JPH07252553A - Method for melting and casting ni-ti-nb based shape memory alloy - Google Patents

Method for melting and casting ni-ti-nb based shape memory alloy

Info

Publication number
JPH07252553A
JPH07252553A JP4543394A JP4543394A JPH07252553A JP H07252553 A JPH07252553 A JP H07252553A JP 4543394 A JP4543394 A JP 4543394A JP 4543394 A JP4543394 A JP 4543394A JP H07252553 A JPH07252553 A JP H07252553A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
melting
casting
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4543394A
Other languages
Japanese (ja)
Inventor
Hiroshi Horikawa
宏 堀川
Tatsuhiko Ueki
達彦 植木
Kazuo Matsubara
和男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4543394A priority Critical patent/JPH07252553A/en
Publication of JPH07252553A publication Critical patent/JPH07252553A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the variation in the composition of an Ni-Ti-Nb shape memory alloy and to reduce the variation in the transformation temp. Ms of gold. CONSTITUTION:An Ni-Ti-Nb alloy having a composition in the area enclosed by point A of, by atom, 47.0% Ni, 50.0% Ti and 3.0% Nb, point B of 50.0% Ni, 47.O% Ti and 3.0% Nb, point C of 46.O% Ni, 40.0% Ti and 14.0% Nb and point D of 40.0% Ni, 46.0% Ti and 14.0% Nb in the ternary alloy constitutional diagram is melted and cast. In this case, the raw materials of Ni, Ti and Nb are mixed to attain the composition, and the mixture is melted and cast by high-frequency induction heating in vacuum or in an inert atmosphere. Consequently, a stabilized Ni-Ti-Nb based shape memory alloy is melted and cast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は組成成分のばらつきが少
ない、Ni−Ti−Nb系形状記憶合金の溶解鋳造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting and casting a Ni-Ti-Nb type shape memory alloy with little variation in composition components.

【0002】[0002]

【従来の技術】原子比で1対1近傍のNi−Ti合金
は、高温相(以下、母相)立方晶の結晶構造を取り、こ
れを冷却するとマルテンサイト変態温度で変態して単斜
晶構造のマルテンサイト相(以下、M相)となる。これ
にともなって、形状記憶効果、超弾性現象といった優れ
た特性を示す。したがって、形状記憶合金の特性の制御
においては、変態温度が重要となる。形状記憶合金の変
態温度は、母相からM相への変態が始まる温度、終了す
る温度をそれぞれMs、Mf点、M相から母相への変態
が始まる温度、終了する温度をそれぞれAs、Af点と
呼ぶ。これらの、変態逆変態の変態点は、ギャップがあ
り、これを、温度ヒステリシスと呼ぶ。参考文献1(M
RS.Proc.,Vol.246,1992)のように、Ni−
Ti2合金の温度ヒステリシスは、20〜40℃である
のに対し、Ni−Ti−Nb合金は、60〜100℃と
かなり広い特性を有している。この特徴を生かして、加
熱して収縮させる配管継手として、実用化されている。
2. Description of the Related Art A Ni-Ti alloy having an atomic ratio of about 1: 1 has a cubic crystal structure of a high temperature phase (hereinafter referred to as a mother phase), and when cooled, it transforms at a martensitic transformation temperature to form a monoclinic crystal. The structure becomes a martensite phase (hereinafter, M phase). Along with this, excellent characteristics such as a shape memory effect and a superelastic phenomenon are exhibited. Therefore, the transformation temperature is important in controlling the properties of the shape memory alloy. The transformation temperatures of the shape memory alloy are Ms and Mf points at which the transformation from the parent phase to the M phase starts and ends, respectively, and As and Af at which the transformation from the M phase to the parent phase begins and ends. Call it a point. These transformation points of transformation reverse transformation have a gap, which is called temperature hysteresis. Reference 1 (M
RS. Proc., Vol. 246, 1992).
The temperature hysteresis of the Ti2 alloy is 20 to 40 ° C, whereas the Ni-Ti-Nb alloy has a considerably wide range of 60 to 100 ° C. Taking advantage of this feature, it has been put to practical use as a pipe joint that heats and shrinks.

【0003】従来の形状記憶配管継手は、変態温度の低
い(約−100℃)合金を使用し、継手を拡径して、液
体窒素中に保管し、施工時には室温に放置して、温度が
上昇するのを待っていた。これに対し、Ni−Ti−N
b合金を使った加熱収縮型の配管継手は、室温では拡径
した状態になっており、加熱して配管を収縮する。液体
窒素を使わなくても良いので、施工がかなり簡単になっ
た。しかし、参考文献(MRS.Proc.,Vol.9.198
9)のようにNi−Ti−Nb合金中のNbの融点が高
く、電子ビーム溶解でなければ、溶解できないという問
題があった。また電子ビーム溶解によって得られた鋳塊
は、組成のばらつきが大きく、その結果、形状記憶合金
として最も重要な変態温度がばらつくという問題が生じ
た。
A conventional shape memory pipe joint is made of an alloy having a low transformation temperature (about -100 ° C.), the diameter of the joint is expanded, and the joint is stored in liquid nitrogen. I was waiting for you to rise. On the other hand, Ni-Ti-N
The heat-shrink type pipe joint using the b alloy is in a state where the diameter is expanded at room temperature and heats to shrink the pipe. Since there is no need to use liquid nitrogen, the construction is much easier. However, the reference (MRS.Proc., Vol.
As described in 9), the melting point of Nb in the Ni-Ti-Nb alloy is high, and there is a problem that it cannot be melted without electron beam melting. Further, the ingots obtained by electron beam melting have a large variation in composition, and as a result, the transformation temperature, which is the most important for shape memory alloys, varies.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果なされたもので、Ni−Ti−Nb合
金の成分のばらつきが少なく、その結果形状記憶合金と
して重要な変態温度のばらつきが少ない合金が得られる
溶解鋳造方法を開発したものである。
DISCLOSURE OF THE INVENTION The present invention has been made as a result of studying the above-mentioned problems, and there is little variation in the components of Ni-Ti-Nb alloy, and as a result, variation in transformation temperature, which is important as a shape memory alloy, is reduced. This is the development of a melting and casting method that produces less alloy.

【0005】[0005]

【課題を解決するための手段】本発明はNi−Tiおよ
びNbの三元合金状態図において、A,B,CおよびD
で示す点の組成が原子%で A:Ni47.0%、 Ti50.0%、 Nb3.0
% B:Ni50.0%、 Ti47.0%、 Nb3.0
% C:Ni46.0%、 Ti40.0%、 Nb14.
0% D:Ni40.0%、 Ti46.0%、 Nb14.
0% で囲まれた領域内にある組成のNi−Ti−Nb系合金
の溶解鋳造において、Ni原料,Ti原料,Nb原料を
前記組成となるように配合し、高周波誘導加熱によっ
て、真空中または不活性雰囲気中で溶解鋳造することを
特徴とするNi−Ti−Nb系形状記憶合金の溶解鋳造
方法を請求項1とし、前記のNi原料を、坩堝の下部に
配置して溶解することを特徴とする請求項1記載のNi
−Ti−Nb系形状記憶合金の溶解鋳造方法を請求項2
とし、前記合金の溶解にカーボン坩堝を用いて溶解する
ことを特徴とする請求項1または2記載のNi−Ti−
Nb系形状記憶合金の溶解鋳造方法を請求項3とするも
のである。
SUMMARY OF THE INVENTION The present invention provides a Ni-Ti and Nb ternary alloy phase diagram for A, B, C and D.
The composition of the points indicated by is atomic% A: Ni 47.0%, Ti 50.0%, Nb 3.0
% B: Ni 50.0%, Ti 47.0%, Nb 3.0
% C: Ni 46.0%, Ti 40.0%, Nb 14.
0% D: Ni 40.0%, Ti 46.0%, Nb 14.
In melt casting of a Ni-Ti-Nb alloy having a composition within a region surrounded by 0%, Ni raw material, Ti raw material, and Nb raw material are blended so as to have the above composition, and are mixed in a vacuum or by vacuum induction heating. A method of melting and casting a Ni-Ti-Nb-based shape memory alloy, which comprises melting and casting in an inert atmosphere, according to claim 1, wherein the Ni raw material is placed in a lower portion of the crucible and melted. And Ni according to claim 1.
A method for melting and casting a -Ti-Nb-based shape memory alloy.
The Ni-Ti- according to claim 1 or 2, wherein the alloy is melted using a carbon crucible.
A method of melting and casting an Nb-based shape memory alloy is defined as claim 3.

【0006】[0006]

【作用】本発明において対象とする合金の組成を上記の
ように限定したのは、この範囲外では、形状記憶特性が
適正でなくなるか、あるいは、加工性が劣化し、実用上
製造できなくなるからである。また高周波誘導加熱によ
って溶解するのは、高周波による撹拌作用により溶湯を
撹拌し、成分のばらつきのないようにするためである
が、それには周波数の小さい3〜30KHzの高周波誘
導加熱炉を用いるのが望ましい。また、真空中または不
活性雰囲気中で溶解鋳造するのは、Tiが非常に活性な
金属であるので、これの酸化を防ぐためである。
In the present invention, the composition of the target alloy is limited as described above, because outside this range, the shape memory characteristics are not appropriate, or the workability is deteriorated and the alloy cannot be practically manufactured. Is. Further, the reason for melting by high-frequency induction heating is to stir the molten metal by the stirring action by high-frequency waves so that there is no variation in the components. desirable. Further, the reason why the melt casting is performed in a vacuum or in an inert atmosphere is to prevent the oxidation of Ti, which is a very active metal.

【0007】原料である金属Niを坩堝の下部にセット
するのは、先ず融点の低いNiを溶かし、Tiが溶け込
むときの反応熱で、一気に溶解し、組成のばらつきが少
ないようにするためである。さらに合金溶解にカーボン
坩堝を用いるのは、Ni−Tiの溶湯に対して侵食が少
なく、かつ不純物の混入が少ないからである。なお本発
明におけるNi−Ti−Nb系形状記憶合金は、上記と
同様な組成からなる超弾性合金も含むものである。
The metallic Ni as a raw material is set in the lower part of the crucible so that Ni having a low melting point is first melted and the reaction heat at the time when Ti is melted causes the Ni to melt at once, so that there is little variation in composition. . Further, the reason why the carbon crucible is used for melting the alloy is that the Ni-Ti melt is less corroded and the impurities are less mixed. The Ni-Ti-Nb type shape memory alloy in the present invention also includes a superelastic alloy having the same composition as described above.

【0008】[0008]

【実施例】以下に本発明の一実施例について説明する。
表1に示す配合組成の合金について、原料を秤量し、1
0KHzの高周波誘導加熱炉により、カーボンルツボを
用いて、Ni原料を下部に置き、その上にTi原料,N
b原料を置き、アルゴン雰囲気中で溶解を行い、内径4
cmの銅製の鋳型のなかに、鋳造した。比較として、電子
ビームによっても溶解を行い、同様の鋳型に鋳造した。
鋳型の底より、1,3,5,7,9,11,13cmの位
置から、20mgの合金をサンプリングし、真空中950
℃1時間の溶体化処理をおこなった後、示差走査熱量計
(DSC)により、変態温度を測定した。この結果を表
2に示す。
EXAMPLES An example of the present invention will be described below.
For alloys having the composition shown in Table 1, the raw materials were weighed and
Using a carbon crucible with a high frequency induction heating furnace of 0 KHz, a Ni raw material is placed in the lower portion, and a Ti raw material, N
b Place the raw material, dissolve in an argon atmosphere, and
It was cast in a copper mold of cm. For comparison, melting was also performed with an electron beam, and a similar mold was cast.
From the bottom of the mold, sample 20mg of the alloy from 1,3,5,7,9,11,13cm position and place it in vacuum at 950
After carrying out solution treatment at 1 ° C. for 1 hour, the transformation temperature was measured by a differential scanning calorimeter (DSC). The results are shown in Table 2.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】表2から明らかなように、合金Aおよび合
金Bのいずれも本発明方法によるものは変態温度Ms点
のばらつきが著しく少ないことが判る。
As is clear from Table 2, both alloy A and alloy B produced by the method of the present invention have significantly less variation in the transformation temperature Ms point.

【0012】[0012]

【発明の効果】以上に説明したように本発明によれば、
Ni−Ti−Nb合金の溶解鋳造方法において、変態温
度のばらつきの少ない、安定した形状記憶特性が得ら
れ、形状記憶合金の実用化が促進される等、工業上顕著
な効果を奏する。
As described above, according to the present invention,
In the melt-casting method of Ni-Ti-Nb alloy, it is possible to obtain stable industrial shape memory characteristics with less variation in transformation temperature, and to promote the practical application of shape memory alloys.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対象とするNi−Ti−Nb三元合金
の状態図
FIG. 1 is a phase diagram of a Ni—Ti—Nb ternary alloy which is a target of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ni−TiおよびNbの三元合金状態図
において、A,BCおよびDで示す点の組成が原子%
で、 A:Ni47.0%、 Ti50.0%、 Nb3.0
% B:Ni50.0%、 Ti47.0%、 Nb3.0
% C:Ni46.0%、 Ti40.0%、 Nb14.
0% D:Ni40.0%、 Ti46.0%、 Nb14.
0% で囲まれた領域内にある組成のNi−Ti−Nb系合金
の溶解鋳造において、Ni原料,Ti原料,Nb原料を
前記組成となるように配合し、高周波誘導加熱によっ
て、真空中または不活性雰囲気中で溶解鋳造することを
特徴とするNi−Ti−Nb系形状記憶合金の溶解鋳造
方法。
1. In a ternary alloy phase diagram of Ni—Ti and Nb, the composition of points indicated by A, BC and D is atomic%.
Then, A: Ni 47.0%, Ti 50.0%, Nb 3.0
% B: Ni 50.0%, Ti 47.0%, Nb 3.0
% C: Ni 46.0%, Ti 40.0%, Nb 14.
0% D: Ni 40.0%, Ti 46.0%, Nb 14.
In melt casting of a Ni-Ti-Nb alloy having a composition within a region surrounded by 0%, Ni raw material, Ti raw material, and Nb raw material are blended so as to have the above composition, and are mixed in a vacuum or by vacuum induction heating. A method of melting and casting a Ni-Ti-Nb-based shape memory alloy, characterized by performing melting and casting in an inert atmosphere.
【請求項2】 前記のNi原料を、坩堝の下部に配置し
て溶解することを特徴とする請求項1記載のNi−Ti
−Nb系形状記憶合金の溶解鋳造方法。
2. The Ni—Ti according to claim 1, wherein the Ni raw material is placed in a lower portion of the crucible and melted.
-A method for melting and casting Nb-based shape memory alloy.
【請求項3】 前記合金の溶解にカーボン坩堝を用いて
溶解することを特徴とする請求項1または2記載のNi
−Ti−Nb系形状記憶合金の溶解鋳造方法。
3. The Ni according to claim 1, wherein the alloy is melted by using a carbon crucible.
A method for melting and casting a Ti-Nb-based shape memory alloy.
JP4543394A 1994-03-16 1994-03-16 Method for melting and casting ni-ti-nb based shape memory alloy Pending JPH07252553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4543394A JPH07252553A (en) 1994-03-16 1994-03-16 Method for melting and casting ni-ti-nb based shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4543394A JPH07252553A (en) 1994-03-16 1994-03-16 Method for melting and casting ni-ti-nb based shape memory alloy

Publications (1)

Publication Number Publication Date
JPH07252553A true JPH07252553A (en) 1995-10-03

Family

ID=12719181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4543394A Pending JPH07252553A (en) 1994-03-16 1994-03-16 Method for melting and casting ni-ti-nb based shape memory alloy

Country Status (1)

Country Link
JP (1) JPH07252553A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566457A1 (en) * 2004-02-17 2005-08-24 Ulvac, Inc. Multiple phase alloys and membranes thereof for hydrogen separation-purification and their method of preparation.
WO2006126515A1 (en) * 2005-05-23 2006-11-30 Nec Tokin Corporation Ti-Ni-Nb ALLOY DEVICE
US8652199B2 (en) 2005-05-23 2014-02-18 Nec Tokin Corporation Stent with autonomic function
CN104480348A (en) * 2014-12-06 2015-04-01 李钰瑾 NiTi shape memory alloy material as well as preparation method and application thereof and automatic fire-fighting alarming detector
CN104946931A (en) * 2015-05-18 2015-09-30 中国石油大学(北京) Nb nanobelt/martensitic NiTi memory alloy matrix composite filament and production method thereof
KR20150119744A (en) * 2014-04-16 2015-10-26 인하대학교 산학협력단 Business card using shape memory alloy
CN109554578A (en) * 2018-12-21 2019-04-02 中国工程物理研究院机械制造工艺研究所 A kind of negative expansion memorial alloy and preparation method thereof
CN111020338A (en) * 2019-12-16 2020-04-17 四川大学 Ultralow temperature service nickel-titanium-niobium shape memory alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566457A1 (en) * 2004-02-17 2005-08-24 Ulvac, Inc. Multiple phase alloys and membranes thereof for hydrogen separation-purification and their method of preparation.
CN100420624C (en) * 2004-02-17 2008-09-24 爱发科股份有限公司 Multiple phase alloys and membranes thereof for hydrogen separation-purification and their method of preparation
US7468093B2 (en) * 2004-02-17 2008-12-23 Ulvac Inc. Multiple phase alloys and metal membranes for hydrogen separation-purification and method for preparing the alloys and the metal membranes
WO2006126515A1 (en) * 2005-05-23 2006-11-30 Nec Tokin Corporation Ti-Ni-Nb ALLOY DEVICE
US8652199B2 (en) 2005-05-23 2014-02-18 Nec Tokin Corporation Stent with autonomic function
US9205178B2 (en) 2005-05-23 2015-12-08 Nec Tokin Corporation Ti-Ni-Nb alloy device
KR20150119744A (en) * 2014-04-16 2015-10-26 인하대학교 산학협력단 Business card using shape memory alloy
CN104480348A (en) * 2014-12-06 2015-04-01 李钰瑾 NiTi shape memory alloy material as well as preparation method and application thereof and automatic fire-fighting alarming detector
CN104946931A (en) * 2015-05-18 2015-09-30 中国石油大学(北京) Nb nanobelt/martensitic NiTi memory alloy matrix composite filament and production method thereof
CN109554578A (en) * 2018-12-21 2019-04-02 中国工程物理研究院机械制造工艺研究所 A kind of negative expansion memorial alloy and preparation method thereof
CN111020338A (en) * 2019-12-16 2020-04-17 四川大学 Ultralow temperature service nickel-titanium-niobium shape memory alloy

Similar Documents

Publication Publication Date Title
US4144057A (en) Shape memory alloys
FR2420194A1 (en) AMORPHIC THIN MAGNETIC FILMS WITH EASY STABLE SHAFT AND THEIR MANUFACTURING PROCESS
JP2005504882A (en) Method for improving bulk solidified amorphous alloy composition and castings made therefrom
JPH0835029A (en) Cast aluminum alloy with high strength and high ductility and production thereof
JP6628902B2 (en) Low thermal expansion alloy
JPH07252553A (en) Method for melting and casting ni-ti-nb based shape memory alloy
Chronister et al. Induction skull melting of titanium and other reactive alloys
CN108546862A (en) A kind of nickel Al-Cr-Mo iron eutectic alloy and preparation method thereof
Milenkovic et al. Effect of the growth parameters on the Ni–Ni3Si eutectic microstructure
Kim et al. Laves phase fields in Cr–Zr–Nb and Cr–Zr–Hf alloy systems
JPH02225642A (en) Niobium-base alloy for high temperature
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
JP2003239051A (en) HIGH-STRENGTH Zr-BASE METALLIC GLASS
JP3735318B2 (en) High silicon cast iron excellent in acid resistance and method for producing the same
JPH0621303B2 (en) Method for producing low oxygen Ti alloy
Milenkovic et al. Microstructure of the microalloyed NiAl–V eutectics
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
de Castro et al. Microstructure of undercooled Pb–Sn alloys
Yang et al. Microstructure characteristics of Cu–Mn alloys during laser surface remelting
JP5173283B2 (en) Nickel-based alloy and manufacturing method thereof
Antonova et al. Structure and mechanical properties of the Ti-Ga-Si alloys in the Ti-rich corner
Pietrokowsky et al. Investigation of the Partial Constitution Diagram Ti− TiAu 2
JPH0116289B2 (en)
JP2776593B2 (en) Grain refinement method for titanium-aluminum intermetallic compound
Shurin et al. The phase equilibrium diagram for the Fe-Nb-Ti System