JPH07252559A - Ti-base amorphous alloy - Google Patents
Ti-base amorphous alloyInfo
- Publication number
- JPH07252559A JPH07252559A JP4444194A JP4444194A JPH07252559A JP H07252559 A JPH07252559 A JP H07252559A JP 4444194 A JP4444194 A JP 4444194A JP 4444194 A JP4444194 A JP 4444194A JP H07252559 A JPH07252559 A JP H07252559A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- amorphous
- amorphous alloy
- powder
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、Ti系非晶質合金に
関するものである。さらに詳しくは、この発明は、優れ
た非晶質形成能と高強度を有するTi系非晶質合金に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ti-based amorphous alloy. More specifically, the present invention relates to a Ti-based amorphous alloy having excellent amorphous forming ability and high strength.
【0002】[0002]
【従来の技術】従来より、溶融状態の合金を急冷するこ
とにより種々の組成と形状からなる非晶質合金材料が得
られることが知られている。一般に、この非晶質合金
は、容易に高い冷却速度が実現される単ロール法によっ
て製造される場合が多く、これまでにFe系、Ni系、
Co系、Al系、Zr系あるいはTi系合金について、
数多くの非晶質合金材料が得られている。なかでも、T
i系非晶質合金は、Fe系非晶質合金に比べて格段に優
れた耐食性を有し、人体への適用性(安全性)も高く、
かつAl系非晶質合金に比べて150℃以上も高い結晶
化温度を有して高い熱的安定性を示すことから、従来の
Fe系やAl系非晶質合金とは異なった新しいタイプの
非晶質合金材料として種々の分野への応用が期待されて
いる。2. Description of the Related Art It is conventionally known that an amorphous alloy material having various compositions and shapes can be obtained by rapidly cooling a molten alloy. In general, this amorphous alloy is often manufactured by a single roll method that easily realizes a high cooling rate.
For Co-based, Al-based, Zr-based or Ti-based alloys,
Many amorphous alloy materials have been obtained. Above all, T
The i-based amorphous alloy has significantly better corrosion resistance than the Fe-based amorphous alloy, and has high applicability (safety) to the human body.
In addition, since it has a high crystallization temperature of 150 ° C. or more as compared with an Al-based amorphous alloy and exhibits high thermal stability, it is a new type of alloy different from conventional Fe-based or Al-based amorphous alloys. Application to various fields is expected as an amorphous alloy material.
【0003】しかし、単ロール法によって作製できるT
i系非晶質合金の形状は、薄帯に限られており、薄帯形
状のままでは応用範囲が限定されるため、種々の固化技
術によりバルク材料へと成形加工することが求められて
いるが、薄帯状非晶質合金では固化技術を適用すること
が容易ではなく、工業的に固化技術の適用が容易な粉末
状のTi系非晶質合金が求められている。However, T which can be produced by the single roll method
Since the shape of the i-type amorphous alloy is limited to a ribbon, and the application range is limited if the ribbon shape remains as it is, it is required to perform forming processing into a bulk material by various solidification techniques. However, it is not easy to apply the solidification technique to the ribbon-shaped amorphous alloy, and a powdery Ti-based amorphous alloy to which the solidification technique is easily applied is demanded industrially.
【0004】[0004]
【発明が解決しようとする課題】一般に、固化技術の適
応が容易な粉末状の非晶質合金は、アトマイズ法により
製造され、Al、Ti、希土類などの活性金属元素を含
む合金系の場合は、清浄なArやHeなどの不活性ガス
を用いる高圧ガスアトマイズ法により製造することがで
きる。Generally, powdery amorphous alloys to which solidification technology can be easily applied are produced by an atomizing method, and in the case of an alloy system containing active metal elements such as Al, Ti and rare earths, It can be manufactured by a high pressure gas atomizing method using a clean inert gas such as Ar or He.
【0005】しかしながら、気体冷媒を用いる高圧ガス
アトマイズ法では、清浄な表面を有した球状粉末を容易
に作製することができるが、前述した単ロール法に比べ
て冷却速度が小さく、単ロール法によって厚さ30μm
程度のTi系非晶質合金が作製できる合金組成を用いて
アトマイズを行っても、非晶質単相からなるTi系非晶
質合金粉末が得られないという問題があった。However, in the high pressure gas atomizing method using a gas refrigerant, spherical powder having a clean surface can be easily produced, but the cooling rate is smaller than that in the above-mentioned single roll method, and the single roll method can increase the thickness. 30 μm
Even if the atomization is performed using an alloy composition capable of producing a Ti-based amorphous alloy to some extent, there is a problem that a Ti-based amorphous alloy powder consisting of an amorphous single phase cannot be obtained.
【0006】この発明は、以上の通りの事情に鑑みてな
されたものであって、冷却速度が遅いガスアトマイズ法
を用いた場合でも、非晶質形成能に優れて容易に非晶質
合金を得ることができ、しかも、高強度を有するTi系
非晶質合金を提供することを目的としている。The present invention has been made in view of the circumstances as described above, and even when a gas atomizing method having a slow cooling rate is used, an amorphous alloy is easily obtained and an amorphous alloy is easily obtained. It is an object of the present invention to provide a Ti-based amorphous alloy that is capable of achieving high strength.
【0007】[0007]
【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、原子%による組成が、組成式T
i100-Y-Z TY MZ (式中、TはNi,Co,Feから
選ばれる1種または2種以上の元素であり、MはZrお
よびHfから選ばれる1種または2種の元素であり、Y
およびZはそれぞれ、25≦Y≦55、10≦Z≦4
5、55≦Y+Z≦90である)により表わされること
を特徴とするTi系非晶質合金を提供するものである。In order to solve the above-mentioned problems, the present invention has a composition expressed in atomic% as a composition formula T
i 100-YZ T Y M Z (wherein T is one or more elements selected from Ni, Co and Fe, and M is one or two elements selected from Zr and Hf. , Y
And Z are 25 ≦ Y ≦ 55 and 10 ≦ Z ≦ 4, respectively.
5, 55 ≦ Y + Z ≦ 90), a Ti-based amorphous alloy is provided.
【0008】すなわち、この発明は、Ti−(Ni,C
o,Fe)−(Zr,Hf)系合金において、その組成
を上記の通りに特定化することにより、非晶質形成能に
優れ、高強度を有するTi系非晶質合金が得られるとい
う新しい知見に基づいている。さらに詳しくこの発明に
ついて説明すると、まず、その合金組成については、冷
却速度が遅いガスアトマイズ法を用いても、容易にTi
系非晶質合金が得られるような優れた非晶質形成能を得
るために、Ni、CoおよびFeから選ばれる1種また
は2種以上の元素の含有量が25原子%以上55原子%
以下とする。さらに好ましくは30原子%以上45原子
%以下である。Ni,CoおよびFeから選ばれる1種
または2種以上の元素の含有量が25原子%未満あるい
は55原子%を越えると、非晶質形成能が低下し、ガス
アトマイズ法の中で比較的高い冷却速度が得られる高圧
ガスアトマイズ法を用いて粒径25μm以下の微粉末を
作製しても、非晶質単相の合金粉末を得ることが難しく
なる。That is, the present invention is directed to Ti- (Ni, C
In the (o, Fe)-(Zr, Hf) -based alloy, by specifying the composition as described above, a new Ti-based amorphous alloy having excellent amorphous forming ability and high strength can be obtained. Based on knowledge. The present invention will be described in more detail. First, regarding the alloy composition, even if a gas atomization method with a slow cooling rate is used, Ti is easily
In order to obtain an excellent amorphous forming ability such that a system amorphous alloy can be obtained, the content of one or more elements selected from Ni, Co and Fe is 25 atomic% or more and 55 atomic% or more.
Below. More preferably, it is 30 atomic% or more and 45 atomic% or less. When the content of one or more elements selected from Ni, Co and Fe is less than 25 atom% or more than 55 atom%, the amorphous forming ability is lowered and the cooling is relatively high in the gas atomizing method. Even if a fine powder having a particle size of 25 μm or less is produced by using a high pressure gas atomizing method capable of obtaining a high speed, it becomes difficult to obtain an amorphous single-phase alloy powder.
【0009】また、ZrまたはHfから選ばれる1種ま
たは2種の元素の含有量としては、10原子%以上45
原子%以下であることが必要である。さらに好ましくは
15原子%以上35原子%以下である。ZrまたはHf
から選ばれる1種または2種の元素の含有量が10原子
%未満あるいは45原子%を越えると、非晶質形成能が
低下し、高圧ガスアトマイズ法を用いて粒径25μm以
下の球状微粉末を作製しても、非晶質単相の合金粉末を
得ることが難しくなる。The content of one or two elements selected from Zr or Hf is 10 atomic% or more and 45
It must be atomic% or less. More preferably, it is not less than 15 atom% and not more than 35 atom%. Zr or Hf
When the content of one or two elements selected from the following is less than 10 atomic% or exceeds 45 atomic%, the amorphous forming ability is lowered, and spherical fine powder having a particle diameter of 25 μm or less is produced by the high pressure gas atomization method. Even if produced, it becomes difficult to obtain an amorphous single-phase alloy powder.
【0010】さらに、この発明においては、Ni,C
o,Feから選ばれる1種または2種の元素の含有量
と、ZrまたはHfから選ばれる1種または2種の元素
の含有量との合計が、55原子%以上90原子%以下で
あることが必要である。これらの元素の合計含有量が5
5原子%未満あるいは90原子%を越える場合には、非
晶質形成能が低下し、高圧ガスアトマイズ法を用いて液
体状態から急冷固化しても、球状のTi系非晶質合金粉
末を得ることが難しくなり、この発明の目的を達成する
ことができなくなる。Further, in the present invention, Ni, C
The sum of the content of one or two elements selected from o and Fe and the content of one or two elements selected from Zr or Hf is 55 atomic% or more and 90 atomic% or less. is necessary. The total content of these elements is 5
If it is less than 5 atomic% or more than 90 atomic%, the amorphous forming ability is lowered, and a spherical Ti-based amorphous alloy powder is obtained even if it is rapidly solidified from a liquid state by using a high pressure gas atomizing method. It becomes difficult to achieve the object of the present invention.
【0011】そして、この発明の優れた非晶質形成能を
備えたTi系非晶質合金は、溶融状態から種々の液体や
気体の冷媒を用いるアトマイズ法により冷却固化させる
ことにより、非晶質単相からなる球状粉末として得るこ
とができるが、そのような球状粉末の作製には、特に清
浄なArやHeなどの不活性ガスを用いる高圧ガスアト
マイズ法が適している。また、種々の焼き入れオイルや
シリコンオイルを冷媒に用いた液体アトマイズ法ならび
に回転液中噴霧法などによっても、この発明の合金組成
からなるTi系非晶質合金粉末を得ることができる。な
お、これらのアトマイズ法によって、本発明のTi−Z
r系合金を製造する場合、従来から各製造法で用いられ
ている製造条件を採用することにより、容易にTi系非
晶質合金粉末を作製することができる。たとえば、高圧
ガスアトマイズ法においては、この発明による合金を、
アルゴン雰囲気中にて、ストッパーと孔径0.5〜5.
0mmのセラミックスノズルを備えたセラミックスルツ
ボで溶融した後、アルゴン雰囲気中に噴出圧0.2〜
5.0kg/cm2 でノズルから溶湯を押し出し、30
〜200kg/cm2 の圧力で噴出させたArなどの不
活性ガスでアトマイズすることにより、球状のTi系の
非晶質合金粉末を得ることができる。The Ti-based amorphous alloy of the present invention having an excellent amorphous forming ability is amorphous by cooling and solidifying from a molten state by an atomizing method using various liquid or gas refrigerants. Although it can be obtained as a spherical powder having a single phase, a high-pressure gas atomization method using a clean inert gas such as Ar or He is particularly suitable for producing such spherical powder. Further, the Ti-based amorphous alloy powder having the alloy composition of the present invention can also be obtained by a liquid atomizing method using various quenching oils or silicone oils as a refrigerant, a rotating liquid atomizing method, and the like. In addition, the Ti-Z of the present invention is obtained by these atomizing methods.
When an r-based alloy is manufactured, the Ti-based amorphous alloy powder can be easily manufactured by adopting the manufacturing conditions conventionally used in each manufacturing method. For example, in the high pressure gas atomizing method, the alloy according to the present invention is
Stopper and hole diameter 0.5-5.
After being melted in a ceramic crucible equipped with a 0 mm ceramic nozzle, a spout pressure of 0.2 to
Extrude the molten metal from the nozzle at 5.0 kg / cm 2 for 30
By atomizing with an inert gas such as Ar ejected at a pressure of up to 200 kg / cm 2 , a spherical Ti-based amorphous alloy powder can be obtained.
【0012】さらに、この発明のTi系非晶質合金にお
いては、優れた非晶質形成能を得るために、粉末状とし
てでなく、前記以外の液体急冷法である単ロール法、双
ロール法あるいは回転液中紡糸法などを用いて、薄帯状
やフィラメント状など種々の形状を有するものとして容
易に得ることもできる。Further, in the Ti-based amorphous alloy of the present invention, in order to obtain an excellent amorphous forming ability, a single roll method or a twin roll method, which is a liquid quenching method other than the above, is used in place of the powder form. Alternatively, it can be easily obtained as a ribbon having various shapes such as a ribbon shape or a filament shape by using a spinning submerged spinning method or the like.
【0013】[0013]
【作用】以上の通り、特定の組成によるTi−(Ni,
Co,Fe)−(Zr,Hf)系合金とすることによ
り、これまで非晶質単相からなる粉末を得ることが困難
であったTi系非晶質合金を、冷却速度の遅いガスアト
マイズ法を用いた場合でも容易に得ることができ、ま
た、この粉末に限定されずに、非晶質形成能に優れた、
高強度のTi系非晶質合金が実現される。As described above, Ti- (Ni, Ni,
By using a Co, Fe)-(Zr, Hf) -based alloy, a Ti-based amorphous alloy, which has been difficult to obtain a powder consisting of an amorphous single phase, is subjected to a gas atomization method with a slow cooling rate. It can be easily obtained even when used, and is not limited to this powder, and has excellent amorphous forming ability,
A high-strength Ti-based amorphous alloy is realized.
【0014】[0014]
【実施例】次に、実施例及び比較例によりこの発明の非
晶質合金をさらに具体的に説明する。実施例1〜18比較例1〜16 表1(実施例1〜18)並びに表2(比較例1〜16)
に示す各組成からなる合金を、アルゴン雰囲気中にて、
BN製のストッパーと孔径2.0mmのBNノズルを下
部に備えたBNルツボ中で300g溶融した。その後、
1600℃にてストッパーを上げると同時にアルゴン雰
囲気中に噴出圧0.5kg/cm2 でノズルから溶湯を
押し出し、溶湯となす角を45度にして配置された18
個の直径1mmの高圧ガスアトマイズノズルから100
kg/cm2 の圧力で噴出させた4NのArガスにより
アトマイズを行い、平均粒径35μmの球状のTi系の
合金粉末を作製した。EXAMPLES Next, the amorphous alloy of the present invention will be described more specifically by way of Examples and Comparative Examples. Examples 1-18 Comparative Examples 1-16 Table 1 (Examples 1-18) and Table 2 (Comparative Examples 1-16)
In an argon atmosphere, an alloy having each composition shown in
300 g was melted in a BN crucible equipped with a BN stopper and a BN nozzle having a hole diameter of 2.0 mm at the bottom. afterwards,
At the same time as raising the stopper at 1600 ° C., the molten metal was extruded from the nozzle at a jet pressure of 0.5 kg / cm 2 in an argon atmosphere, and the angle formed with the molten metal was 45 degrees.
100 from a high pressure gas atomizing nozzle with a diameter of 1 mm
Atomization was performed with 4N Ar gas ejected at a pressure of kg / cm 2 to produce spherical Ti-based alloy powder having an average particle diameter of 35 μm.
【0015】得られた粉末を25μm以下、25〜44
μm、44〜63μm、63〜90μmおよび90μm
以上の各粒度に分級し、それぞれの粒度の粉末について
非晶質相の同定をX線回折法により行った。なお、組織
の判定は、X線回折法により非晶質単相が得られた場合
に非晶質と判定し、非晶質と結晶質とが混在する場合は
結晶質と判定した。その結果も表1並びに表2に示し
た。The obtained powder is 25 μm or less, 25-44
μm, 44-63 μm, 63-90 μm and 90 μm
The particles were classified into the above particle sizes, and the amorphous phase was identified in the powder of each particle size by the X-ray diffraction method. The texture was determined to be amorphous when an amorphous single phase was obtained by the X-ray diffraction method, and crystalline when amorphous and crystalline were mixed. The results are also shown in Tables 1 and 2.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】この表1より、実施例1〜18の合金粉末
は、この発明による合金組成からなり、非晶質形成能に
優れるため、63μm以下の球状粉末においていずれも
非晶質単相からなるTi系非晶質合金粉末が得られてい
ることがわかる。それに対して、表2に示した通り、比
較例1〜4は、ZrおよびHfが本発明の組成からはず
れているため、非晶質形成能が低下し、25μmの微粉
末においても非晶質単相が得られなかった。また、比較
例5および6はNi含有量が、比較例7および8はFe
の含有量が、さらに比較例9および10はCo含有量が
それぞれこの発明の組成からはずれているため、非晶質
形成能が低下し25μmの微粉末においても非晶質単相
が得られなかった。さらに、比較例11〜16はCo,
Fe,Niから選ばれる1種または2種以上の元素と、
ZrまたはHfから選ばれる 1または2種の元素の合
計含有量が、この発明の組成範囲外であるため、非晶質
形成能が低下し、25μmの微粉末においても非晶質単
相が得られなかった。実施例19〜24比較例17 表3に示す各種組成からなる合金を、石英管中でアルゴ
ン雰囲気中にて溶融した後、孔径0.5mmの石英製ノ
ズルを用い、アルゴン雰囲気中で、3000rpmで回
転している直径20cm程度の銅ロール上に噴出圧0.
3kg/cm2で溶融金属を噴出させ、急冷凝固させて
幅3mm、厚さ30μmの連続した急冷薄帯を作製し
た。次に、作製したこれらの薄帯の組織(非晶質相の同
定)および強度を測定した。その結果も表3に示した。
なお、強度については、インストロン型引っ張り試験機
により長さ30mmの急冷薄帯について4.2×10-4
の歪速度で引張り試験を行って求めた。From Table 1, the alloy powders of Examples 1 to 18 have the alloy compositions according to the present invention and are excellent in amorphous forming ability. Therefore, spherical powders of 63 μm or less all have an amorphous single phase. It can be seen that Ti-based amorphous alloy powder is obtained. On the other hand, as shown in Table 2, in Comparative Examples 1 to 4, since Zr and Hf deviated from the composition of the present invention, the amorphous forming ability was lowered, and even the fine powder of 25 μm was amorphous. No single phase was obtained. Further, Comparative Examples 5 and 6 have a Ni content, and Comparative Examples 7 and 8 have Fe contents.
In Comparative Examples 9 and 10, the Co content deviates from the composition of the present invention, so that the amorphous forming ability is deteriorated and an amorphous single phase cannot be obtained even with a fine powder of 25 μm. It was Furthermore, in Comparative Examples 11 to 16, Co,
One or more elements selected from Fe and Ni,
Since the total content of 1 or 2 elements selected from Zr or Hf is out of the composition range of the present invention, the amorphous forming ability is lowered, and an amorphous single phase is obtained even in a fine powder of 25 μm. I couldn't do it. Examples 19 to 24 Comparative Example 17 After alloys having various compositions shown in Table 3 were melted in a quartz tube in an argon atmosphere, a quartz nozzle having a hole diameter of 0.5 mm was used, and the temperature was 3000 rpm in an argon atmosphere. Ejection pressure of 0.
Molten metal was jetted at 3 kg / cm 2 and rapidly solidified to prepare a continuous quenched ribbon having a width of 3 mm and a thickness of 30 μm. Next, the texture (identification of amorphous phase) and strength of these produced ribbons were measured. The results are also shown in Table 3.
Regarding the strength, an Instron type tensile tester was used to measure 4.2 × 10 −4 for a quenched ribbon having a length of 30 mm.
The strain rate was determined by conducting a tensile test.
【0019】[0019]
【表3】 [Table 3]
【0020】この表3より明らかなごとく、比較例17
はTi−Ni−Cu系の従来のTi系非晶質合金であ
り、この発明の合金ではないため、冷却速度の高い単ロ
ール法を用いてたとえ非晶質合金を作製しても1000
MPa以下の強度しか得られず、実用に供することはで
きない。これに対し、実施例19〜24の本発明の非晶
質合金は、1200MPaを越える強度が得られ、従来
のTi系非晶質合金に比べて優れた強度を有している。As is clear from Table 3, Comparative Example 17
Is a conventional Ti-based amorphous alloy of Ti-Ni-Cu system and is not the alloy of the present invention. Therefore, even if an amorphous alloy is produced by using a single roll method with a high cooling rate, 1000
Only the strength of MPa or less can be obtained and it cannot be put to practical use. On the other hand, the amorphous alloys of Examples 19 to 24 according to the present invention have strengths exceeding 1200 MPa, which is superior to the conventional Ti-based amorphous alloys.
【0021】[0021]
【発明の効果】以上詳しく説明した通り、この発明のT
i系非晶質合金の場合には、非晶質形成能に優れるた
め、単ロール法に比べて冷却速度の遅いガスアトマイズ
法を用いても、容易に非晶質単相の球状粉末を高収率で
得ることができる。また、容易に球状非晶質粉末を得る
ことができるため、種々の固化技術を用いてバルク状に
成形加工を行うことができ、種々の形状のTi系非晶質
合金を提供することができる。As described in detail above, the T of the present invention
Since the i-type amorphous alloy has excellent amorphous forming ability, even if the gas atomizing method, which has a slower cooling rate than the single-roll method, is used, it is easy to obtain a high yield of amorphous single-phase spherical powder. You can get at a rate. Further, since the spherical amorphous powder can be easily obtained, it can be formed into a bulk shape by using various solidification techniques, and a Ti-based amorphous alloy having various shapes can be provided. .
【0022】また、この発明のTi系非晶質合金は、従
来のTi系非晶質合金に比べて優れた強度を有するた
め、種々の工業用材料に利用することができる。Further, since the Ti-based amorphous alloy of the present invention has a strength superior to that of the conventional Ti-based amorphous alloy, it can be used for various industrial materials.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 網谷 健児 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 吉井 勇 宮城県仙台市宮城野区清水沼2丁目13−22 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihisa Inoue Kawauchi Mubanji, Aoba-ku, Sendai City, Miyagi Prefecture Kawauchi 11-806 (72) Inventor Kenji Amitani 23, Uji Kozakura, Uji City, Kyoto Unitika Stock Company Central Research In-house (72) Inventor Isamu Yoshii 2-13-22, Shimizunuma, Miyagino-ku, Sendai-shi, Miyagi
Claims (1)
100-Y-Z TY MZ (式中、TはNi,Co,Feから選
ばれる1種または2種以上の元素であり、MはZrおよ
びHfから選ばれる1種または2種の元素であり、Yお
よびZはそれぞれ、25≦Y≦55、10≦Z≦45、
55≦Y+Z≦90である)により表されることを特徴
とするTi系非晶質合金。1. The composition expressed in atomic% is Ti
100-YZ T Y M Z (In the formula, T is one or more elements selected from Ni, Co and Fe, M is one or two elements selected from Zr and Hf, Y and Z are respectively 25 ≦ Y ≦ 55, 10 ≦ Z ≦ 45,
55 ≦ Y + Z ≦ 90), a Ti-based amorphous alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4444194A JPH07252559A (en) | 1994-03-15 | 1994-03-15 | Ti-base amorphous alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4444194A JPH07252559A (en) | 1994-03-15 | 1994-03-15 | Ti-base amorphous alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07252559A true JPH07252559A (en) | 1995-10-03 |
Family
ID=12691581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4444194A Pending JPH07252559A (en) | 1994-03-15 | 1994-03-15 | Ti-base amorphous alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07252559A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147559A1 (en) | 2011-04-28 | 2012-11-01 | 国立大学法人東北大学 | Metallic glass nanowire manufacturing method, metallic glass nanowire manufactured thereby, and catalyst containing metallic glass nanowire |
CN107988526A (en) * | 2017-11-15 | 2018-05-04 | 永嘉姜君科技有限公司 | A kind of titanium alloy spectacle frame and preparation method thereof |
-
1994
- 1994-03-15 JP JP4444194A patent/JPH07252559A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147559A1 (en) | 2011-04-28 | 2012-11-01 | 国立大学法人東北大学 | Metallic glass nanowire manufacturing method, metallic glass nanowire manufactured thereby, and catalyst containing metallic glass nanowire |
US9132420B2 (en) | 2011-04-28 | 2015-09-15 | Tohoku University | Method for manufacturing metallic glass nanowire, metallic glass nanowire manufactured thereby, and catalyst containing metallic glass nanowire |
CN107988526A (en) * | 2017-11-15 | 2018-05-04 | 永嘉姜君科技有限公司 | A kind of titanium alloy spectacle frame and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5074935A (en) | Amorphous alloys superior in mechanical strength, corrosion resistance and formability | |
EP0018096B1 (en) | Boron containing transistion metal alloys comprising a dispersion of an ultrafine crystalline metallic phase and method for making said alloys, method of making an article from a metallic glass body | |
US4576653A (en) | Method of making complex boride particle containing alloys | |
Lavernia et al. | Spray deposition of metals: a review | |
Kim et al. | Increase in mechanical strength of Al–Y–Ni amorphous alloys by dispersion of nanoscale fcc-Al particles | |
US4439236A (en) | Complex boride particle containing alloys | |
KR920004680B1 (en) | High strength heat-resistant alluminum-based alloy | |
US5053084A (en) | High strength, heat resistant aluminum alloys and method of preparing wrought article therefrom | |
JP2629152B2 (en) | Manufacturing method of compressed metal articles | |
EP0136508A2 (en) | Aluminum-transition metal alloys having high strength at elevated temperatures | |
EP0187235A2 (en) | Production of increased ductility in articles consolidated from a rapidly solidified alloy | |
WO2006086350A2 (en) | Improved glass stability, glass forming ability, and microstructural refinement | |
US4469514A (en) | Sintered high speed tool steel alloy composition | |
JPS61130451A (en) | Aluminum/iron/vanadium alloy having high strength at high temperature | |
EP0333216B1 (en) | High strength, heat resistant aluminum-based alloys | |
Inoue et al. | Stabilization of supercooled liquid and bulk glassy alloys in ferrous and non-ferrous systems | |
JPS63140001A (en) | Granular metal composite and its production | |
JPH06264200A (en) | Ti series amorphous alloy | |
Grant | Recent trends and developments with rapidly solidified materials | |
EP0475101A1 (en) | High strength aluminum-based alloys | |
US4576642A (en) | Alloy composition and process | |
JP2705996B2 (en) | High strength magnesium based alloy | |
US4851193A (en) | High temperature aluminum-base alloy | |
EP0564814B1 (en) | Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same | |
US4405368A (en) | Iron-aluminum alloys containing boron which have been processed by rapid solidification process and method |