JPH07251479A - Laminated metal deposited film - Google Patents

Laminated metal deposited film

Info

Publication number
JPH07251479A
JPH07251479A JP7158594A JP7158594A JPH07251479A JP H07251479 A JPH07251479 A JP H07251479A JP 7158594 A JP7158594 A JP 7158594A JP 7158594 A JP7158594 A JP 7158594A JP H07251479 A JPH07251479 A JP H07251479A
Authority
JP
Japan
Prior art keywords
film
layer
laminated
vapor deposition
metal vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7158594A
Other languages
Japanese (ja)
Inventor
Yoichi Kugimiya
陽一 釘宮
Taketo Hirose
健人 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP7158594A priority Critical patent/JPH07251479A/en
Publication of JPH07251479A publication Critical patent/JPH07251479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a polypropylene metal deposited film with outstanding size stability, evaporation processing characteristic and superb gas barrier properties after high-speed bag preparation, suitable for width enlarging an winding in large roll. CONSTITUTION:A material for a metal deposited film is a polypropylene laminated film with a core layer having a thickness equal to at least 10% of the entire thickness as a crystallizable propylene with a high stereoregularity of at least 0.970.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリプロピレン系金属蒸
着フィルムに関する。更に詳しくは、寸法安定性、蒸着
加工性ならびにガスバリヤー性に優れたポリプロピレン
系金属蒸着フィルムに関する。
FIELD OF THE INVENTION The present invention relates to a polypropylene-based metal vapor deposition film. More specifically, it relates to a polypropylene-based metal vapor deposition film having excellent dimensional stability, vapor deposition processability, and gas barrier property.

【0002】[0002]

【従来の技術】近年プラスチックフィルムに金属を蒸着
させた金属蒸着フィルムはその優れた装飾性、ガスバリ
ヤー性あるいは光線遮断性等を活用して金銀糸、建築材
から包装材に広く用いられている。 特にアルミニウム
を蒸着したポリプロピレンフィルムは表面光沢と低温ヒ
ートシール性に優れ、ニ軸延伸ポリプロピレンフィルム
やポリエステルフィルムと貼り合わせたラミネートフィ
ルムとして、スナック菓子包装用を主体に食品包装用に
用途を拡大している。
2. Description of the Related Art In recent years, metal-deposited films obtained by vapor-depositing a metal on a plastic film have been widely used for gold and silver threads, construction materials, and packaging materials by taking advantage of their excellent decorative properties, gas barrier properties, and light blocking properties. . In particular, aluminum-vapor-deposited polypropylene film has excellent surface gloss and low-temperature heat-sealing properties, and as a laminated film laminated with biaxially oriented polypropylene film or polyester film, its application is expanding mainly for snack confectionery packaging and food packaging. .

【0003】[0003]

【発明が解決しようとする課題】金属蒸着フィルムの製
造方法は、生産効率の向上の為広幅化と長尺巻きを要求
するようになり、原反フィルムにも長尺巻きに耐えられ
るブロッキング防止性と剛性の改善が必要になってい
る。又、金属蒸着フィルムの製袋加工工程も高速化が進
み、加工機の大きな張力により蒸着膜に微細なクラック
が発生しガスバリヤー性が低下するという問題が生じて
いる。本発明は、広幅化と長尺巻きに対応できる寸法安
定性と蒸着加工性、ならびに高速製袋後のガスバリヤー
性に優れたポリプロピレン系金属蒸着フィルムを提供す
ることを目的とする。
In order to improve production efficiency, a method for producing a metallized film requires a wider width and a longer winding, and an anti-blocking property that can endure a long winding even on a raw film. And improvement of rigidity is needed. In addition, the bag-making process of the metal vapor deposition film has been accelerated, and a large tension of the processing machine causes fine cracks in the vapor deposition film to deteriorate the gas barrier property. An object of the present invention is to provide a polypropylene-based metal vapor deposition film which is excellent in dimensional stability and vapor deposition processability capable of coping with widening and long winding, and a gas barrier property after high-speed bag making.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の課題
を解決するため鋭意研究の結果、金属蒸着フィルムの原
反フィルムとして、全体の10%以上の厚みを有する芯
層が(P)0.970以上の高立体規則性の結晶性プロ
ピレン系重合体であるポリプロピレン積層フィルムを使
用することにより所期の目的が達せられることを知り、
さらに、上記の積層フィルムの表面層に特定のアルミノ
シリケートを配合することにより一層好ましい金属蒸着
フィルムが得られることを知り本発明を完成するに到っ
た。本発明で用いる(A)/(B)/(C)の3層がこ
の順に積層された積層フィルムの(A)層及び(C)層
に用いる結晶性プロピレン系重合体又は結晶性プロピレ
ン系共重合体は、例えばチーグラー・ナッタ型の触媒の
存在下でプロピレンの単独重合、あるいはプロピレンを
主成分とするエチレンもしくは他のα−オレフィンとの
共重合によって得られる結晶性重合体、これら結晶性重
合体に不飽和カルボン酸あるいはその無水物をグラフト
重合させたもの、または上記各種の重合体から選ばれた
混合物である。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventors have found that a core layer having a thickness of 10% or more (P) is used as a raw film of a metal vapor deposition film. Knowing that the intended purpose can be achieved by using a polypropylene laminated film, which is a crystalline propylene-based polymer having a high stereoregularity of 0.970 or more,
Furthermore, they have found that a more preferable metal vapor deposition film can be obtained by blending a specific aluminosilicate in the surface layer of the above-mentioned laminated film, and have completed the present invention. A crystalline propylene-based polymer or a crystalline propylene-based copolymer used for the (A) layer and the (C) layer of a laminated film in which three layers (A) / (B) / (C) used in the present invention are laminated in this order. The polymer is, for example, a crystalline polymer obtained by homopolymerization of propylene in the presence of a Ziegler-Natta type catalyst, or copolymerization with ethylene or other α-olefin containing propylene as a main component, and these crystalline polymers. It is a polymer obtained by graft-polymerizing an unsaturated carboxylic acid or an anhydride thereof in a combination, or a mixture selected from the above various polymers.

【0005】積層フィルムの(B)層に用いる結晶性プ
ロピレン系重合体は、13C−NMRによって測定される
アイソタクチックペンタッド分率である(P)が0.9
70以上の高結晶性のプロピレン系重合体であり、例え
ば特公平1−48922号に記載された方法、即ち有機
アルミニウム化合物と四塩化チタンとを反応させて得ら
れる固体生成物に、更にエ−テル類と四塩化チタンとを
反応させた生成物をジアルキルアルミニウムモノハライ
ド及び芳香族カルボン酸エステルと組み合わせた触媒の
存在下にプロピレンを重合させることによって得られ
る。(B)層に用いる結晶性プロピレン系重合体がその
(P)が0.970未満であるか或いは(P)が0.9
70以上であっても(B)層の厚みが積層フィルム全体
の10%未満であると、積層フィルムの剛性が不十分と
なり以下の種々の問題が生ずる。即ち、長尺巻の積層フ
ィルムロールの巻芯部にブロッキング、巻皺或いは破断
の発生したり、蒸着加工時に収縮が発生したり、蒸着工
程を経た蒸着フィルムロールの巻き芯部に巻き皺が発生
する。蒸着フィルムそれ自身、或いは蒸着フィルムと二
軸延伸ポリプロピレンフィルム又はポリエステルフィル
ムとのラミネートフィルムをヒートシール製袋したもの
或いは自動充填包装装置で製袋した袋のガスバリヤー性
が著しく低下する。
The crystalline propylene polymer used for the layer (B) of the laminated film has an isotactic pentad fraction (P) of 0.9 as measured by 13 C-NMR.
70 or more highly crystalline propylene polymer, for example, a method described in Japanese Patent Publication No. 1-48922, that is, a solid product obtained by reacting an organoaluminum compound with titanium tetrachloride, It is obtained by polymerizing propylene in the presence of a catalyst in which a product obtained by reacting a tellurium with titanium tetrachloride is combined with a dialkylaluminum monohalide and an aromatic carboxylic acid ester. The crystalline propylene polymer used in the layer (B) has a (P) of less than 0.970 or a (P) of 0.9.
If the thickness of the layer (B) is less than 10% of the whole laminated film even if it is 70 or more, the rigidity of the laminated film becomes insufficient and the following various problems occur. That is, blocking, winding wrinkles or breaks occur in the core portion of the long-length laminated film roll, shrinkage occurs during the vapor deposition process, or wrinkles occur in the core portion of the vapor deposition film roll that has undergone the vapor deposition process. To do. The vapor barrier property of the vapor deposition film itself or a laminate film of the vapor deposition film and a biaxially oriented polypropylene film or a polyester film heat-sealed or a bag produced by an automatic filling and packaging apparatus is significantly reduced.

【0006】(A)、(B)、(C)の各層に用いるそ
れぞれの結晶性プロピレン系重合体のメルトフローレー
ト(230℃、2.16Kgfで測定)には特別な制限
は無いが、積層フィルムをTダイ・チルロール法で製造
するにはいずれも1〜30g/10minの範囲が均一
な厚みが得られるので好ましく、更に好ましくは3〜2
0g/minの範囲である。本発明の積層金属蒸着フィ
ルムを二軸延伸ポリプロピレンフィルム又はポリエステ
ルフィルムとのラミネートフィルムとして用いる場合
に、(A)層面に金属蒸着を施し(C)層をシーラント
層とするときは、(C)層には結晶融点(走査型差動熱
量計を用い10℃/minの昇温速度で測定した吸熱カ
ーブのピーク温度、Tm)が150℃以下の重合体、例
えばプロピレン・エチレン共重合体、プロピレン・エチ
レン・ブテン共重合体或いはプロピレンを主体とする他
のα−オレフィンとの共重合体等の結晶性プロピレン系
重合体を用いることがラミネート強度が大きく好まし
い。
There is no particular limitation on the melt flow rate (measured at 2.16 Kgf at 230 ° C.) of each crystalline propylene polymer used for each of the layers (A), (B) and (C), but the layers are laminated. When the film is produced by the T-die / chill-roll method, a range of 1 to 30 g / 10 min is preferable because a uniform thickness can be obtained, and more preferably 3 to 2
It is in the range of 0 g / min. When the laminated metal vapor deposition film of the present invention is used as a laminate film with a biaxially oriented polypropylene film or a polyester film, when metal vapor deposition is applied to the (A) layer surface and the (C) layer is used as a sealant layer, the (C) layer Is a polymer having a crystalline melting point (peak temperature of endothermic curve measured with a scanning differential calorimeter at a heating rate of 10 ° C./min, Tm) of 150 ° C. or less, for example, propylene / ethylene copolymer, propylene / It is preferable to use a crystalline propylene-based polymer such as an ethylene / butene copolymer or a copolymer mainly composed of propylene and another α-olefin because the laminate strength is large.

【0007】本発明のより好ましい態様として、上記の
積層フィルムの(A)層及び(B)層の結晶性プロピレ
ン系重合体に下記のカルシウム・ソジウム・アルミノ・
シリケートをそれぞれ0.01〜1.00重量部配合す
る。真球度:0.99〜0.85、比表面積:50m2
以下、強熱減量:10wt%以下、平均粒径:1.0〜
6.0 μm ここで真球度(Fx)は、粉体の電子顕微鏡写真で測定
した単一粒子の外接円半径(R1)と内接半径(R2)
とから次式によって算出したFxの100個の粒子の平
均値である。粉体が真球であれば真球度は1.0となる (Fx)2=(R1×R2)/(R1)2 真球度が1.0に近い粒子を配合すると、フィルムの動
摩擦係数を下げる効果は得られるが、フィルム間のブロ
ッキングや 蒸着フィルムのブロッキングを防止する効
果は得られず、原反フィルムや蒸着フィルムの巻芯部の
皺の発生を防止できない。又、真球度が0.85未満の
ものではブロッキング防止効果がなく、配合の意味がな
い。比表面積はBET法で測定する。比表面積が50m
2より大きな場合は吸油量が大きく、蒸着面のぬれ張力
を低下させる要因となり、蒸着フィルムとしての機能を
損なう。
As a more preferred embodiment of the present invention, the crystalline propylene-based polymer of the layer (A) and the layer (B) of the above laminated film contains the following calcium, sodium, alumino,
0.01 to 1.00 parts by weight of each silicate is compounded. Sphericity: 0.99 to 0.85, specific surface area: 50 m 2
Hereinafter, loss on ignition: 10 wt% or less, average particle size: 1.0 to
6.0 μm Here, the sphericity (Fx) is the circumscribed circle radius (R1) and the inscribed radius (R2) of a single particle measured by an electron micrograph of powder.
The average of 100 particles of Fx calculated from
Average value . If the powder is a true sphere, the sphericity will be 1.0. (Fx) 2 = (R1 × R2) / (R1) 2 If a particle with a sphericity close to 1.0 is blended, the dynamic friction coefficient of the film Although the effect of lowering the film thickness can be obtained, the effect of preventing blocking between films and the blocking of vapor-deposited film cannot be obtained, and wrinkles cannot be prevented from occurring in the core portion of the raw film or vapor-deposited film. On the other hand, if the sphericity is less than 0.85, there is no blocking prevention effect, and there is no point in blending. The specific surface area is measured by the BET method. 50m specific surface area
If it is larger than 2, the amount of oil absorption is large, which causes a decrease in the wetting tension of the vapor deposition surface and impairs the function as a vapor deposition film.

【0008】強熱減量は850℃で時間強熱して求め
る。強熱減量が10wt%より大きなものは蒸着面のぬ
れ張力を低下させる要因となり、蒸着フィルムとしての
機能を損なう。平均粒径はコールタ・カウンター(米国
コールター社製)を用いて測定した累積分布図より求め
る。平均粒径が1.0μm未満であるとブロッキング防
止効果が不十分で、金属を蒸着する工程でフィルムを巻
返す場合に破れが生じ易い。又平均粒径が6.0μmを
超す場合には、ブロッキングは発生しなくなるが、フィ
ルム表面が粗らくなり蒸着面の光沢が低下し、美麗な金
属光沢を有する蒸着フィルムが得られず好ましくない。
上記のカルシウム・ソジウム・アルミノ・シリケートの
配合量が0.01重量部未満であると、ブロッキング防
止効果が不十分となり配合の意味がなく、1.00重量
部を超すと分散不良により蒸着面の光沢が低下すると共
に、ロール状に巻いたフィルムの状着面に傷がつき易く
なり、状着膜の剥がれ→ガスバリヤー性の低下を招き好
ましくない。
Ignition loss is determined by igniting at 850 ° C. for 1 hour. If the loss on ignition is greater than 10 wt%, it becomes a factor of lowering the wetting tension of the vapor deposition surface, impairing the function as a vapor deposition film. The average particle diameter is obtained from a cumulative distribution chart measured using a Coulter Counter (manufactured by Coulter Co., USA). If the average particle size is less than 1.0 μm, the blocking preventing effect is insufficient, and tearing is likely to occur when the film is rewound in the metal vapor deposition step. On the other hand, when the average particle size exceeds 6.0 μm, blocking does not occur, but the film surface becomes rough and the gloss of the vapor-deposited surface deteriorates, and a vapor-deposited film having a beautiful metallic gloss cannot be obtained, which is not preferable.
If the amount of the above calcium, sodium, alumino, silicate is less than 0.01 part by weight, the antiblocking effect is insufficient and the compounding is meaningless. It is not preferable because the gloss is lowered and the film-rolled film is easily scratched on the dressing surface, resulting in peeling of the dressing film → reducing gas barrier property.

【0009】このようなカルシウム・ソジウム・アルミ
ノ・シリケート微粉末は、天然または合成のゼオライト
を2価金属でイオン交換処理した後加熱処理することに
より非晶質化して得られ、X線回折法では完全に無定型
で結晶構造を示さないが、1次粒子はほぼサイズの揃っ
た立方体ないし球状を示す。この微粒子の化学組成は、
酸化ケイ素:53〜56wt%、酸化アルミニウム:2
5〜28wt%、酸化カルシウム:8〜11wt%、酸
化ナトリウム:4〜8wt%、強熱減量:4wt%以
下、の範囲にある。(A)、(B)、(C)の各層に用
いるそれぞれの結晶性プロピレン系重合体には、結晶性
ポリプロピレンフィルムに通常使用される各種の安定剤
や充填剤を本発明の目的を損なわない範囲で配合するこ
とができる。
Such calcium-sodium-alumino-silicate fine powder is obtained by ion-exchange treatment of a natural or synthetic zeolite with a divalent metal and then heat-treating it to obtain an amorphous substance. According to the X-ray diffraction method, Although it is completely amorphous and does not show a crystal structure, the primary particles are cubic or spherical with almost uniform size. The chemical composition of these fine particles is
Silicon oxide: 53-56 wt%, aluminum oxide: 2
5 to 28 wt%, calcium oxide: 8 to 11 wt%, sodium oxide: 4 to 8 wt%, loss on ignition: 4 wt% or less. The crystalline propylene-based polymer used in each of the layers (A), (B) and (C) may be added with various stabilizers and fillers usually used in crystalline polypropylene films without impairing the object of the present invention. It can be blended in a range.

【0010】(A)/(B)/(C)の3層がこの順に
積層された積層フィルムの製造方法としては、得られる
フィルムの厚みの均一性が良く長尺巻に適することか
ら、フィルム共押出多層ダイス法、フィードブロック法
等の公知の方法で溶融状態で3層を積層し、チルロール
で70℃以下に急冷するTダイ・チルロール法が好まし
く用いられる。このようにして得られた共押出積層フィ
ルムの(A)層面に金属を蒸着するが、フィルムと金属
蒸着膜との接着力を向上させるための表面処理を施すこ
とが好ましい。そのような表面処理としては、コロナ処
理、放電処理、火炎処理あるいは酸処理があるが、フィ
ルムの製造時に同時に連続的に実施でき、処理の程度も
任意に調節できるコロナ処理が最も好ましい。金属を蒸
着させる方法としては、真空装置内で高周波誘導加熱に
より蒸発させた金属蒸気をフィルム表面に蒸着させる真
空蒸着法、スパッタリング蒸着法、イオプレーテイング
法等公知の方法が使用できる。蒸着させる金属として
は、金、銀、銅ニッケル、クロム、ゲルマニウム、ケイ
素、アルミニウム等があるが、本願発明で使用する3層
フィルムはアルミニウムを蒸着した長尺巻フィルムロー
ルにおいて特に優れた効果を有する。金属蒸着層の厚さ
は、耐剥離性と経済性の観点から一般に十ないし数十ミ
リミクロン程度とする。このようにして得られた本発明
の積層金属蒸着フィルムは、それ自身でも自動充填包装
用の優れた包装材料として使用できる。また、ニ軸延伸
ポリプロピレンフィルム、ポリエステルフィルム、ナイ
ロンフィルム、ポバールフィルム等を本発明の積層蒸着
フィルムの金属蒸着面にラミネートすることにより、高
速製袋機により加工しても酸素や窒素に対するガスバリ
ヤー性が劣化せず、ポテトチップス等の油性スナック菓
子の包装袋として好まし使用できる。
As a method for producing a laminated film in which three layers (A) / (B) / (C) are laminated in this order, the obtained film has good thickness uniformity and is suitable for long winding. A T-die / chill roll method, in which three layers are laminated in a molten state by a known method such as a coextrusion multilayer die method or a feed block method, and rapidly cooled to 70 ° C. or less by a chill roll, is preferably used. A metal is vapor-deposited on the (A) layer surface of the coextruded laminated film thus obtained, but it is preferable to carry out a surface treatment for improving the adhesive force between the film and the metal vapor deposition film. Examples of such surface treatment include corona treatment, discharge treatment, flame treatment and acid treatment, but corona treatment is most preferable because it can be continuously and simultaneously performed during the production of the film and the degree of treatment can be arbitrarily adjusted. As a method of depositing a metal, a known method such as a vacuum deposition method of depositing a metal vapor evaporated by high frequency induction heating in a vacuum apparatus on a film surface, a sputtering deposition method, an ioprating method can be used. The metal to be vapor-deposited includes gold, silver, copper-nickel, chromium, germanium, silicon, aluminum, etc., but the three-layer film used in the present invention has a particularly excellent effect in a long roll film roll vapor-deposited with aluminum. . The thickness of the metal vapor deposition layer is generally about 10 to several tens of millimeters from the viewpoint of peeling resistance and economy. The laminated metal vapor deposition film of the present invention thus obtained can be used by itself as an excellent packaging material for automatic filling and packaging. Further, by laminating a biaxially stretched polypropylene film, polyester film, nylon film, Poval film, etc. on the metal vapor deposition surface of the laminated vapor deposition film of the present invention, the gas barrier property against oxygen and nitrogen even when processed by a high speed bag making machine. It does not deteriorate and can be preferably used as a packaging bag for oily snacks such as potato chips.

【0011】[0011]

【実施例】実施例及び比較例により本願発明を更に具体
的に説明する。なお、物性の測定・評価は以下の方法で
行った。 メルトフローレート(MFR):JIS K7210
(230℃) 真球度:前述の方法による。 結晶融点(Tm):走査型差動熱量計を用い、10mg
の試料を昇温速度20℃/分で加熱し、結晶の融解に伴
う吸熱曲線のピーク温度をTmとする。 立体規則性(P):270MHzのFT−NMRを用
い、2万7千回の積算測定によりシグナル検出能を向上
させて、アイソタクチックペンタッド分率を算出した。 蒸着加工性:幅2m、長さ3万2千メートルの長尺フィ
ルムロールを使用し、条着工程でのフィルムの破れの有
無と、巻皺の有無を検査し、下記の3ランクに評定す
る。Aランクのみが実用に共される。 A;破れ、皺ともに発生せず。 B;破れ発生せず、皺発生。 C;破れ、皺共に発生。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples. The measurement and evaluation of physical properties were performed by the following methods. Melt flow rate (MFR): JIS K7210
(230 ° C.) Roundness: According to the method described above. Crystal melting point (Tm): 10 mg using a scanning differential calorimeter
The sample is heated at a temperature rising rate of 20 ° C./min, and the peak temperature of the endothermic curve accompanying the melting of the crystal is defined as Tm. Stereoregularity (P): Using 270-MHz FT-NMR, the signal detectability was improved by the integrated measurement of 27,000 times, and the isotactic pentad fraction was calculated. Vapor deposition workability: Using a long film roll with a width of 2 m and a length of 32,000 meters, inspect for film breakage in the streaking process and for wrinkles, and evaluate to the following 3 ranks . Only A rank is practically used. A: No tearing or wrinkling occurred. B: Wrinkles did not occur without breaking. C: Breakage and wrinkles occur.

【0012】ガスバリヤー性:厚さ30ミリミクロンの
アルミニウムを蒸着した積層蒸着フィルムの蒸着面にウ
レタン系接着剤をアンダーコートし、厚さ25ミクロン
の二軸延伸ポリプロピレンフィルムをラミネートする。
得られたラミネートフィルムを高速ピロー自動製袋機
(トタニ技研工業(株)製、FA−350E)にかけ
て、毎分120袋の高速製袋を行う。製袋前のラミネー
トフィルムの酸素透過率(GTR1)と製袋後のラミネ
ートフィルムの酸素透過率(GTR2)を気体透過率測
定機(東洋精機(株)製、M−C3)にて測定し、製袋
前後の酸素透過率の変化を両者の比で表す。 △GTR=GTR2/GTR1 寸法安定性:製膜方向(MD)に長さ100cm、これ
と直角方向(TD)に10cmの試料片を熱風循環式恒
温槽を用いて、120℃及び140℃でそれぞれ10分
間熱処理する。熱処理前後の試料片の長さをそれぞれ
0.5mmまでの精度で測定し、熱処理による長さ方向
の収縮率(%)を求める。
Gas barrier property: A urethane adhesive is undercoated on the vapor deposition surface of a laminated vapor deposition film on which aluminum having a thickness of 30 mm is vapor-deposited, and a biaxially oriented polypropylene film having a thickness of 25 microns is laminated.
The obtained laminated film is applied to a high-speed pillow automatic bag making machine (FA-350E, manufactured by Totani Giken Co., Ltd.) to perform high-speed bag making at 120 bags per minute. The oxygen transmission rate (GTR1) of the laminated film before bag making and the oxygen transmission rate (GTR2) of the laminated film after bag making were measured by a gas transmission rate measuring instrument (Toyo Seiki Co., Ltd., M-C3), The change in oxygen permeability before and after bag making is represented by the ratio of the two. ΔGTR = GTR2 / GTR1 Dimensional stability: 100 cm long in the film forming direction (MD) and 10 cm perpendicular to this (TD) using a hot air circulating constant temperature bath at 120 ° C. and 140 ° C., respectively. Heat treatment for 10 minutes. The length of the sample piece before and after the heat treatment is measured with an accuracy of up to 0.5 mm, and the shrinkage rate (%) in the length direction due to the heat treatment is obtained.

【0013】実施例1〜5、比較例1〜5 MFRはいずれも6.0であるが、表1に(P)で示し
た立体規則性の異なる各種の結晶性プロピレン系重合体
(トリス(2,4−ジ−t−ブチルフェニル)フォスフ
ァイトを0.15wt%と、平均粒径0.8μmのハイ
ドロタルサイトを0.05wt%含有する)を(B)層
に使用し、(A)層にMFRが6.0の結晶性プロピレ
ン単独重合体(トリス(2,4−ジ−t−ブチルフェニ
ル)フォスファイトを0.10wt%と、平均粒径0.
8μmのハイドロタルサイトを0.05wt%含有す
る)を使用し、(C)層にエチレン含量が4.0wt
%、MFRが8.0、結晶融点(Tm)が145℃の結
晶性エチレン・プロピレン共重合体(トリス(2,4−
ジ−t−ブチルフェニル)フォスファイトを0.15w
t%と、平均粒径0.8μmのハイドロタルサイトを
0.03wt%含有する)を使用して、幅2m、厚さ2
5μmの3層積層フィルムを製膜した。製膜には、3種
3層共押出Tダイス装置と150メッシュ梨地表面仕上
げのチルロールを使用し、ダイス温度220℃、チルロ
ール温度30℃であった。なお、(A)(B)(C)の
各層の厚みは表1に示したようにそれぞれ異なる。
Examples 1 to 5 and Comparative Examples 1 to 5 MFR is 6.0, but various crystalline propylene polymers (Tris (P) having different stereoregularity shown by (P) in Table 1 are shown. (2,4-di-t-butylphenyl) phosphite (0.15 wt% and hydrotalcite having an average particle size of 0.8 μm is contained in 0.05 wt%) is used for the layer (B), and (A) is used. The crystalline propylene homopolymer having an MFR of 6.0 (tris (2,4-di-t-butylphenyl) phosphite was 0.10 wt% in the layer and the average particle size was 0.1.
(Containing 0.05 wt% of 8 μm hydrotalcite), and the ethylene content of the (C) layer is 4.0 wt.
%, MFR of 8.0, and crystalline melting point (Tm) of 145 ° C. crystalline ethylene / propylene copolymer (tris (2,4-
0.15w of di-t-butylphenyl) phosphite
t% and 0.03 wt% of hydrotalcite having an average particle size of 0.8 μm), and the width is 2 m and the thickness is 2
A 5-layer 3-layer laminated film was formed. For film formation, a three-kind three-layer coextrusion T-die device and a chill roll with a 150 mesh satin surface finish were used, and the die temperature was 220 ° C and the chill roll temperature was 30 ° C. The thickness of each layer of (A), (B), and (C) is different as shown in Table 1.

【0014】いずれの例においても、製膜と同時に
(A)層表面にコロナ放電処理を施して処理面の濡れ指
数を45dyn/cmに調整し、それぞれ3万2千メー
トルずつをロール状に巻取って、片面処理の原反フィル
ムを得た。1×10-5 Torr の真空度の巻取り型真空蒸
着装置を使用して、上記原反フィルムの(A)層表面に
厚さ30mμのアルミニウム蒸着を施して、片面蒸着フ
ィルムを得た。次いで、この片面蒸着フィルムの蒸着面
にウレタン系接着剤でアンカーコートし、厚さ27μm
のポリプロピレン二軸延伸フィルムのコロナ処理面を上
記アンカーコート面に重ねてドライラミネートした。得
られたラミネートフィルムを高速製袋機にかけて製袋し
た。上記の各工程で得られた原反フィルム、蒸着フィル
ム、ラミネートフィルム、及び製袋後のフィルムの物性
値をそれぞれ表1に示した。
In any of the examples, the surface of the layer (A) is subjected to corona discharge treatment at the same time as the film formation to adjust the wettability index of the treated surface to 45 dyn / cm, and each of them is wound into a roll shape of 32,000 meters. Then, a single-sided processed original film was obtained. Using a roll-up type vacuum vapor deposition device having a vacuum degree of 1 × 10 −5 Torr, a 30 mμ thick aluminum vapor deposition was applied to the surface of the (A) layer of the raw film to obtain a single-side vapor deposition film. Then, the vapor-deposited surface of this single-sided vapor-deposited film is anchor-coated with a urethane adhesive to give a thickness of 27 μm.
The corona-treated surface of the polypropylene biaxially stretched film of was laminated on the above anchor-coated surface and dry-laminated. The obtained laminated film was subjected to a high-speed bag-making machine to make a bag. Table 1 shows the physical property values of the raw film, the vapor-deposited film, the laminated film, and the film after bag making obtained in each of the above steps.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示されたデータから明らかなよう
に、本発明の構成要件を満足する実施例1〜5はいずれ
の物性値も比較例のものより優れている。特に、従来技
術に相当する(P)が0.950出或通常の結晶性ポリ
プロピレンを(B)層に用いた比較例1の蒸着フィルム
と比較して△GTRが小さく、包装材としての作業性、
生産効率が大幅に向上することが分かる。
As is clear from the data shown in Table 1, all physical properties of Examples 1 to 5 satisfying the constituent requirements of the present invention are superior to those of Comparative Example. In particular, the (P) corresponding to the prior art is 0.950, or ΔGTR is smaller than that of the vapor-deposited film of Comparative Example 1 in which a normal crystalline polypropylene is used for the (B) layer, and workability as a packaging material. ,
It can be seen that the production efficiency is significantly improved.

【0017】実施例6、7 実施例1を再現した。ただし、実施例6においては、
(A)層に結晶性プロピレン単独重合体に代えて(C)
層と同一の結晶性エチレン・プロピレン共重合体を用
い、実施例7においては、(A)層に結晶性プロピレン
単独重合体に代えて(B)層と同一の(P)が0.97
5の結晶性プロピレン系重合体を用い、それぞれ2種3
層の共押出積層フィルムとした。各工程で得られた原反
フィルム、蒸着フィルム、ラミネートフィルム、及び製
袋後のフィルムの物性は実施例1とほぼ同様の優れた性
能を示した。
Examples 6 and 7 Example 1 was reproduced. However, in Example 6,
In place of the crystalline propylene homopolymer for the (A) layer, (C)
The same crystalline ethylene / propylene copolymer as that of the layer was used, and in Example 7, the same (P) as in the layer (B) was 0.97 instead of the crystalline propylene homopolymer in the layer (A).
Using the crystalline propylene-based polymer of 5
It was a coextruded laminated film of layers. The physical properties of the raw film, the vapor deposition film, the laminated film, and the film after bag-making obtained in each process showed almost the same excellent properties as in Example 1.

【0018】実施例8〜10、比較例5〜10 MFRが8.0の結晶性プロピレン単独重合体(酸化防
止剤:チバガイギー社製、Irganox 1010 0.20wt
%含有)に表2に示した各種の耐ブロッキング剤を20
wt%配合した各種のマスターバッチを調製した。実施
例1で用いた(A)層用の結晶性プロピレン単独重合体
および(C)層用の結晶性エチレン・プロピレン共重合
体に上記のマスターバッチを表2に示した所定量配合し
て、それぞれ(A)層及び(C)層に用い、(B)層は
実施例1と同一の(P)が0.975の結晶性プロピレ
ン系重合体を用い、(A)(B)(C)の各層の厚みが
6:18:6μm(全体で30μm)の3種3層の原反
フィルムを製膜し、以下実施例1と同様に蒸着・ラミネ
ート・製袋加工して物性を測定した(実施例8〜1
0)。(A)層及び(C)層には上記のマスターバッチ
を配合した重合体を用い、比較例1で(B)層用いた
(P)が0.950のの結晶性プロピレン系重合体を
(B)層に用いた以外は実施例1と同様に製膜・蒸着・
ラミネート・製袋加工して物性を測定した(比較例5〜
10)。積層フィルム組成と物性評価の結果を表2に示
した。
Examples 8 to 10 and Comparative Examples 5 to 10 Crystalline propylene homopolymer having MFR of 8.0 (antioxidant: Irganox 1010 0.20 wt, manufactured by Ciba-Geigy).
%) With various anti-blocking agents shown in Table 2
Various master batches containing wt% were prepared. The crystalline propylene homopolymer for the (A) layer and the crystalline ethylene / propylene copolymer for the (C) layer used in Example 1 were blended with the above master batch in a predetermined amount shown in Table 2, The crystalline propylene-based polymer having the same (P) of 0.975 as in Example 1 was used for the (A) layer and the (C) layer, respectively, and the (B) layer was used for the (A), (B), and (C). A three-kind three-layer raw film having a thickness of each layer of 6: 18: 6 μm (total of 30 μm) was formed, and the physical properties were measured by vapor deposition, laminating and bag making in the same manner as in Example 1 ( Examples 8-1
0). For the (A) layer and the (C) layer, a polymer prepared by blending the above masterbatch is used, and for the (B) layer in Comparative Example 1, (P) is a crystalline propylene polymer of 0.950 ( Film formation, vapor deposition, and deposition were performed in the same manner as in Example 1 except that the layer B) was used.
Laminated and bag-formed, and measured for physical properties (Comparative Examples 5 to 5)
10). Table 2 shows the laminated film composition and the results of physical property evaluation.

【0019】[0019]

【表2】 [Table 2]

【0020】表2に示されたデータから明らかなよう
に、本発明の構成要件を満足する実施例8〜10はいず
れの物性値も比較例のものより優れている。従来技術に
相当する比較例のものは、巻取り皺や破れが生じ包装材
料としては好ましくなく、特に、ガスバリヤー性の劣る
ものは実用性に欠ける。
As is clear from the data shown in Table 2, all the physical properties of Examples 8 to 10 satisfying the constitutional requirements of the present invention are superior to those of the comparative examples. The comparative example corresponding to the prior art is unfavorable as a packaging material due to winding wrinkles and tears, and in particular, those having a poor gas barrier property are lacking in practicality.

【0021】[0021]

【発明の効果】本発明の積層金属蒸着フィルムは、原反
フィルムに寸法安定性が良く、製膜・蒸着工程での皺や
破れの発生が極めて少ないので、作業効率や生産性に優
れ、製品フィルムも高速製袋加工に耐えて良好なガスバ
リヤー性を有し、包装用や装飾用の素材として広い用途
に使用できる。
EFFECTS OF THE INVENTION The laminated metal vapor deposition film of the present invention has excellent dimensional stability in the original film and has very few wrinkles and tears in the film forming / deposition process, and thus has excellent work efficiency and productivity, The film also has a good gas barrier property that can withstand high-speed bag making, and can be used for a wide range of purposes as a material for packaging and decoration.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)/(B)/(C)の3層がこの順
に積層された積層フィルムの片面に金属を蒸着した積層
金属蒸着フィルムであって、(A)層と(C)層は結晶
性プロピレン系重合体又は結晶性プロピレン系共重合体
であり、(B)層は(P)が0.970以上の高立体規
則性の結晶性プロピレン系重合体であるこることを特徴
とする積層金属蒸着フィルム。
1. A laminated metal vapor deposition film in which three layers of (A) / (B) / (C) are vapor-deposited with a metal on one surface of a laminated film laminated in this order, and the layers (A) and (C) are provided. The layer is a crystalline propylene-based polymer or a crystalline propylene-based copolymer, and the layer (B) is a highly stereoregular crystalline propylene-based polymer having a (P) of 0.970 or more. Laminated metal vapor deposition film.
【請求項2】 (B)層の厚みが積層フィルムの厚みの
10%以上であることを特徴とする請求項1の積層金属
蒸着フィルム。
2. The laminated metal vapor deposition film according to claim 1, wherein the thickness of the layer (B) is 10% or more of the thickness of the laminated film.
【請求項3】 (A)層と(C)層に用いた重合体10
0重量部に対し、真球度が0.99〜0.85、比表面
積が50m2/g以下で、強熱減量が10wt%以下の
カルシウム・ソジウム・アルミノ・シリケート0.01
〜1.00重量部を配合することを特徴とする請求項1
の積層金属蒸着フィルム。
3. A polymer 10 used in the (A) layer and the (C) layer.
Calcium-sodium-alumino-silicate 0.01 with a sphericity of 0.99 to 0.85, a specific surface area of 50 m 2 / g or less, and an ignition loss of 10 wt% or less, relative to 0 parts by weight.
The amount of ˜1.00 parts by weight is added.
Laminated metal vapor deposition film.
【請求項4】 積層フィルムがTダイ・チルロール冷却
法による3層共押出フィルムであることを特徴とする請
求項1の積層金属蒸着フィルム。
4. The laminated metal vapor deposition film according to claim 1, wherein the laminated film is a three-layer coextruded film obtained by a T-die / chill-roll cooling method.
JP7158594A 1994-03-15 1994-03-15 Laminated metal deposited film Pending JPH07251479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7158594A JPH07251479A (en) 1994-03-15 1994-03-15 Laminated metal deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7158594A JPH07251479A (en) 1994-03-15 1994-03-15 Laminated metal deposited film

Publications (1)

Publication Number Publication Date
JPH07251479A true JPH07251479A (en) 1995-10-03

Family

ID=13464918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7158594A Pending JPH07251479A (en) 1994-03-15 1994-03-15 Laminated metal deposited film

Country Status (1)

Country Link
JP (1) JPH07251479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003213A1 (en) * 1984-11-21 1986-06-05 Stamicarbon B.V. Polyamide resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247457A (en) * 1988-03-29 1989-10-03 Sumitomo Chem Co Ltd Thermoplastic resin composition
JPH04250038A (en) * 1990-06-11 1992-09-04 Mobil Oil Corp Multi-layer opp film with wide sealing range to form airtight seal
JPH05162268A (en) * 1991-12-11 1993-06-29 Chisso Corp Laminated metallized plastic film
JPH05230321A (en) * 1992-02-21 1993-09-07 Mitsubishi Petrochem Co Ltd Thermoplastic polymer composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247457A (en) * 1988-03-29 1989-10-03 Sumitomo Chem Co Ltd Thermoplastic resin composition
JPH04250038A (en) * 1990-06-11 1992-09-04 Mobil Oil Corp Multi-layer opp film with wide sealing range to form airtight seal
JPH05162268A (en) * 1991-12-11 1993-06-29 Chisso Corp Laminated metallized plastic film
JPH05230321A (en) * 1992-02-21 1993-09-07 Mitsubishi Petrochem Co Ltd Thermoplastic polymer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003213A1 (en) * 1984-11-21 1986-06-05 Stamicarbon B.V. Polyamide resin composition
US4761445A (en) * 1984-11-21 1988-08-02 Stamicarbon, B.V. Polyamide resin composition

Similar Documents

Publication Publication Date Title
CA1324710C (en) Metallized breathable films prepared from melt embossed polyolefin/filler precursor films
EP0514098B1 (en) Multilayer high opacity film structures and process for producing same
EP0023389B1 (en) Metallized films and method of producing them
JP2006307120A (en) Propylene-based resin film and propylene-based resin laminated film and application thereof
KR19990063428A (en) Biaxially Oriented Polypropylene Film for Metallization, Metallized Biaxially Oriented Polypropylene Film, and Laminates Using the Same
US20040191541A1 (en) High barrier metallized film with mirror-like appearance
JP4429430B2 (en) Sealant film
JPH11192680A (en) Polypropylene film and its manufacture
JPH0347177B2 (en)
JPH07251479A (en) Laminated metal deposited film
JP4701477B2 (en) Metallized biaxially oriented polypropylene film and laminate using the same
JP4240620B2 (en) Metallized biaxially oriented polypropylene film and laminate using the same
JPH0976400A (en) Thin film with gas barrier property
JP2920656B2 (en) Metallized laminated polypropylene film
JPH055175A (en) Vapor deposited film
JP4161443B2 (en) Biaxially oriented polypropylene film for metallization and method for producing the same
JP2879388B2 (en) Laminated metal deposited plastic film
JPH04371567A (en) Vapor deposited film and production thereof
JP3460295B2 (en) Heat and moisture resistant vapor deposition film
JP3841507B2 (en) Thin film gas barrier polypropylene film
JPH10237188A (en) Non-oriented polyolefinic film and vacuum-deposited non-oriented film using the same
JPH11170455A (en) Laminate foamed sheet
EP0833748B1 (en) Polymeric films
JP3225981B2 (en) Metallized plastic film
JPH1177824A (en) Biaxially stretched polypropylene film