JPH07253370A - Measuring system of six component forces - Google Patents

Measuring system of six component forces

Info

Publication number
JPH07253370A
JPH07253370A JP4265894A JP4265894A JPH07253370A JP H07253370 A JPH07253370 A JP H07253370A JP 4265894 A JP4265894 A JP 4265894A JP 4265894 A JP4265894 A JP 4265894A JP H07253370 A JPH07253370 A JP H07253370A
Authority
JP
Japan
Prior art keywords
error
matrix
calibration
component
inverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4265894A
Other languages
Japanese (ja)
Inventor
Masato Imahashi
眞人 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4265894A priority Critical patent/JPH07253370A/en
Publication of JPH07253370A publication Critical patent/JPH07253370A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To quantitatively judge an inverse-matrix operation error before a six-component-force measuring test by using an inverse-matrix-operation-error judgment program which judges the influence of an operation error with reference to a calibration test result by means of a specific formula. CONSTITUTION:A computer 11 for processing is provided with an inverse-matrix- operation-error judgment program which judges the infuence of an operation error with reference to a calibration test result by means of Formula I. The measuring range [Xmax] of every detector by which the absolute value of every component of a maximum error [Fm] found by a computation is made maximum, the prescribed value [C] of an allowable error and data [B] expressing the position of the detector are input. In addition, detected signals from component-force detectors 1 to 6 are input via a calibration box 9 and a signal conditioner 10, and an operation error [dE] at a time when an inverse matrix is found from a calibration matrix [A] is computed by means of Formula II. Then, every component of the maximum error [Fm] found by the calibration is computed by means of Formula I. Consequently, an inverse-matrix operation error can be judged quantitatively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロケットエンジンの推
力計測試験及び飛翔体等に加わる分力の計測試験におい
て、分力計測を行う際に利用される逆行列演算誤差判定
機能付分力計測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component force measurement with an inverse matrix calculation error determination function used when component force measurement is performed in a thrust force measurement test of a rocket engine and a component force measurement test applied to a flying body or the like. Regarding the system.

【0002】[0002]

【従来の技術】従来技術の一例を図6に示す。供試体
(ロケットエンジン)7及び架台8間に取り付けられた
分力検出器1〜6により検出された分力は、シグナルコ
ンディショナ10を通して所要の電気信号に変換され、
処理用計算機11に取り込まれる。ここで取得された分
力のデータは、供試体ロケットエンジン7のねじれ等の
影響による干渉力が含まれており図2の座標系の独立し
た分力成分を計測するには、得られたデータから行列演
算を用いて、これらの力成分(Fx,Fy,Fz,M
x,My,Mz)を計算する必要が有る。
2. Description of the Related Art FIG. 6 shows an example of prior art. The component forces detected by the component force detectors 1 to 6 mounted between the specimen (rocket engine) 7 and the gantry 8 are converted into required electric signals through the signal conditioner 10,
It is taken into the processing computer 11. The component force data acquired here includes the interference force due to the influence of twisting of the rocket engine 7 of the specimen, and the obtained data is required to measure the independent component components of the coordinate system of FIG. From the matrix components using these force components (Fx, Fy, Fz, M
x, My, Mz) needs to be calculated.

【0003】図7は従来システムのフローチャートを示
す。オペレータは処理用計算機110を用いてブロック
21で試験に必要な各種設定値を入力する。次にブロッ
ク22で校正行列すなわち校正マトリックス[A]、及
びその逆行列として計算される[Am-1]を求める為
に、校正試験を行なう。この試験により求められる校正
マトリックス[A]から、その逆行列を求める際に、有
限桁数の演算による演算誤差が生じる。
FIG. 7 shows a flowchart of a conventional system. The operator uses the processing computer 110 to input various setting values required for the test in block 21. Next, in block 22, a calibration test is performed in order to obtain the calibration matrix, that is, the calibration matrix [A] and [Am −1 ] calculated as the inverse matrix thereof. When the inverse matrix is obtained from the calibration matrix [A] obtained by this test, a calculation error occurs due to the calculation of a finite number of digits.

【0004】この演算誤差が以降のブロック25及びブ
ロック26の分力計算試験及びデータ処理に悪影響をお
よぼす。ここでブロック25の分力計算試験とは、エン
ジンの燃焼試験及び飛翔体への通風試験であり、6分力
を算出する為の元データの取得を目的とする。ブロック
26のデータ処理とは、分力試験により得られたデータ
から6分力(Fx,Fy,Fz,Mx,My,Mz)を
求める演算処理をいう。
This calculation error adversely affects the component force calculation test and data processing of blocks 25 and 26 thereafter. Here, the component force calculation test of the block 25 is a combustion test of the engine and a ventilation test to the flying object, and the purpose is to obtain original data for calculating the 6 component force. The data processing of the block 26 is an arithmetic processing for obtaining 6 component forces (Fx, Fy, Fz, Mx, My, Mz) from the data obtained by the component force test.

【0005】[0005]

【発明が解決しようとする課題】従来の技術では、校正
試験により求められる校正マトリックス[A]から、そ
の逆行列[A-1]を求める際に、有限桁数の演算による
演算誤差が生じる。逆行列として求められる誤差を含ん
だ逆行列[Am-1]を用いて校正試験以降の分力計測試
験及びデータ処理が行なわれる為、計測結果の精度にこ
の演算誤差が悪影響をおよぼすという問題がある。本発
明はこれらの問題を解決することができる6分力の計測
システムを提供することを目的とする。
In the prior art, when calculating the inverse matrix [A -1 ] of the calibration matrix [A] obtained by the calibration test, a calculation error occurs due to the calculation of a finite number of digits. Since the component force measurement test and the data processing after the calibration test are performed using the inverse matrix [Am -1 ] including the error obtained as the inverse matrix, there is a problem that this calculation error adversely affects the accuracy of the measurement result. is there. An object of the present invention is to provide a 6-component force measuring system that can solve these problems.

【0006】[0006]

【課題を解決するための手段】本発明に係る6分力の計
測システムは(イ)分力検出器1〜6と、(ロ)較正ボ
ックス9と、(ハ)シグナルコンディショナ10と
(ニ)処理用計算機11とを有し、前記処理用計算機1
1は、 [Fm]=[B][dE][Xmax ] (a) なる計算式で較正試験結果に対する演算誤差の影響を判
定する逆行列演算誤差判定プログラムを有し、計算上求
められる最大の誤差[Fm ]の各成分の絶対値を最大に
する各検出器の計測範囲[Xmax ]と、許容誤差の規定
値[C]と、検出器の位置を表わすデータ[B]を入力
するとともに、分力検出器1〜6からの検出信号を較正
ボックス9とシグナルコンディショナー10を介して入
力し、校正マトリックス[A]から逆行列を求める際の
演算誤差[dE]を、校正試験により求めた校正マトリ
ックス[A]と校正マトリックス[A]の計算誤差を有
する逆行列[Am-1]と単位マトリックス[E]に基づ
き [dE]=[Am-1][A]−[E] (b) なる計算式により算出し、計算上求められる最大誤差
[Fm]の各成分を(a)式から求めることを特徴とす
る。
A six-component force measuring system according to the present invention includes (a) component force detectors 1 to 6, (b) calibration box 9, (c) signal conditioner 10 and (d). ) Processing computer 11 and the processing computer 1
1 has an inverse matrix calculation error judgment program for judging the influence of the calculation error on the calibration test result by the calculation formula [Fm] = [B] [dE] [Xmax] (a), and has the maximum calculated value. While inputting the measurement range [Xmax] of each detector that maximizes the absolute value of each component of the error [Fm], the specified value [C] of the allowable error, and the data [B] representing the position of the detector, Calibration obtained by the calibration test by inputting the detection signals from the component force detectors 1 to 6 through the calibration box 9 and the signal conditioner 10 and calculating the calculation error [dE] when the inverse matrix is obtained from the calibration matrix [A]. [DE] = [Am -1 ] [A]-[E] (b) based on the inverse matrix [Am -1 ] having a calculation error between the matrix [A] and the calibration matrix [A] and the unit matrix [E]. Calculated according to the formula, And obtaining the respective components of the maximum error [Fm] obtained above from (a) expression.

【0007】[0007]

【作用】分力検出器1〜6と、較正ボックス9と、シグ
ナルコンディショナ10と処理用計算機11とを有し、
前記処理用計算機11は、 [Fm]=[B][dE][Xmax ] (a) なる計算式で較正試験結果に対する演算誤差の影響を判
定する逆行列演算誤差判定プログラムを有し、計算上求
められる最大の誤差[Fm]の各成分の絶対値を最大に
する各検出器の計測範囲[Xmax ]と、許容誤差の規定
値[C]と、検出器の位置を表わすデータ[B]を入力
するとともに、分力検出器1〜6からの検出信号を較正
ボックス9とシグナルコンディショナー10を介して入
力し、校正マトリックス[A]から逆行列を求める際の
演算誤差[dE]を [dE]=[Am-1][A]−[E] (b) なる計算式により算出し、式(a)により、計算上求め
られる最大の誤差[Fm]の各成分を算出する。従って
逆行列演算誤差を定量的に判断することが可能になる。
そのため計測結果の正確な評価に寄与することができ
る。
The component force detectors 1 to 6, the calibration box 9, the signal conditioner 10 and the processing computer 11 are provided,
The processing computer 11 has an inverse matrix operation error determination program for determining the influence of the operation error on the calibration test result by the formula [Fm] = [B] [dE] [Xmax] (a) The measurement range [Xmax] of each detector that maximizes the absolute value of each component of the maximum error [Fm] that is obtained, the specified value [C] of the allowable error, and the data [B] that represents the position of the detector In addition to the input, the detection signals from the component force detectors 1 to 6 are input via the calibration box 9 and the signal conditioner 10, and the calculation error [dE] when obtaining the inverse matrix from the calibration matrix [A] is [dE]. = [Am −1 ] [A] − [E] (b) The calculation is performed, and each component of the maximum error [Fm] calculated is calculated by the equation (a). Therefore, it becomes possible to quantitatively determine the inverse matrix calculation error.
Therefore, it can contribute to the accurate evaluation of the measurement result.

【0008】[0008]

【実施例】本発明の第1実施例を図1〜図3に基づいて
説明する。図1は本発明をロケットエンジンの推力計測
試験システムへ適用した際のシステム構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a system configuration diagram when the present invention is applied to a thrust measurement test system for a rocket engine.

【0009】図2はロケットの6分力の座標系を示す図
である。図3は第1実施例に係る計測システムのフロー
チャートである。ロケットエンジン7及び架台8間に取
付けられた分力検出器1〜6により検出された6分力
は、シグナルコンディショナ10を通して所要の電気信
号に変換され、処理用計算機11に取り込まれる。ここ
で取得された6分力のデータは、ロケットエンジン7の
ねじれ等の影響による干渉力が含まれている。そのた
め、図2に示す座標系についての独立した6分力成分を
計測するには得られたデータから、行列演算を用いてこ
れらの6分力成分(Fx,Fy,Fz,Mx,My,M
z)を計算する必要が有る。
FIG. 2 is a view showing a coordinate system of the six-component force of the rocket. FIG. 3 is a flowchart of the measurement system according to the first embodiment. The six component forces detected by the component force detectors 1 to 6 mounted between the rocket engine 7 and the gantry 8 are converted into a required electric signal through the signal conditioner 10 and taken into the processing computer 11. The data of the 6-component force acquired here includes the interference force due to the influence of the rocking of the rocket engine 7. Therefore, in order to measure the independent 6-component force components for the coordinate system shown in FIG. 2, the 6-component force components (Fx, Fy, Fz, Mx, My, M
z) needs to be calculated.

【0010】図3は第1実施例のフローチャートを示
す。図3において二重線部で描かれたブロックは逆行列
演算誤差を処理するブロックを示す。オペレータは処理
用計算機11を用いてブロック21で許容誤差の規定値
[C](6コの成分を持つベクトル)を入力する。規定
値[C]は[Fm](計算上求められる最大の誤差)が
許容出来るか否かの判定に使われる値であり、許容誤差
がP%である場合には、 [C]=p/100×(X1max ,X2max ,…X6ma
x ) により求められる。
FIG. 3 shows a flow chart of the first embodiment. In FIG. 3, a block drawn with a double line indicates a block that processes an inverse matrix calculation error. The operator inputs the specified value [C] of the allowable error (a vector having 6 components) in block 21 using the processing computer 11. The specified value [C] is a value used to determine whether [Fm] (the maximum error calculated) is permissible, and when the permissible error is P%, [C] = p / 100 × (X1max, X2max, ... X6ma
x).

【0011】判定は、[Fm]の各成分が、[C]の対
応した各成分の値以下であれば、精度上の問題は無いと
いうことになる。規定値[C]としては通常、計測範囲
の0.02%の値が使用される。この他にブロック21
では検出器の位置を表す行列[B]の他、試験に必要な
以下に述べるその他の設定値の入力が行なわれる。その
他の設定値の入力とは校正試験を実施する上で必要とな
るデータであり、例えば、試験開始・終了時刻、試験計
測時間、模擬荷重パターン(時系列データ)、検出器
(ロードセル等)の固有データ(補正曲線の係数)、気
温、等をいう。
The judgment is that there is no problem in accuracy if each component of [Fm] is less than or equal to the value of each corresponding component of [C]. A value of 0.02% of the measurement range is usually used as the specified value [C]. Besides this, block 21
In addition to the matrix [B] representing the position of the detector, other setting values described below necessary for the test are input. The input of other set values is the data necessary for carrying out the calibration test. For example, test start / end time, test measurement time, simulated load pattern (time series data), detector (load cell, etc.) Unique data (correction curve coefficient), temperature, etc.

【0012】ブロック22では、校正マトリックス
[A]を求める為の校正試験が行なわれ、又、その結果
である校正マトリックス[A]に対する逆行列として
[Am-1](演算誤差含む逆行列。)が処理用計算機1
1により求められる。ここで校正試験とは6分力計算試
験(飛翔体,ロケットエンジン等の噴射試験)を行なう
前に実施される試験であり、通常、油圧機器等で模擬的
に力を供試体に加えることにより、各軸(6軸)の相互
干渉を計測し、校正マトリックス及びその逆行列を求め
ることを主旨とする試験をいう。
In block 22, a calibration test for obtaining the calibration matrix [A] is performed, and [Am -1 ] (inverse matrix including calculation error) as an inverse matrix for the resulting calibration matrix [A]. Is a processing computer 1
It is calculated by 1. Here, the calibration test is a test that is performed before the 6-component force calculation test (injection test of a flying vehicle, rocket engine, etc.), and is usually performed by applying a force to the test sample in a simulated manner with hydraulic equipment. , A test whose main purpose is to measure the mutual interference of each axis (6 axes) and obtain the calibration matrix and its inverse matrix.

【0013】次に、ブロック23では図5に記載したS
−1詳細の式(1)〜(3)の計算処理を実施し、以下
に述べる式により、計算上求められる最大誤差[Fm]
を求める。
Next, in block 23, S shown in FIG.
-1 The maximum calculation error [Fm] obtained by carrying out the calculation process of the detailed formulas (1) to (3) and using the formula described below.
Ask for.

【0014】[0014]

【数1】 [Equation 1]

【0015】[0015]

【数2】 [Equation 2]

【0016】[0016]

【数3】 [Equation 3]

【0017】そしてブロック23で求めた[Fm]とブ
ロック21で入力した許容誤差[C]を定量的に比較す
る事により、逆行列演算時の誤差の悪影響を回避する事
が可能になる。
By quantitatively comparing the [Fm] obtained in the block 23 with the allowable error [C] input in the block 21, it is possible to avoid the adverse effect of the error in the inverse matrix calculation.

【0018】ブロック25では、供試体であるロケット
エンジン7を燃焼させ、データの取得を行なう。ブロッ
ク26では、ブロック25で得られたデータから6分力
を算出する演算処理を実施する。
In block 25, the rocket engine 7, which is the test piece, is burned to acquire data. In block 26, arithmetic processing for calculating the 6-component force from the data obtained in block 25 is performed.

【0019】前述のように本発明システムでは、処理用
計算機上で動作するプログラムに逆行列演算誤差判定プ
ログラムを追加することにより、オペレータが校正試験
結果に対する演算誤差の影響を定量的に判断する事を可
能とした。そのための演算誤差の判定プログラムの計算
式は、式(8)に示す通りである。すなわち、 [Fm]=[B][dE][Xmax ] ただし、 [Fm];各軸(Fx,Fy,Fz,Mx,My,M
z)に憂慮される演算誤差の最大値で、6つの成分を持
つベクトル。
As described above, in the system of the present invention, the operator can quantitatively judge the influence of the calculation error on the calibration test result by adding the inverse matrix calculation error judgment program to the program operating on the processing computer. Made possible. The calculation formula of the calculation program of the calculation error for that is as shown in Formula (8). That is, [Fm] = [B] [dE] [Xmax] where [Fm]; each axis (Fx, Fy, Fz, Mx, My, M
z) A vector with 6 components, which is the maximum value of calculation error.

【0020】[B];検出器の位置を表わした6行6列
の行列式。 [dE];校正マトリックスを[A],[A]の逆行列
として処理用コンピュータ内にて演算された結果の行列
を[Am-1]とした場合、その積[Am-1][A]の値
は、[Am-1][A]=[E]+[dE]で表わされ
る。([E]は単位行列)これは、計算機による演算で
は有限桁数で計算される為、この[Am-1]は、[A]
の真の逆行列[A-1]とは異なるため、誤差を生じてし
まうからである。つまり、[dE]は6行6列の行列で
あり単位行列[E]からの誤差を表した行列である。
[B]: A determinant of 6 rows and 6 columns representing the position of the detector. [DE]; When the matrix obtained as a result of calculation in the processing computer by using the calibration matrix as an inverse matrix of [A] and [A] is [Am -1 ], its product [Am -1 ] [A] The value of is represented by [Am −1 ] [A] = [E] + [dE]. ([E] is an identity matrix) This is calculated by a computer with a finite number of digits, so this [Am -1 ] is [A]
This is because an error occurs because it is different from the true inverse matrix [A -1 ] of. That is, [dE] is a matrix of 6 rows and 6 columns, and is a matrix showing an error from the unit matrix [E].

【0021】[Xmax ];各検出器の計測範囲の最大値
で6コの成分を持つベクトル。 この様に[Fm]を算出し、処理用計算機上に表示させ
る事により、オペレータは定量的に逆行列演算時の誤差
を評価することが出来る。
[Xmax]: Vector having 6 components at the maximum value of the measurement range of each detector. By thus calculating [Fm] and displaying it on the processing computer, the operator can quantitatively evaluate the error in the inverse matrix calculation.

【0022】[0022]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)逆行列演算誤差判定機能を有するため、6分力計
測試験以前に、逆行列演算誤差を定量的に判断すること
ができる。 (2)そのため多額の費用がかかる分力計測試験の再行
を回避することができ、試験費用の低減をはかることが
できる。 (3)計測結果の正確な評価の向上に寄与することがで
きる。
Since the present invention is constructed as described above, it has the following effects. (1) Since it has the inverse matrix operation error determination function, it is possible to quantitatively determine the inverse matrix operation error before the 6-component force measurement test. (2) Therefore, it is possible to avoid re-execution of the component force measurement test, which requires a large amount of cost, and it is possible to reduce the test cost. (3) It can contribute to the improvement of accurate evaluation of measurement results.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る計測システムの構成
図。
FIG. 1 is a configuration diagram of a measurement system according to a first embodiment of the present invention.

【図2】ロケットの6分力の座標系を示す図。FIG. 2 is a diagram showing a 6-component force coordinate system of the rocket.

【図3】第1実施例に係る計測システムのフローチャー
ト。
FIG. 3 is a flowchart of the measurement system according to the first embodiment.

【図4】図3のブロック21における入力の説明図。4 is an explanatory diagram of inputs in block 21 in FIG. 3. FIG.

【図5】図3のブロック23における計算を示す図。5 is a diagram showing the calculation in block 23 of FIG. 3;

【図6】従来の計測システムを示す図。FIG. 6 is a diagram showing a conventional measurement system.

【図7】従来の計測システムのフローチャート。FIG. 7 is a flowchart of a conventional measurement system.

【符号の説明】 1〜6;分力検出器 7 ;供試体 8 ;架台 9 ;分力検出用較正ボックス 10 ;シグナルコンディショナー 11,110;処理用計算機 21〜26;プログラムフローチャートにおける各種処
理ブロック
[Explanation of reference signs] 1 to 6; component force detector 7; specimen 8; pedestal 9; component force detection calibration box 10; signal conditioner 11, 110; processing calculators 21 to 26; various processing blocks in program flow chart

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 6分力の計測システムにおいて、(イ)
分力検出器(1〜6)と、(ロ)較正ボックス(9)
と、(ハ)シグナルコンディショナ(10)と(ニ)処
理用計算機(11)とを有し、 前記処理用計算機(11)は、 [Fm]=[B][dE][Xmax ] (a) なる計算式で較正試験結果に対する演算誤差の影響を判
定する逆行列演算誤差判定プログラムを有し、計算上求
められる最大の誤差[Fm]の各成分の絶対値を最大に
する各検出器の計測範囲[Xmax ]と、許容誤差の規定
値[C]と、検出器の位置を表わすデータ[B]を入力
するとともに、分力検出器(1〜6)からの検出信号を
較正ボックス(9)とシグナルコンディショナー(1
0)を介して入力し、校正マトリックス[A]から逆行
列を求める際の演算誤差[dE]を、校正試験により求
めた校正マトリックス[A]と校正マトリックス[A]
の計算誤差を有する逆行列[Am-1]と単位マトリック
ス[E]に基づき [dE]=[Am-1][A]−[E] (b) なる計算式により算出し、計算上求められる最大誤差
[Fm]の各成分を(a)式から求めることを特徴とす
る6分力の計測システム。
1. A six-component force measuring system comprising:
Component force detectors (1-6) and (b) Calibration box (9)
And (c) a signal conditioner (10) and (d) a processing computer (11), wherein the processing computer (11) is [Fm] = [B] [dE] [Xmax] (a ) An inverse matrix calculation error judgment program for judging the influence of a calculation error on the calibration test result with the following formula, and for each detector that maximizes the absolute value of each component of the maximum error [Fm] calculated The measurement range [Xmax], the specified value [C] of the allowable error, and the data [B] representing the position of the detector are input, and the detection signals from the component force detectors (1 to 6) are input to the calibration box (9). ) And signal conditioner (1
0), the calculation error [dE] when the inverse matrix is calculated from the calibration matrix [A] is calculated by the calibration matrix [A] and the calibration matrix [A].
Based on the inverse matrix [Am -1 ] having the calculation error of and the unit matrix [E], [dE] = [Am -1 ] [A]-[E] (b) A 6-component force measuring system characterized in that each component of the maximum error [Fm] is obtained from the equation (a).
JP4265894A 1994-03-14 1994-03-14 Measuring system of six component forces Withdrawn JPH07253370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4265894A JPH07253370A (en) 1994-03-14 1994-03-14 Measuring system of six component forces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4265894A JPH07253370A (en) 1994-03-14 1994-03-14 Measuring system of six component forces

Publications (1)

Publication Number Publication Date
JPH07253370A true JPH07253370A (en) 1995-10-03

Family

ID=12642118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4265894A Withdrawn JPH07253370A (en) 1994-03-14 1994-03-14 Measuring system of six component forces

Country Status (1)

Country Link
JP (1) JPH07253370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098358A1 (en) * 2009-02-26 2010-09-02 国立大学法人岐阜大学 Upper limb motion assist device
KR101494291B1 (en) * 2013-09-17 2015-02-17 국방과학연구소 Thrust & side-force measuring-device of thruster with rotary-type-valve and measuring-method thereof
CN105446318A (en) * 2015-12-10 2016-03-30 中国电子科技集团公司第三十二研究所 Portable measurement and control equipment suitable for carrier rocket flight control system
CN108953004A (en) * 2018-03-23 2018-12-07 西安航天动力试验技术研究所 A kind of high-thrust rocket lateral force test predictor method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098358A1 (en) * 2009-02-26 2010-09-02 国立大学法人岐阜大学 Upper limb motion assist device
JPWO2010098358A1 (en) * 2009-02-26 2012-09-06 国立大学法人岐阜大学 Upper limb movement assist device
JP5493110B2 (en) * 2009-02-26 2014-05-14 国立大学法人三重大学 Upper limb movement assist device
KR101494291B1 (en) * 2013-09-17 2015-02-17 국방과학연구소 Thrust & side-force measuring-device of thruster with rotary-type-valve and measuring-method thereof
CN105446318A (en) * 2015-12-10 2016-03-30 中国电子科技集团公司第三十二研究所 Portable measurement and control equipment suitable for carrier rocket flight control system
CN108953004A (en) * 2018-03-23 2018-12-07 西安航天动力试验技术研究所 A kind of high-thrust rocket lateral force test predictor method
CN108953004B (en) * 2018-03-23 2019-11-19 西安航天动力试验技术研究所 A kind of high-thrust rocket lateral force test predictor method

Similar Documents

Publication Publication Date Title
EP3267167B1 (en) Residual stress estimation method and residual stress estimation device
CN107430637B (en) Residual stress estimation method and residual stress estimation device
JP2006528347A (en) Method for determining a contact force vector acting on a rolling element bearing and sensor device therefor
JP2604036B2 (en) Engine test control device
JP3897477B2 (en) Stress-strain relationship simulation method and springback amount prediction method
CN106156386A (en) A kind of slow test for housing reinforced structure and predicting method
GB2107878A (en) Vehicle force measurement system
JPH07253370A (en) Measuring system of six component forces
JP2003232688A (en) Two-dimensional stress field measuring system and two- dimensional stress field measuring program
WO2023104352A1 (en) Method of determining the static stiffness of a body structure, system
US20030114998A1 (en) Apparatus, program product and method of estimating the stress intensity factor ratio of a material
JP3279756B2 (en) Quantitative calculator
JP2689298B2 (en) CAD measurement data display device
JPH10325787A (en) Material-testing machine
Gavrus et al. The analysis of inelastic behaviour formulated as an inverse rheological approach
EP4089388A1 (en) Computer implemented method of determining a transfer function of a module or a component and generating such component
Marques dos Santos et al. Strain-based experimental modal analysis on planar structures: Concepts and practical aspects
JPH0425563B2 (en)
JP3167079B2 (en) Method and apparatus for measuring stress distribution in member having notch or opening
JP2004132901A (en) Component force measuring apparatus
JPS5846701B2 (en) Aeon Sen Taxiden Kiyoku Omochi Tabun Sekisouchi
JPH01267429A (en) Measurement of multiple component forces
Reuter et al. Introduction to “Realistic Simulation of real CT systems with a basic-qualified Simulation Software-CTSimU2 “
Balaji et al. Fatigue sensitivity analysis technique for developing accelerated durability test load cycles based on damage prediction from CAE model
JPH04169831A (en) Method for testing multiaxial load detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605