JPH07250012A - Interference compensator - Google Patents
Interference compensatorInfo
- Publication number
- JPH07250012A JPH07250012A JP6038911A JP3891194A JPH07250012A JP H07250012 A JPH07250012 A JP H07250012A JP 6038911 A JP6038911 A JP 6038911A JP 3891194 A JP3891194 A JP 3891194A JP H07250012 A JPH07250012 A JP H07250012A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- interference
- amplitude
- synthesizing
- received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Noise Elimination (AREA)
- Radio Transmission System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、市街地伝搬路のような
フェージング伝搬路における無線通信システムでの干渉
を抑圧する干渉補償装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference compensator for suppressing interference in a radio communication system in a fading propagation path such as an urban propagation path.
【0002】[0002]
【従来の技術】偏波面の交差した2種類の信号を送受信
する無線通信システムが知られている。この種のシステ
ムにおいて、受信側装置では、希望偏波信号に漏れ込む
交差偏波干渉信号を補償する必要がある。このための方
法として、希望偏波信号受信用アンテナで受信された信
号(以下、信号A)に、交差偏波信号受信用アンテナで
受信された信号(以下、信号B)を、トランスバーサル
フィルタを利用して合成することにより補償する補償方
式がある。2. Description of the Related Art There are known wireless communication systems for transmitting and receiving two types of signals whose polarization planes intersect. In this type of system, the receiving side device needs to compensate for the cross polarization interference signal leaking into the desired polarization signal. As a method for this, a signal received by the antenna for cross polarization signal reception (hereinafter, signal B) is added to a signal received by the desired polarization signal reception antenna (hereinafter, signal A) by a transversal filter. There is a compensation method that compensates by utilizing and combining.
【0003】図10は、トランスバーサルフィルタを用
いた交差偏波干渉補償器(XPIC)を説明する図であ
る。図において1は希望偏波信号受信用アンテナ、2は
交差偏波信号受信用アンテナ、3はトランスバーサルフ
ィルタ、4および8は合成器、5は検波器、6は干渉検
知部、7は識別器、9は復調器、10は相関器である。FIG. 10 is a diagram illustrating a cross polarization interference compensator (XPIC) using a transversal filter. In the figure, 1 is an antenna for receiving a desired polarization signal, 2 is an antenna for receiving a cross polarization signal, 3 is a transversal filter, 4 and 8 are combiners, 5 is a wave detector, 6 is an interference detector, and 7 is a discriminator. , 9 are demodulators, and 10 are correlators.
【0004】次に、図10を参照して、上記トランスバ
ーサル型交差偏波干渉補償器の動作を説明する。信号B
はトランスバーサルフィルタ3でその振幅および位相を
制御されて合成器4で信号Aと合成される。合成器4の
出力信号は検波器5で検波された後、識別器7において
データの識別が行われ、合成器8においてその識別前後
の差をとることにより合成器8の出力信号に残留する干
渉信号成分が得られる。雑音レベルが非常に低く、受信
レベル変動が非常に緩慢な固定局間通信のような場合に
は、このように識別前後の誤差から希望偏波信号受信用
アンテナへ漏れ込んだ干渉信号成分が検知できる。干渉
検知部6の出力(残留干渉信号)と信号B(干渉信号)
の復調器9の出力との相関値を相関器10で計算し、相
関器10の出力によりトランスバーサルフィルタ3のタ
ップ係数を制御することにより希望偏波信号に含まれる
干渉信号成分をほぼ打ち消すことができる。このトラン
スバーサル型干渉補償器は、固定局間通信のように瞬時
変動の殆どない安定な伝搬路において有効である。Next, the operation of the transversal cross polarization interference canceller will be described with reference to FIG. Signal B
Is controlled in its amplitude and phase by the transversal filter 3 and is combined with the signal A by the combiner 4. After the output signal of the synthesizer 4 is detected by the detector 5, the discriminator 7 discriminates the data, and the synthesizer 8 obtains the difference between before and after the discrimination so that the interference signal remaining in the output signal of the synthesizer 8 remains. A signal component is obtained. In the case of fixed-station communication, where the noise level is very low and the fluctuation of the reception level is very slow, the interference signal component leaked to the antenna for receiving the desired polarization signal is detected due to the error before and after identification. it can. Output of interference detection unit 6 (residual interference signal) and signal B (interference signal)
The correlation value with the output of the demodulator 9 is calculated by the correlator 10, and the tap coefficient of the transversal filter 3 is controlled by the output of the correlator 10 to substantially cancel the interference signal component included in the desired polarization signal. You can This transversal-type interference compensator is effective in a stable propagation path where there is almost no instantaneous fluctuation, such as communication between fixed stations.
【0005】[0005]
【発明が解決しようとする課題】しかし、固定無線通信
伝搬路のように安定した伝搬路ではなく、市街地伝搬路
のように受信信号の振幅および位相がフェージングによ
り大きくかつその変動周期が短い伝搬路では、従来技術
で示した干渉補償器の補償効果の低下が予想される。フ
ェージング環境下においては、希望偏波信号、干渉信号
共に瞬時変動しているために、干渉検知部の入力におい
てはトランスバーサルフィルタの制御に用いる識別前後
の誤差が増大し、かつその誤差には干渉信号成分のみで
なく希望偏波信号成分も含まれるようになる。したがっ
て、トランスバーサルフィルタを最適制御することが難
しくなり、補償効果が低下する。However, it is not a stable propagation path such as a fixed wireless communication propagation path, but a propagation path such as an urban area propagation path in which the amplitude and phase of a received signal are large due to fading and the fluctuation period thereof is short. Then, it is expected that the compensation effect of the interference compensator shown in the related art will decrease. In a fading environment, both the desired polarization signal and the interference signal fluctuate instantaneously, so the error before and after the identification used for the control of the transversal filter increases at the input of the interference detection unit, and the error causes interference. Not only the signal component but also the desired polarization signal component is included. Therefore, it becomes difficult to optimally control the transversal filter, and the compensation effect decreases.
【0006】本発明は上述した問題に鑑みてなされたも
ので、市街地伝搬路のように受信信号の振幅および位相
がフェージングにより大きくかつその変動周期が短い伝
搬路において、希望偏波信号から効果的に干渉信号を除
去することが可能な干渉補償装置の提供を目的とする。The present invention has been made in view of the above problems, and is effective from a desired polarization signal in a propagation path in which the amplitude and phase of a received signal are large due to fading and the fluctuation period thereof is short, such as an urban propagation path. It is an object of the present invention to provide an interference compensator capable of removing an interference signal.
【0007】[0007]
【課題を解決するための手段】本発明の干渉補償装置
は、偏波面が交差した第1および第2の受信信号を受信
する無線通信装置に設けられ、第1の受信信号に混入し
た第2の受信信号の干渉信号を除去する干渉補償装置で
あって、トレーニング信号を発生するトレーニング信号
発生手段と、該トレーニング信号の振幅および位相を制
御して出力する第1の制御手段と、前記第2の受信信号
の振幅および位相を制御して出力する第2の制御手段
と、前記第1の受信信号と前記第1の制御手段の出力信
号とを合成して出力する第1の合成手段と、該第1の合
成手段の出力信号と前記第2の制御手段の出力信号とを
合成して出力する第2の合成手段と、前記第1の受信信
号と前記第2の制御手段の出力信号とを合成して出力す
る第3の合成手段と、前記第1の合成手段の出力信号に
含まれるトレーニング信号の振幅を検出する第1の検出
手段と、前記第2の合成手段の出力信号の振幅を検出す
る第2の検出手段と、を備え、前記第1の受信信号に前
記第1の制御手段の出力信号を時分割的に付加すると共
に、この付加を行う期間では、前記第1の制御手段は、
前記第1の検出手段の検出量に応じて、前記第1の合成
手段の出力信号に含まれる前記トレーニング信号の振幅
を最小とするように前記トレーニング信号の振幅および
位相を制御し、前記第2の制御手段は、前記第2の検出
手段の検出量に応じて前記第2の合成手段の出力信号の
振幅が最小となるように前記第2の受信信号の振幅およ
び位相を制御し、前記第1の制御手段の出力信号の付加
を行わない期間では、前記第3の合成手段は、前記トレ
ーニング信号の受信期間における前記第2の制御手段の
制御量を維持した状態で、信号を出力する、ことを特徴
とする。The interference compensating apparatus of the present invention is provided in a radio communication apparatus for receiving first and second received signals whose polarization planes intersect each other, and a second signal mixed in the first received signal is provided. An interference compensating apparatus for removing an interference signal of the received signal, training signal generating means for generating a training signal, first control means for controlling and outputting the amplitude and phase of the training signal, and the second Second control means for controlling and outputting the amplitude and phase of the reception signal, and first combining means for combining and outputting the first reception signal and the output signal of the first control means, Second synthesizing means for synthesizing and outputting the output signal of the first synthesizing means and the output signal of the second controlling means, the first received signal and the output signal of the second controlling means Third synthesizing means for synthesizing and outputting A first detecting means for detecting the amplitude of the training signal included in the output signal of the first combining means, and a second detecting means for detecting the amplitude of the output signal of the second combining means, The output signal of the first control means is added to the first received signal in a time division manner, and in the period in which the addition is performed, the first control means:
The amplitude and phase of the training signal are controlled so as to minimize the amplitude of the training signal included in the output signal of the first synthesizing unit according to the detection amount of the first detecting unit, and the second Controlling means controls the amplitude and phase of the second received signal so that the amplitude of the output signal of the second synthesizing means is minimized according to the detection amount of the second detecting means. In a period in which the output signal of the first control unit is not added, the third synthesizing unit outputs a signal while maintaining the control amount of the second control unit in the reception period of the training signal. It is characterized by
【0008】[0008]
【作用】本発明の干渉補償装置は、偏波面が交差した第
1および第2の受信信号を受信する無線通信装置に設け
られ、第1の受信信号に混入した第2の受信信号の干渉
信号を除去する。トレーニング信号発生手段は、トレー
ニング信号を発生する。第1の制御手段は、トレーニン
グ信号の振幅および位相を制御して出力する。第2の制
御手段は、第2の受信信号の振幅および位相を制御して
出力する。第1の合成手段は、第1の受信信号と第1の
制御手段の出力信号とを合成して出力する。第2の合成
手段は、第1の合成手段の出力信号と第2の制御手段の
出力信号とを合成して出力する。第3の合成手段は、第
1の受信信号と第2の制御手段の出力信号とを合成して
出力する。第1の検出手段は、第1の合成手段の出力信
号に含まれるトレーニング信号の振幅を検出する。第1
の検出手段は、前記第2の合成手段の出力信号の振幅を
検出する。前記第1の受信信号に前記第1の制御手段の
出力信号を時分割的に付加すると共に、この付加を行う
期間では、前記第1の制御手段は、前記第1の検出手段
の検出量に応じて、前記第1の合成手段の出力信号に含
まれる前記トレーニング信号の振幅を最小とするように
前記トレーニング信号の振幅および位相を制御する。前
記第2の制御手段は、前記第2の検出手段の検出量に応
じて前記第2の合成手段の出力信号の振幅が最小となる
ように前記第2の受信信号の振幅および位相を制御す
る。前記第1の制御手段の出力信号の付加を行わない期
間では、前記第3の合成手段は、前記トレーニング信号
の受信期間における前記第2の制御手段の制御量を維持
した状態で、信号を出力する。The interference compensating device of the present invention is provided in a radio communication device for receiving first and second received signals whose polarization planes intersect each other, and an interference signal of the second received signal mixed in the first received signal. To remove. The training signal generating means generates a training signal. The first control means controls and outputs the amplitude and phase of the training signal. The second control means controls and outputs the amplitude and phase of the second received signal. The first synthesizing means synthesizes the first received signal and the output signal of the first control means and outputs the synthesized signal. The second synthesizing means synthesizes the output signal of the first synthesizing means and the output signal of the second controlling means and outputs the synthesized signal. The third synthesizing means synthesizes the first received signal and the output signal of the second control means and outputs the synthesized signal. The first detecting means detects the amplitude of the training signal included in the output signal of the first combining means. First
Detecting means detects the amplitude of the output signal of the second combining means. The output signal of the first control means is added to the first received signal in a time division manner, and the first control means sets the detection amount of the first detection means in a period in which this addition is performed. Accordingly, the amplitude and phase of the training signal are controlled so as to minimize the amplitude of the training signal included in the output signal of the first synthesizing means. The second control means controls the amplitude and phase of the second reception signal so that the amplitude of the output signal of the second combining means becomes minimum according to the detection amount of the second detection means. . In a period in which the output signal of the first control unit is not added, the third synthesizing unit outputs a signal while maintaining the control amount of the second control unit during the reception period of the training signal. To do.
【0009】[0009]
【実施例】上述するように互いに異なる偏波信号を同時
に送受信する無線通信システムにおいては、交差偏波干
渉により伝送品質が劣化する。この伝送品質の劣化を補
償する本発明による干渉補償装置の実施例について、図
1から図9を参照して詳しく説明する。BEST MODE FOR CARRYING OUT THE INVENTION As described above, in a wireless communication system that simultaneously transmits and receives polarized signals different from each other, the transmission quality deteriorates due to cross polarization interference. An embodiment of an interference compensating apparatus according to the present invention for compensating for the deterioration of the transmission quality will be described in detail with reference to FIGS. 1 to 9.
【0010】〔実施例1〕 干渉補償装置 直交偏波を共用し同一チャネルの両偏波を同時受信する
とき、交差偏波干渉により伝送品質が劣化する。この想
定モデルを図2に示す。図2は受信局において、V(垂
直)偏波信号およびH(水平)偏波信号が同時に受信さ
れる例である。この場合、両偏波信号とも希望偏波信号
であり補償対象となるが、簡単のため以後V(垂直)偏
波信号を希望偏波信号とし、このV(垂直)偏波信号と
同時送信されるH(水平)偏波信号のみを干渉波とする
1波干渉モデルを想定し、V(垂直)偏波信号受信用ア
ンテナにおける受信信号中に漏れ込むH(水平)偏波信
号成分を除去する方式について説明する。First Embodiment Interference Compensation Device When orthogonal polarizations are shared and both polarizations of the same channel are received simultaneously, transmission quality deteriorates due to cross polarization interference. This assumed model is shown in FIG. FIG. 2 shows an example in which a V (vertical) polarized signal and an H (horizontal) polarized signal are simultaneously received at the receiving station. In this case, both polarization signals are desired polarization signals and are to be compensated. However, for simplification, the V (vertical) polarization signal will be referred to as a desired polarization signal and transmitted simultaneously with this V (vertical) polarization signal. Assuming a one-wave interference model in which only the H (horizontal) polarized signal is used as an interference wave, the H (horizontal) polarized signal component leaking into the received signal at the V (vertical) polarized signal receiving antenna is removed. The method will be described.
【0011】図7に本実施例の干渉補償装置の構成を示
す。図の中でSW1およびSW2はスイッチ、13、1
4および15は合成器、16、17はトランスバーサル
フィルタである。また、DTはトレーニング信号発生器
(図示略)が出力するトレーニング信号である。またh
dはトレーニング信号DTの振幅および位相を制御する干
渉推定用タップ係数、hはH(水平)偏波信号受信用ア
ンテナによって受信された受信信号2の振幅および位相
を制御する複製生成用タップ係数である。また、Err
orは、各タップ係数を決定する時に生じる受信信号1
中の干渉信号と、受信信号2に複製生成用タップ係数を
乗算した信号(h×受信信号2)間の誤差信号である。
なお、伝送しようとするデータ信号に時分割的に挿入さ
れるトレーニング信号を受信するトレーニング区間で
は、SW1およびSW2は接点T側に倒れ、データ信号
を受信するデータ区間では、SW1およびSW2は接点
D側に倒れるように構成されている。FIG. 7 shows the configuration of the interference compensating apparatus of this embodiment. In the figure, SW1 and SW2 are switches, 13, 1
Reference numerals 4 and 15 are combiners, and 16 and 17 are transversal filters. D T is a training signal output by a training signal generator (not shown). See h
d is an interference estimation tap coefficient that controls the amplitude and phase of the training signal D T , and h is a duplicate generation tap coefficient that controls the amplitude and phase of the reception signal 2 received by the H (horizontal) polarization signal reception antenna Is. Also, Err
or is a received signal 1 generated when determining each tap coefficient.
It is an error signal between the interference signal in the inside and the signal (h × received signal 2) obtained by multiplying the received signal 2 by the tap coefficient for copy generation.
Note that SW1 and SW2 fall to the contact T side in the training section in which the training signal to be transmitted is transmitted in a time division manner, and SW1 and SW2 contact SW in the data section in which the data signal is received. It is configured to fall to the side.
【0012】次に、干渉補償装置を含めた受信系構成図
を図3に示す。アンテナは送受信用アンテナとしてV
(垂直)偏波信号受信用およびH(水平)偏波信号受信
用アンテナをそれぞれ1本ずつ用意する。このアンテナ
で同時送信されてくるV(垂直)偏波信号およびH(水
平)偏波信号を受信し、これらを検波すれば、アンテナ
の交差偏波識別度によって、V(垂直)偏波信号受信用
アンテナにおいては希望波対干渉波比(以下、DU比と
いう)が正となる受信信号1が得られる。一方、H(水
平)偏波受信用アンテナにおいては、DU比が負となる
受信信号2が得られる。これらの信号は干渉補償装置に
入力され、図1に示すTDMAバースト信号に設けられ
たトレーニング区間でまず受信信号1に含まれる干渉信
号成分をキャンセルするような複製生成用タップ係数h
の決定を行う。データ区間ではトレーニング区間で決定
された複製生成用タップ係数hを用いて、受信信号1か
ら受信信号2に複製生成用タップ係数hを乗じた信号を
減算することにより干渉信号の除去を行う。提案する方
式においてはこのように、トレーニング区間とデータ区
間では全くその処理の内容が異なるので、分けて説明す
る。Next, FIG. 3 shows a block diagram of a receiving system including an interference compensating device. The antenna is V as a transmitting and receiving antenna.
One antenna for receiving the (vertical) polarized signal and one antenna for receiving the H (horizontal) polarized signal are prepared. If the V (vertical) polarized wave signal and the H (horizontal) polarized wave signal transmitted simultaneously by this antenna are received and detected, the V (vertical) polarized wave signal is received according to the cross polarization discrimination degree of the antenna. In the antenna for reception, the received signal 1 having a positive desired wave-to-interference wave ratio (hereinafter referred to as DU ratio) is obtained. On the other hand, in the H (horizontal) polarized wave receiving antenna, the received signal 2 having a negative DU ratio is obtained. These signals are input to the interference compensating apparatus, and in the training section provided in the TDMA burst signal shown in FIG. 1, first, the copy generation tap coefficient h for canceling the interference signal component included in the received signal 1 is canceled.
Make a decision. In the data section, the interference generation signal is removed by subtracting the signal obtained by multiplying the received signal 2 by the replication generation tap coefficient h by using the replication generation tap coefficient h determined in the training section. In the proposed method, the contents of the processing are completely different between the training section and the data section in this way, so they will be described separately.
【0013】(1)トレーニング区間の動作 トレーニング信号受信中(トレーニング区間)の処理系
は図4(a)のようになる。また、図4(b)を参照し
て干渉推定部の動作を説明する。トランスバーサルフィ
ルタ16の干渉推定用タップ係数hdは、最小2乗法を
用いて受信信号1と、受信側が持つトレーニング信号発
生器の出力するトレーニング信号DTに干渉推定用タッ
プ係数hdを乗算した推定希望信号(hd×DT)とを、
合成器13に入力して得られる出力信号の2乗値が0に
なるように制御される。トレーニング信号発生器が発生
するトレーニング信号DTは、受信される希望偏波信号
のTDMAバースト信号に時分割して挿入されて送信さ
れるトレーニング信号と同一の信号列であり、純粋な希
望偏波信号である。最小2乗法によって、推定希望信号
(hd×DT)は最終的にトレーニング信号DTと相関の
ある受信信号1中の希望偏波信号成分と等しくなり、ト
レーニング信号DTと相関のない受信信号1中の干渉信
号成分は残留成分として干渉推定部から出力される。こ
のような最小2乗法を用いた干渉推定用タップ係数hd
の制御は、実際には後述する再帰最小2乗(RLS)ア
ルゴリズムのような適応アルゴリズムにより行われる。
トレーニング区間における各振幅レベルの変動の様子
と、推定希望信号レベルが受信信号1中の希望信号レベ
ルに追従していく様子を図5(a)に示す。(1) Operation during training section The processing system during the reception of the training signal (training section) is as shown in FIG. 4 (a). Also, the operation of the interference estimation unit will be described with reference to FIG. Interference estimate tap coefficients h d of the transversal filter 16, minimum 2 multiplicative using the received signal 1, and multiplies the output training signal D T to the interference estimation tap coefficients h d of the training signal generator having the reception side The estimated desired signal (h d × D T )
The square value of the output signal obtained by inputting to the synthesizer 13 is controlled to be zero. The training signal D T generated by the training signal generator has the same signal sequence as the training signal transmitted by being time-divided and inserted into the TDMA burst signal of the desired polarization signal to be received. It is a signal. By the least-squares method, the estimated desired signal (h d × D T ) finally becomes equal to the desired polarization signal component in the received signal 1 having the correlation with the training signal D T, and the received signal having no correlation with the training signal D T is received. The interference signal component in the signal 1 is output from the interference estimation unit as a residual component. Interference estimation tap coefficient h d using such a least squares method
Is controlled by an adaptive algorithm such as the recursive least squares (RLS) algorithm described later.
FIG. 5A shows how each amplitude level changes in the training section and how the estimated desired signal level follows the desired signal level in the received signal 1.
【0014】次に係数決定部では図4(c)に示すよう
に、トランスバーサルフィルタ17の複製生成用タップ
係数hは、干渉推定部の出力すなわち受信信号1に含ま
れる干渉信号成分と受信信号2に複製生成用タップ係数
hを乗算した信号(h×受信信号2)とを合成器14に
入力して得られる出力信号の2乗値(Error)が0
になるように制御される。つまり、複製生成用タップ係
数hは、受信信号2に複製生成用タップ係数hを乗算し
た信号(h×受信信号2)が受信信号1に含まれる干渉
信号と等しくなるように制御される。この時確信号レベ
ルと受信信号2に複製生成用タップ係数hを乗算した信
号(h×受信信号2)が受信信号1中の干渉信号成分へ
追従していく様子を図5(b)に示す。Next, in the coefficient determining section, as shown in FIG. 4 (c), the copy generation tap coefficient h of the transversal filter 17 is determined by the output of the interference estimating section, that is, the interference signal component and the reception signal included in the reception signal 1. The squared value (Error) of the output signal obtained by inputting the signal (h × received signal 2) obtained by multiplying 2 by the duplicate generation tap coefficient h to 0 is 0.
Controlled to be. That is, the duplicate generation tap coefficient h is controlled so that the signal (h × received signal 2) obtained by multiplying the received signal 2 by the duplicate generation tap coefficient h becomes equal to the interference signal included in the received signal 1. At this time, FIG. 5B shows how the signal (h × received signal 2) obtained by multiplying the probability signal level and the received signal 2 by the copy generation tap coefficient h follows the interference signal component in the received signal 1. .
【0015】(2)データ区間の動作 次にデータ区間の動作について説明する。データ区間に
おける処理系は図6(a)のようになる。データ区間中
は複製生成用タップ係数hの更新は行わず、先にトレー
ニング区間で得られた制御量を維持する。TDMAバー
スト中のレベル変動が比較的緩やかであるとすれば図6
(b)に示すように、複製生成用タップ係数hを固定し
ても受信信号2に複製生成用タップ係数hを乗算した信
号(h×受信信号2)と、受信信号1に含まれる干渉成
分のレベル差は、1バースト内では小さいため受信信号
1から受信信号2に複製生成用タップ係数hを乗算した
信号(h×受信信号2)を差し引くことにより、受信信
号1からほぼ干渉成分のみ除去することができる。(2) Operation in Data Section Next, the operation in the data section will be described. The processing system in the data section is as shown in FIG. The copy generation tap coefficient h is not updated during the data section, and the control amount previously obtained in the training section is maintained. Assuming that the level fluctuation during the TDMA burst is relatively gentle, FIG.
As shown in (b), even if the copy generation tap coefficient h is fixed, a signal (h × received signal 2) obtained by multiplying the received signal 2 by the copy generation tap coefficient h and the interference component included in the received signal 1 Since the level difference of is small within one burst, by subtracting the signal (h × received signal 2) obtained by multiplying received signal 2 by tap coefficient h for duplicate generation, almost only the interference component is removed from received signal 1. can do.
【0016】(3)適応アルゴリズム 最後に適応アルゴリズムについて説明する。必要なトレ
ーニング区間が短くて済む適応アルゴリズムとして、収
束の速い再帰最小2乗(RLS)アルゴリズムがある。
本アルゴリズムは計算機による繰り返し計算を容易にす
るため、最小2乗法を漸化式表現にしたものである。本
アルゴリズムを用いれば、変動する入力データの統計的
量の仮定がなくても、入力データと基準とする信号の差
の2乗値、すなわち残留信号の2乗値から、これを0に
するように、入力データ量に乗じるタップ係数を調整で
きる。本アルゴリズムのような最小2乗アルゴリズム
は、入力データと基準とする信号の相関が1ならば、
(入力データ×タップ係数)の値は最終的に基準とする
信号に等しくなるため残留信号は0になり、入力データ
と基準とする信号の相関が低い場合、つまり入力データ
に基準とする信号以外の成分が含まれている場合には、
最終的な残留信号は0にならず、基準とする信号以外の
不要成分を残留成分として出力する特徴がある。本発明
では、相関が低い場合の本アルゴリズムの特徴を干渉推
定部に、相関が1に近い場合の特徴を係数決定部に利用
している。このような性質を持つRLSアルゴリズムに
代表される適応アルゴリズムについての詳細は文献
(S.ヘイキン著、武部 幹訳、現代工学社「適応フィ
ルタ入門」)に掲載されている。(3) Adaptive Algorithm Finally, the adaptive algorithm will be described. As an adaptive algorithm that requires a short training interval, there is a recursive least squares (RLS) algorithm with fast convergence.
This algorithm is a recursive expression of the least squares method in order to facilitate repeated calculation by a computer. By using this algorithm, even if there is no assumption of the statistical amount of the fluctuating input data, it can be set to 0 from the square value of the difference between the input data and the reference signal, that is, the square value of the residual signal. In addition, the tap coefficient that multiplies the input data amount can be adjusted. A least-squares algorithm such as this algorithm can be used if the correlation between the input data and the reference signal is 1.
Since the value of (input data × tap coefficient) finally becomes equal to the reference signal, the residual signal becomes 0, and when the correlation between the input data and the reference signal is low, that is, other than the reference signal for the input data. If the ingredients of
The final residual signal does not become 0, and there is a feature that unnecessary components other than the reference signal are output as residual components. In the present invention, the feature of the present algorithm when the correlation is low is used for the interference estimation unit, and the feature when the correlation is close to 1 is used for the coefficient determination unit. Details of the adaptive algorithm represented by the RLS algorithm having such a property are described in a document (S. Heikin, translated by Miki Takebe, "Introduction to Adaptive Filter" by Hyundai Engineering Co., Ltd.).
【0017】実際、希望偏波信号と干渉信号が同じ仲上
−ライスフェージング変動していると仮定したときの、
補償効果を計算機シミュレーションで求め、D/U−B
ER(バースト・エラーレート)特性において比較し
た。図8に、交差偏波識別度を15dBと仮定した場合
における補償効果のシミュレーション結果を示す。図に
おいて、横軸のD/U=0(dB)における補償した場
合のBER(バースト・エラーレート)は、補償しない
場合のD/U=15dBのBER(バースト・エラーレ
ート)に相当している。この結果から、本実施例の干渉
補償装置は、高い補償効果があることがわかる。In fact, assuming that the desired polarization signal and the interference signal have the same Nakagami-Rice fading fluctuation,
Compensation effect is calculated by computer simulation, and D / U-B
The ER (burst error rate) characteristics were compared. FIG. 8 shows a simulation result of the compensation effect when the cross polarization discrimination degree is assumed to be 15 dB. In the figure, the BER (burst error rate) in the case of compensation at D / U = 0 (dB) on the horizontal axis corresponds to the BER (burst error rate) of D / U = 15 dB in the case of no compensation. . From this result, it can be seen that the interference compensating apparatus of this embodiment has a high compensation effect.
【0018】〔実施例2〕 指向性アンテナを利用した
干渉補償装置 図9のように、1希望偏波信号に対して1干渉信号が異
なる方向から飛来する場合、それぞれの方向へアンテナ
指向性を持たせることにより、受信希望局へ向けたアン
テナではDU比が正、干渉局へ向けたアンテナではDU
比が負となり、実施例1と同じ想定環境が実現できる。
したがって実施例1と同様に本発明が適用できる。[Embodiment 2] Interference compensation device using directional antenna As shown in FIG. 9, when one interference signal flies from different directions with respect to one desired polarization signal, the antenna directivity is set in each direction. By having it, the DU ratio is positive in the antenna toward the desired receiving station, and the DU ratio is in the antenna toward the interfering station.
The ratio becomes negative, and the same assumed environment as in Example 1 can be realized.
Therefore, the present invention can be applied as in the first embodiment.
【0019】〔実施例3〕 給電ホーンを利用するアン
テナ利用時の干渉補償装置 マイクロ波帯やミリ波帯のアンテナのように給電ホーン
を利用するアンテナの場合、偏波変換器すなわち偏分波
器により1つのアンテナで両偏波信号を出力可能なアン
テナであれば、一方の受信しようとする偏波信号の出力
を受信信号1とし、他方の交差偏波信号の出力を受信信
号2として、本発明が適用できる。[Embodiment 3] Interference compensation device when using antenna using feed horn In the case of antenna using feed horn such as microwave band or millimeter wave antenna, polarization converter, that is, polarization splitter Therefore, if one antenna is capable of outputting both polarization signals, the output of one polarization signal to be received is the reception signal 1 and the output of the other cross polarization signal is the reception signal 2, The invention can be applied.
【0020】〔実施例4〕送受信間で同一チャネルを利
用した場合、受信信号は自局の送信信号から同一チャネ
ル干渉を受ける可能性があるが、この場合も元々の受信
信号を受信信号1、送信信号を送信係回路から1部分岐
して取り出し、これを受信信号2とすれば本発明が適用
できる。[Embodiment 4] When the same channel is used for transmission and reception, the received signal may receive co-channel interference from the transmission signal of its own station. In this case as well, the original received signal is the received signal 1, The present invention can be applied to a case where a transmission signal is branched from the transmission circuit and extracted as a reception signal 2.
【0021】[0021]
【発明の効果】本発明による干渉補償装置は、データ信
号を受信する前のトレーニング区間において、トレーニ
ング信号を用いて受信信号2の振幅および位相を制御す
るトランスバーサルフィルタの複製生成用タップ係数を
予め決定し、データ区間において、受信信号1から受信
信号2に複製生成用タップ係数を乗じた信号を減算する
ことにより、希望偏波信号に含まれる干渉信号を除去す
ることができる。したがって、瞬時変動を有するフェー
ジング環境下において、図8に示すようなD/U−BE
R(バースト・エラーレート)特性の改善効果を有す
る。According to the interference compensating apparatus of the present invention, in the training section before receiving the data signal, the copy generation tap coefficient of the transversal filter for controlling the amplitude and phase of the received signal 2 using the training signal is preset. By determining and subtracting the signal obtained by multiplying the received signal 2 by the duplicate generation tap coefficient in the data section, the interference signal included in the desired polarization signal can be removed. Therefore, in a fading environment with instantaneous fluctuations, D / U-BE as shown in FIG.
It has the effect of improving the R (burst error rate) characteristic.
【図1】本発明による受信されるTDMAバースト信号
の構成図である。FIG. 1 is a block diagram of a received TDMA burst signal according to the present invention.
【図2】本発明による実施例1の想定モデルである。FIG. 2 is an assumed model of the first embodiment according to the present invention.
【図3】本発明による干渉補償装置を含めた受信系構成
図である。FIG. 3 is a configuration diagram of a reception system including an interference compensation device according to the present invention.
【図4】本発明によるトレーニング区間処理系と処理系
各部の構成図である。FIG. 4 is a configuration diagram of a training section processing system and each part of the processing system according to the present invention.
【図5】本発明によるトレーニング区間での振幅レベル
の推移を示す図である。FIG. 5 is a diagram showing a transition of an amplitude level in a training section according to the present invention.
【図6】本発明によるデータ区間処理系と受信信号1中
の干渉信号成分、および受信信号2に複製生成用タップ
係数hを乗算した信号(h×受信信号2)の変動の様子
を示す図である。FIG. 6 is a diagram showing a data interval processing system according to the present invention, an interference signal component in a received signal 1, and a variation state of a signal (h × received signal 2) obtained by multiplying the received signal 2 by a replication generation tap coefficient h. Is.
【図7】本発明による干渉補償装置の構成図である。FIG. 7 is a block diagram of an interference compensation device according to the present invention.
【図8】本発明によるDU比−BER(バースト・エラ
ーレート)特性の計算機シミュレーション結果を示す図
である。FIG. 8 is a diagram showing a computer simulation result of a DU ratio-BER (burst error rate) characteristic according to the present invention.
【図9】本発明による実施例1の想定モデルである。FIG. 9 is an assumed model of the first embodiment according to the present invention.
【図10】従来のトランスバーサル型の交差偏波干渉補
償器である。FIG. 10 is a conventional transversal type cross polarization interference compensator.
SW1、SW2 スイッチ T トレーニング区間でのスイッチ位置 D データ区間でのスイッチ位置 Error タップ係数決定時に生じる、受信信号1中
の干渉信号成分と受信信号2に複製生成用タップ係数h
を乗算した信号(h×受信信号2)間の誤差 hd 干渉推定用タップ係数 h 複製生成用タップ係数 DT トレーニング信号発生機が出力するトレーニング
信号 13、14、15 合成器 16、17 トランスバーサルフィルタSW1, SW2 switch T switch position in training section D switch position in data section Error Error tap component h in the received signal 1 and copy signal generation in the received signal 2 that occurs when the tap coefficient is determined
Error between signals multiplied by (h × received signal 2) h d interference estimation tap coefficient h duplicate generation tap coefficient D T training signal output from training signal generator 13, 14, 15 combiner 16, 17 transversal filter
Claims (1)
信号を受信する無線通信装置に設けられ、第1の受信信
号に混入した第2の受信信号の干渉信号を除去する干渉
補償装置であって、 トレーニング信号を発生するトレーニング信号発生手段
と、 該トレーニング信号の振幅および位相を制御して出力す
る第1の制御手段と、 前記第2の受信信号の振幅および位相を制御して出力す
る第2の制御手段と、 前記第1の受信信号と前記第1の制御手段の出力信号と
を合成して出力する第1の合成手段と、 該第1の合成手段の出力信号と前記第2の制御手段の出
力信号とを合成して出力する第2の合成手段と、 前記第1の受信信号と前記第2の制御手段の出力信号と
を合成して出力する第3の合成手段と、 前記第1の合成手段の出力信号に含まれるトレーニング
信号の振幅を検出する第1の検出手段と、 前記第2の合成手段の出力信号の振幅を検出する第2の
検出手段と、 を備え、 前記第1の受信信号に前記第1の制御手段の出力信号を
時分割的に付加すると共に、この付加を行う期間では、 前記第1の制御手段は、前記第1の検出手段の検出量に
応じて、前記第1の合成手段の出力信号に含まれる前記
トレーニング信号の振幅を最小とするように前記トレー
ニング信号の振幅および位相を制御し、 前記第2の制御手段は、前記第2の検出手段の検出量に
応じて前記第2の合成手段の出力信号の振幅が最小とな
るように前記第2の受信信号の振幅および位相を制御
し、 前記第1の制御手段の出力信号の付加を行わない期間で
は、 前記第3の合成手段は、前記トレーニング信号の受信期
間における前記第2の制御手段の制御量を維持した状態
で、信号を出力する、 ことを特徴とする干渉補償装置。1. An interference compensating device, which is provided in a radio communication device for receiving first and second received signals whose polarization planes cross each other, and which removes an interference signal of a second received signal mixed in the first received signal. A training signal generating means for generating a training signal, first control means for controlling and outputting the amplitude and phase of the training signal, and controlling and outputting the amplitude and phase of the second received signal Second synthesizing means, first synthesizing means for synthesizing and outputting the first received signal and the output signal of the first controlling means, and an output signal of the first synthesizing means and the first synthesizing means. Second synthesizing means for synthesizing and outputting the output signal of the second control means, and third synthesizing means for synthesizing and outputting the first received signal and the output signal of the second control means. Included in the output signal of the first combining means A first detecting means for detecting the amplitude of the training signal, and a second detecting means for detecting the amplitude of the output signal of the second synthesizing means, wherein the first received signal is the first received signal. The output signal of the control means is added in a time division manner, and in the period in which this addition is performed, the first control means outputs the output of the first combining means in accordance with the detection amount of the first detection means. Controlling the amplitude and phase of the training signal so that the amplitude of the training signal included in the signal is minimized, and the second control unit controls the second control unit according to the detection amount of the second detection unit. In the period in which the amplitude and phase of the second received signal are controlled so that the amplitude of the output signal of the synthesizing means is minimized, and the output signal of the first control means is not added, the third synthesizing means is used. Receives the training signal While maintaining the controlled variable of the second control means in the period, and outputs a signal, interference compensating device, characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6038911A JPH07250012A (en) | 1994-03-09 | 1994-03-09 | Interference compensator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6038911A JPH07250012A (en) | 1994-03-09 | 1994-03-09 | Interference compensator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07250012A true JPH07250012A (en) | 1995-09-26 |
Family
ID=12538395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6038911A Pending JPH07250012A (en) | 1994-03-09 | 1994-03-09 | Interference compensator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07250012A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012029132A (en) * | 2010-07-26 | 2012-02-09 | Nec Corp | Cross polarization interference compensator |
-
1994
- 1994-03-09 JP JP6038911A patent/JPH07250012A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012029132A (en) * | 2010-07-26 | 2012-02-09 | Nec Corp | Cross polarization interference compensator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6097773A (en) | Co-channel interference reduction | |
EP1062711B1 (en) | Adaptive cancellation of fixed interferers | |
CA2202829C (en) | Devices for transmitter path weights and methods therefor | |
US4320535A (en) | Adaptive interference suppression arrangement | |
US7373129B2 (en) | Radio communication terminal | |
JP2980053B2 (en) | Interference wave canceller | |
JP3632535B2 (en) | Diversity transmission / reception method and apparatus | |
JP2001028562A (en) | Delay wave cancellation method | |
WO2003085868A1 (en) | Cross polarized wave interference eliminating system and method | |
GB2313237A (en) | Controlling transmission path weight | |
JPH07250012A (en) | Interference compensator | |
JP2894088B2 (en) | Interference wave canceller | |
CN113824458A (en) | Three-channel self-adaptive co-location broadband interference suppression method and system | |
JP3458834B2 (en) | Cross polarization interference cancellation system | |
JP2001016153A (en) | Reproducing repeater | |
JP3337274B2 (en) | Mobile communication system | |
JP2800774B2 (en) | Cross polarization interference compensation method | |
JP2001223628A (en) | Relay system | |
JP3223946B2 (en) | Interference compensation method | |
US7088977B2 (en) | Wireless communication apparatus and wireless communication method | |
JP3092608B2 (en) | Cross polarization interference compensation method | |
JP2973952B2 (en) | Interference wave removal method and apparatus | |
JPH05219007A (en) | Cross-polarized wave interference removal device | |
JPS643099B2 (en) | ||
JPS6336692B2 (en) |