en) Data processing method
JPH0816607B2 (en) Thin film processing control method
DE10119047A1 (en) Temperature measurement in semiconductor device manufacture, involves determining radiant light intensity and correction factors corresponding to various optical losses, which are then substituted in specific formula
JPH05142273A (en) Impedance measurement method and device of specimen surface
JPH11354509A (en) Method for detecting end point of plasma etching and plasma etching device
JPH07254734A (en) Method of adjusting superconducting device and its adjusting equipment
US5239269A (en) Apparatus and method for measuring and imaging surface resistance
Kenemuth et al. THERMAL BLOOMING OF A 10.6‐μ LASER BEAM IN CO2
JPH06350153A (en) Manufacture of superconducting device
JPH08292163A (en) High-temperature dielectric property measuring apparatus
CN114665245A (en) Separated dielectric resonator without damage dielectric column
Kirkbright et al. The determination of combined vinyl acetate in polyvinyl chloride/polyvinyl acetate copolymer by near-infrared photo-acoustic spectrometry and diffuse reflectance spectrometry
Hearne et al. Laser interferometric measurements of electron density in an arc plasma
JPH09129174A (en) Mass spectrometer
Rehwald et al. An instrument for contactless lifetime measurements in semiconductor layers of silicon-on-insulator (SOI) materials
Mayer et al. Conical cavity for surface resistance measurements of high temperature superconductors
Komiyama A Nb open resonator for millimeter wave surface resistance measurements of superconductive thin films
JP4495397B2 (en) Device characteristic adjustment apparatus and characteristic adjustment method thereof
JPH06102180A (en) Glow discharge spectral analysis device
Hadni et al. High‐Tc YBaCuO Superconductor Plasma and Collision Frequency Calculated from the Very Far Infrared Transmission Spectra
Garvin et al. Demonstration of broadband radio frequency sensing: Empirical polysilicon etch rate estimation in a Lam 9400 etch tool
JPH01210851A (en) Semiconductor optical characteristic measuring instrument

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605