JPH07249817A - Wavelength-stabilized light source - Google Patents

Wavelength-stabilized light source

Info

Publication number
JPH07249817A
JPH07249817A JP3854494A JP3854494A JPH07249817A JP H07249817 A JPH07249817 A JP H07249817A JP 3854494 A JP3854494 A JP 3854494A JP 3854494 A JP3854494 A JP 3854494A JP H07249817 A JPH07249817 A JP H07249817A
Authority
JP
Japan
Prior art keywords
wavelength
light
emitting element
heating
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3854494A
Other languages
Japanese (ja)
Inventor
Fumihiko Shimizu
文彦 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3854494A priority Critical patent/JPH07249817A/en
Publication of JPH07249817A publication Critical patent/JPH07249817A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Abstract

PURPOSE:To obtain a wavelength-stabilized light source which is low-cost and compact by means of a comparatively low-cost light-emitting element and by means of a simple control constitution by installing a means by which wavelength light extracted by an optical filter is detected and by which a heating/ cooling element is driven so as to make its optical power maximum. CONSTITUTION:A light-emitting-element drive means 6 is driven in such a way that the output optical power of a light-emitting element whose oscillation wavelength is changed with reference to a temperature change becomes definite, and single-wavelength light is output. A heating/cooling-element, drive means 7 is driven in such a way that wavelength light extracted by an optical filter 22 is detected so as to make its optical power maximum. Then, the temperature of the light-emitting element is increased or decreased in such a way that the transmitted-light power of the optical filter 22 becomes maximum, and the oscillation wavelength of the light-emitting element is stabilized to the central wavelength of the optical filter 22. In this case, a comparatively low-cost and ordinary DFB-LD can be used, and the constitution of a light-emitting-element drive part is as it is. As a result, a device as a whole can be made relatively compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば光波長多重分
離システムに利用される光源に係り、多重する複数の光
波長間で混信が生じないように、光源の出力光波長を安
定化する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source used in, for example, an optical wavelength demultiplexing system, and a technique for stabilizing an output light wavelength of a light source so that interference does not occur between a plurality of multiplexed optical wavelengths. Regarding

【0002】[0002]

【従来の技術】周知のように、光波長多重分離(WD
M:Wavelength Division multiplexing)システムは、
送信側において、複数の光源で互いに異なる波長(λ1
,λ2 ,…,λn )の光を生成し、各波長光を個別の
情報信号で変調した後、スターカプラ等で合波すること
でn波長多重光を得て、光ファイバ伝送路に送出する。
一方、受信側において、光ファイバ伝送路を通じて伝送
されてくるn波長多重光を受信し、この受信光を特定波
長λk のみを透過する光フィルタに通して必要な情報信
号を含む波長光λk を抽出し、これを復調して所望の情
報信号を得る。
As is well known, optical wavelength demultiplexing (WD).
M: Wavelength Division multiplexing system
On the transmitting side, different wavelengths (λ1
, Λ2, ..., λn) is generated, each wavelength light is modulated by an individual information signal, and then multiplexed by a star coupler or the like to obtain n-wavelength multiplexed light, which is sent to the optical fiber transmission line. .
On the other hand, on the receiving side, the n-wavelength multiplexed light transmitted through the optical fiber transmission line is received, and the received light is passed through an optical filter that transmits only the specific wavelength λk to extract the wavelength light λk containing the necessary information signal. Then, this is demodulated to obtain a desired information signal.

【0003】このWDMシステムは、光ファイバの伝送
容量を増大でき、しかも各波長光を独立に取り扱えるた
め、柔軟なシステムを構成できる点に特徴がある。但
し、各光信号の波長が接近したり重なったりして混信が
生じないよう、各光源の発振波長を安定させる必要があ
る。また、各光源に用いる発光素子には、波長間隔を狭
くして波長多重数を増やせるよう、波長のスペクトル幅
が狭く、単一モードで発振し、最近低コスト化が進んで
いる分布帰還型半導体レーザ(DFB−LD:Distribu
ted Feedback-Laser Diode)を使用するのが望ましい。
The WDM system is characterized in that the transmission capacity of the optical fiber can be increased and that each wavelength light can be handled independently, so that a flexible system can be constructed. However, it is necessary to stabilize the oscillation wavelength of each light source so that interference does not occur due to the wavelengths of the optical signals approaching or overlapping. In addition, the light-emitting element used for each light source has a narrow wavelength spectrum width and oscillates in a single mode so that the wavelength spacing can be narrowed and the number of wavelengths multiplexed can be increased. Laser (DFB-LD: Distribu
ted Feedback-Laser Diode) is recommended.

【0004】上記WDMシステムに利用されている従来
の光源の構成を図5に示す。図5において、1はDFB
−LD(発光素子)、2はフォトダイオード(受光素
子)、3はペルチエ素子(加熱冷却素子)、4は温度セ
ンサで、これらは筐体5内に気密封止されている。
The structure of a conventional light source used in the WDM system is shown in FIG. In FIG. 5, 1 is DFB
-LD (light emitting element), 2 is a photodiode (light receiving element), 3 is a Peltier element (heating and cooling element), 4 is a temperature sensor, and these are hermetically sealed in the housing 5.

【0005】LD駆動部6はLD1を発振駆動するもの
で、APC(オート・パワー・コントロール)機能を有
しており、発光指令信号によって起動されると、フォト
ダイオード2を通じてLD1の出力光の一部をモニタ
し、出力パワーが一定になるようにLD駆動信号を増減
する。
The LD drive section 6 drives the LD1 to oscillate, has an APC (auto power control) function, and when activated by a light emission command signal, outputs one of the output lights of the LD1 through the photodiode 2. The LD drive signal is increased or decreased so that the output power becomes constant.

【0006】加熱/冷却駆動部7は温度制御部8からの
加熱/冷却制御信号に従ってペルチエ素子3を駆動し
て、LD1の温度を変化させる。LD1の温度は温度セ
ンサ4で監視されており、その温度情報は温度制御部8
に送られる。この温度制御部8はLD1の温度が設定温
度となるように加熱/冷却制御信号を生成する。
The heating / cooling drive unit 7 drives the Peltier element 3 in accordance with the heating / cooling control signal from the temperature control unit 8 to change the temperature of the LD 1. The temperature of the LD 1 is monitored by the temperature sensor 4, and its temperature information is obtained by the temperature control unit 8
Sent to. The temperature control unit 8 generates a heating / cooling control signal so that the temperature of the LD 1 becomes the set temperature.

【0007】すなわち、一般的に、発光素子は温度が高
くなるに従って発振波長が長くなるという温度/波長特
性を有しているが、DFB−LD1の場合も例外ではな
い。そこで、LD1の温度を監視して設定温度と比較
し、その温度差を修正するようにLD1を加熱/冷却す
ることで、LD1の温度を一定に維持し、これによって
LD1の発振波長の安定化を図っている。
That is, generally, the light emitting element has a temperature / wavelength characteristic that the oscillation wavelength becomes longer as the temperature rises, but the case of the DFB-LD1 is no exception. Therefore, the temperature of the LD1 is monitored and compared with a set temperature, and the temperature of the LD1 is maintained constant by heating / cooling the LD1 so as to correct the temperature difference, thereby stabilizing the oscillation wavelength of the LD1. I am trying to

【0008】しかしながら、上記のような安定化方法で
は、発光素子の温度を一定に維持していても、発光素子
が能動素子であるため、時間経過とともに温度/波長特
性が変わり、発振波長が変動してしまうという問題があ
る。
However, in the above stabilization method, even if the temperature of the light emitting element is maintained constant, the light emitting element is an active element, so that the temperature / wavelength characteristic changes over time and the oscillation wavelength changes. There is a problem of doing.

【0009】この問題を解決する方法として、従来では
図6に示すような構成が考えられている。尚、図6にお
いて、図5と同一部分には同一符号を付して、その説明
を省略する。
As a method for solving this problem, a configuration as shown in FIG. 6 has been conventionally considered. In FIG. 6, the same parts as those in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted.

【0010】この光源では、LD11に発光パワー、発
振波長、位相を3つの電流によって制御可能な3電極レ
ーザを用い、LD駆動部12において、APC機能によ
り発光パワーを一定に制御する。そして、LD11の出
力光を光分岐器13で一部分岐し、光フィルタ14によ
って設定波長のみ抽出して、フォトダイオード15で受
光する。さらに、波長制御部16によってその受光レベ
ルが極大となるようにLD駆動部12を通じてLD11
の波長を制御するようにしている。
In this light source, a three-electrode laser whose emission power, oscillation wavelength and phase can be controlled by three currents is used for the LD 11, and the emission power is controlled to be constant by the APC function in the LD drive section 12. Then, the output light of the LD 11 is partly branched by the optical branching device 13, only the set wavelength is extracted by the optical filter 14, and the light is received by the photodiode 15. Further, the wavelength control unit 16 causes the LD 11 to pass through the LD drive unit 12 so that the light receiving level becomes maximum.
The wavelength of is controlled.

【0011】すなわち、上記構成による光源は、波長設
定された光フィルタ14の透過光を検出して、その光パ
ワーが極大になるように3電極の電流を制御して、出力
光の波長を光フィルタの波長に安定化するようにしたも
のである。光フィルタは受動素子なので、気密封止や温
度安定化によって、その波長安定度を発光素子単体に比
べて非常に良好にできる。
That is, the light source having the above-mentioned structure detects the transmitted light of the wavelength-set optical filter 14 and controls the currents of the three electrodes so that the optical power becomes maximum, and the wavelength of the output light is changed to the optical wavelength. It is designed to stabilize at the wavelength of the filter. Since the optical filter is a passive element, its wavelength stability can be made much better than that of the light emitting element alone by hermetically sealing and temperature stabilization.

【0012】したがって、上記の方法によれば、温度一
定にしても発光素子に生じる発振波長の変動を、安定な
光フィルタによる波長監視によって安定化できる。しか
し、この方法では高価な3電極レーザが必要であるた
め、大幅にコストアップしてしまう。また、LD駆動部
などの3電極制御が複雑になり、装置全体が大型になる
といった問題も生じる。
Therefore, according to the above method, even if the temperature is constant, the fluctuation of the oscillation wavelength generated in the light emitting element can be stabilized by the wavelength monitoring by the stable optical filter. However, this method requires an expensive three-electrode laser, resulting in a significant cost increase. In addition, there is a problem that the control of three electrodes such as the LD drive section becomes complicated and the entire apparatus becomes large.

【0013】[0013]

【発明が解決しようとする課題】以上述べたように、従
来の波長安定化光源では、発光素子が能動素子であるた
め、温度が一定でも時間経過とともに発振波長が変動し
てしまう。この変動を防止する方法も考えられてはいる
が、高価な3電極レーザと複雑な制御構成などが必要
で、コストアップ、大型化が生じるという問題があっ
た。
As described above, in the conventional wavelength-stabilized light source, since the light emitting element is an active element, the oscillation wavelength fluctuates with time even if the temperature is constant. Although a method of preventing this fluctuation has been considered, there is a problem that an expensive three-electrode laser and a complicated control structure are required, resulting in an increase in cost and an increase in size.

【0014】そこでこの発明は上記の課題を解決すべく
なされたもので、比較的安価な発光素子と簡単な制御構
成によって、低コストでコンパクトな波長安定化光源を
提供することを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide a low-cost, compact wavelength-stabilized light source with a relatively inexpensive light emitting element and a simple control structure.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る波長安定化光源は、温度変化に対して
発振波長が変動する発光素子と、この発光素子を出力光
パワーが一定になるように駆動して発光素子に単一波長
光を出力させる発光素子駆動手段と、前記発光素子の温
度を制御する加熱冷却素子と、前記発光素子の出力光の
一部を抽出する光分岐器と、この光分岐器で抽出された
光から特定波長光を抽出する光フィルタと、この光フィ
ルタで抽出された波長光を検出してその光パワーが極大
となるように加熱冷却素子を駆動する加熱冷却素子駆動
手段とを具備して構成するようにした。
In order to achieve the above object, a wavelength-stabilized light source according to the present invention comprises a light-emitting element whose oscillation wavelength fluctuates in response to temperature changes, and a constant output light power of this light-emitting element. Light emitting element driving means for driving the light emitting element to output a single wavelength light, a heating / cooling element for controlling the temperature of the light emitting element, and an optical branching device for extracting a part of the output light of the light emitting element And an optical filter for extracting a specific wavelength light from the light extracted by the optical branching device, and detecting the wavelength light extracted by the optical filter and driving the heating / cooling element so that the optical power becomes maximum. The heating / cooling element driving means is provided.

【0016】[0016]

【作用】上記構成による波長安定化光源では、受動素子
である光フィルタが気密封止や温度安定化によって、そ
の波長安定度を発光素子単体に比べて非常に良好にでき
ることに着目し、加熱冷却素子駆動手段により、光フィ
ルタの透過光パワーが極大となるように発光素子の温度
を増減することで、発光素子の発振波長を光フィルタの
中心波長に安定化するようにしている。この場合、比較
的安価な通常のDFB−LDを使用でき、しかも発光素
子駆動部の構成はそのままで、若干の光学部品と信号処
理回路を追加するだけで実現できるので、装置全体を比
較的コンパクトに収めることができる。
In the wavelength-stabilized light source having the above-mentioned structure, it is noted that the temperature stability of the optical filter, which is a passive element, can be made much better than that of the light-emitting element alone by hermetically sealing and temperature stabilization. The element driving means stabilizes the oscillation wavelength of the light emitting element at the center wavelength of the optical filter by increasing or decreasing the temperature of the light emitting element so that the transmitted light power of the optical filter becomes maximum. In this case, a relatively inexpensive normal DFB-LD can be used, and the configuration of the light emitting element drive unit is unchanged, and it can be realized by adding a few optical components and signal processing circuits, so that the entire device is relatively compact. Can fit in.

【0017】[0017]

【実施例】以下、図1乃至図4を参照してこの発明の一
実施例を詳細に説明する。但し、図1において、図5と
同一部分には同一符号を付して示し、ここでは異なる部
分を中心に述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described in detail below with reference to FIGS. However, in FIG. 1, the same parts as those in FIG. 5 are designated by the same reference numerals, and different parts will be mainly described here.

【0018】図1はこの発明に係る波長安定化光源の構
成を示すもので、光分岐器21によってLD1の出力光
の一部を取り出し、温度一定に維持された光フィルタ2
2に通して設定波長の光のみを抽出する。この波長光を
フォトダイオード23で光電変換し、その変換出力を波
長制御部24に送る。
FIG. 1 shows the structure of a wavelength-stabilized light source according to the present invention, in which a part of the output light of the LD 1 is taken out by an optical branching device 21 and an optical filter 2 is maintained at a constant temperature.
Only the light of the set wavelength is extracted through the step 2. This wavelength light is photoelectrically converted by the photodiode 23, and the converted output is sent to the wavelength controller 24.

【0019】この波長制御部24は、具体的には図2に
示すように構成される。図2において、31はカップリ
ングコンデンサで、フォトダイオード23の出力から直
流分をカットし、交流成分のみを取り出す。この交流成
分に制限された受光信号は波形整形器32で矩形波に変
換されて、正転/反転入力を切替可能なAND回路33
に正転入力及び反転入力される。
The wavelength controller 24 is specifically constructed as shown in FIG. In FIG. 2, reference numeral 31 is a coupling capacitor, which cuts the DC component from the output of the photodiode 23 and extracts only the AC component. The light receiving signal limited to this AC component is converted into a rectangular wave by the waveform shaper 32, and the AND circuit 33 capable of switching the normal / inverted input.
Inputs are forward input and reverse input.

【0020】一方、34は低周波信号源であり、ここで
発生された低周波信号は波形整形器35で矩形波に変換
された後、入力切替信号としてAND回路33の制御入
力端に供給される。また、遅延回路36でt時間遅延さ
れ、波形整形器37で矩形波に変換されて、AND回路
33に正転入力及び反転入力される。
On the other hand, 34 is a low-frequency signal source, and the low-frequency signal generated here is converted into a rectangular wave by a waveform shaper 35 and then supplied to the control input terminal of the AND circuit 33 as an input switching signal. It Further, the delay circuit 36 delays the time t, the waveform shaper 37 converts the rectangular wave into a rectangular wave, and the AND circuit 33 inputs the normal input and the inverted input.

【0021】上記AND回路33は切替信号が正極性の
時、両正転入力の論理積を演算し、負極性の時、両反転
入力の論理積を演算する。このAND回路33の出力は
積分回路38で積分された後、アンプ39で増幅されて
加算器40に送られ、信号源34からの低周波信号と加
算されて、第2の加熱/冷却制御信号として加熱/冷却
駆動部7に送られる。
The AND circuit 33 calculates a logical product of both non-inverted inputs when the switching signal has a positive polarity, and calculates a logical product of both inverted inputs when the switching signal has a negative polarity. The output of the AND circuit 33 is integrated by the integrating circuit 38, then amplified by the amplifier 39, sent to the adder 40, and added with the low-frequency signal from the signal source 34 to generate the second heating / cooling control signal. Is sent to the heating / cooling drive unit 7.

【0022】この場合、加熱/冷却駆動部7は温度制御
部8からの第1の加熱/冷却制御信号と波長制御部24
からの第2の加熱/冷却制御信号との合成信号に応じて
ペルチエ素子3を駆動する。
In this case, the heating / cooling driving unit 7 has the first heating / cooling control signal from the temperature control unit 8 and the wavelength control unit 24.
The Peltier element 3 is driven in response to the combined signal with the second heating / cooling control signal from.

【0023】上記構成において、以下、図3及び図4を
参照してその動作を説明する。LD1はLD駆動部6の
APC機能によって出力パワーが一定に制御され、温度
制御部8によって設定温度一定に維持されている。ここ
で、波長制御部24の信号源32から出力される低周波
信号が加熱/冷却制御信号として加熱/冷却駆動部7に
送られ、ペルチエ素子3の駆動信号に重畳される。これ
によってLD1の温度は低周波信号に応じて微小変動
し、これに伴って発振波長も微小変動する。
The operation of the above configuration will be described below with reference to FIGS. 3 and 4. The output power of the LD 1 is controlled to be constant by the APC function of the LD drive unit 6, and the set temperature is maintained constant by the temperature control unit 8. Here, the low-frequency signal output from the signal source 32 of the wavelength control unit 24 is sent to the heating / cooling driving unit 7 as a heating / cooling control signal and is superimposed on the driving signal of the Peltier element 3. As a result, the temperature of the LD 1 slightly changes according to the low-frequency signal, and the oscillation wavelength also minutely changes accordingly.

【0024】LD1の出力光は光分岐器21により一部
光フィルタ22に入力される。この光フィルタ22には
例えばファブリペロー共振器や多層膜フィルタなどが用
いられる。図3(a)に光フィルタ22の波長透過特性
を示し、図3(b),(c)にその入出力関係を示す。
The output light of the LD 1 is partially input to the optical filter 22 by the optical branching device 21. As the optical filter 22, for example, a Fabry-Perot resonator or a multilayer filter is used. FIG. 3A shows the wavelength transmission characteristics of the optical filter 22, and FIGS. 3B and 3C show the input / output relationship thereof.

【0025】すなわち、光フィルタ22の波長透過特性
は、図3(a)に示すように、中心波長(設定波長)λ
0 で透過率が最大となり、ここから外れるに従って指数
的に減衰するようになっている。
That is, as shown in FIG. 3A, the wavelength transmission characteristic of the optical filter 22 has a central wavelength (setting wavelength) λ.
At 0, the transmittance becomes maximum, and as it deviates from this, it decays exponentially.

【0026】いま、LD1から光フィルタ22の中心波
長λ0 に等しくかつ低周波微小変動を伴う波長光が出力
されたとすると、光フィルタ22には図3(b)中L0
のように入力されるため、その出力光は図3(c)中L
0 ′のように光パワーが極大となり、かつ低周波成分が
2倍となる。
Now, assuming that the LD1 outputs a wavelength light equal to the center wavelength λ0 of the optical filter 22 and accompanied by a low frequency minute fluctuation, the optical filter 22 receives L0 in FIG. 3 (b).
, The output light is L in FIG. 3 (c).
As in 0 ', the optical power becomes maximum and the low frequency component is doubled.

【0027】この状態からLD1の出力光の波長が光フ
ィルタ22の中心波長λ0 より長くなると、光フィルタ
22には図3(b)中L1 のように入力されるため、そ
の出力光は図3(c)中L1 ′のようになり、入力光L
1 と比較して光パワーは低下し、かつ低周波成分は同一
周波数で逆位相となる。
When the wavelength of the output light of the LD1 becomes longer than the central wavelength λ0 of the optical filter 22 from this state, the output light is input to the optical filter 22 as shown by L1 in FIG. (C) It becomes like L1 'in the input light L
The optical power is lower than that of 1, and the low frequency components have the same frequency but opposite phase.

【0028】また、光フィルタ22の中心波長λ0 より
短くなると、光フィルタ22には図3(b)中L2 のよ
うに入力されるため、その出力光は図3(c)中L2 ′
のようになり、入力光L2 と比較して光パワーは低下
し、かつ低周波成分は同一周波数で同位相となる。
Further, when the wavelength becomes shorter than the center wavelength λ0 of the optical filter 22, it is input to the optical filter 22 as shown by L2 in FIG. 3 (b), so that its output light is L2 'in FIG. 3 (c).
The optical power is lower than that of the input light L2, and the low frequency components have the same frequency and the same phase.

【0029】この光フィルタ22を透過した光はフォト
ダイオード23で光電変換されて波長制御部24に送ら
れる。この波長制御部24は、光フィルタの入出力特性
を利用したものである。図3に図2に示した構成の各部
波形を示して、その動作を説明する。
The light transmitted through the optical filter 22 is photoelectrically converted by the photodiode 23 and sent to the wavelength controller 24. The wavelength controller 24 utilizes the input / output characteristics of the optical filter. FIG. 3 shows the waveform of each part of the configuration shown in FIG. 2 to explain the operation.

【0030】図4において、(a)は信号源34から出
力される低周波信号を示している。いま、LD1の出力
波長が光フィルタ22の中心波長λ0 に一致していると
すると、カップリングコンデンサ31の交流出力は、図
4(b)に示すように、原低周波信号の2倍の周波数と
なる。この交流信号は波形整形器32によって図4
(f)に示すように矩形波に変換され、AND回路33
に正転入力及び反転入力される。
In FIG. 4, (a) shows a low frequency signal output from the signal source 34. Now, assuming that the output wavelength of the LD1 matches the center wavelength λ 0 of the optical filter 22, the AC output of the coupling capacitor 31 has a frequency twice that of the original low frequency signal, as shown in FIG. 4 (b). Becomes This AC signal is processed by the waveform shaper 32 in FIG.
As shown in (f), the AND circuit 33 converts the rectangular wave.
Inputs are forward input and reverse input.

【0031】一方、信号源34から出力される低周波信
号は遅延回路36でt時間遅延された後、波形整形器3
7によって矩形波に変換され、これによって図4(e)
に示すような基準信号が生成される。この基準信号はA
ND回路33に正転入力及び反転入力される。
On the other hand, the low-frequency signal output from the signal source 34 is delayed by the delay circuit 36 for t time, and then the waveform shaper 3
It is converted into a rectangular wave by 7 and, as a result, FIG.
A reference signal as shown in is generated. This reference signal is A
The normal input and the inverted input are input to the ND circuit 33.

【0032】このAND回路33には、低周波信号を波
形整形器35で矩形波に変換した正転/反転入力切替信
号(図示せず)が供給されており、この切替信号が正極
性の時、両正転入力の論理積を演算し、負極性の時、両
反転入力の論理積を演算する。よって、AND回路33
の出力は、図4(i)に示すように、極性が低周波信号
の半周期π毎に反転するようになり、積分回路38の出
力は0レベルとなる。このため、第2の加熱/冷却制御
信号は低周波信号のみとなり、LD1は設定温度に維持
され、波長λ0 で発振出力し続ける。
The AND circuit 33 is supplied with a normal / inverted input switching signal (not shown) obtained by converting the low-frequency signal into a rectangular wave by the waveform shaper 35. When this switching signal has a positive polarity. , AND operation of both non-inverted inputs, and when negative polarity, AND operation of both inversion inputs. Therefore, the AND circuit 33
4 (i), the polarity is inverted every half cycle π of the low-frequency signal, and the output of the integration circuit 38 becomes 0 level. Therefore, the second heating / cooling control signal is only a low frequency signal, the LD1 is maintained at the set temperature, and continues to oscillate and output at the wavelength λ0.

【0033】次に、LD1の温度を設定温度に維持して
いるにもかかわらず、出力波長が光フィルタ22の中心
波長λ0 より長くなったとすると、カップリングコンデ
ンサ31の交流出力は、図4(c)に示すように、原低
周波信号とは同一周波数でかつ逆位相の信号となる。こ
の交流信号は波形整形器32によって図4(g)に示す
ように矩形波に変換される。
Next, assuming that the output wavelength becomes longer than the center wavelength λ 0 of the optical filter 22 even though the temperature of the LD 1 is maintained at the set temperature, the AC output of the coupling capacitor 31 becomes as shown in FIG. As shown in c), the original low-frequency signal has the same frequency and opposite phase. This AC signal is converted by the waveform shaper 32 into a rectangular wave as shown in FIG.

【0034】この矩形波信号を正転/反転入力したAN
D回路33の出力は図4(j)に示すように負極性期間
の割合が多くなる。よって、積分回路38の出力は負極
性レベルとなり、第2の加熱/冷却制御信号が負極性と
なってLD1の温度を下げるように働く。これにより、
LD1の発振波長はλ0 に近付いていく。
AN in which this rectangular wave signal is input in the normal / reverse direction
The output of the D circuit 33 has a large proportion in the negative polarity period as shown in FIG. Therefore, the output of the integrating circuit 38 has a negative polarity level, and the second heating / cooling control signal has a negative polarity, which serves to lower the temperature of the LD1. This allows
The oscillation wavelength of LD1 approaches λ0.

【0035】逆に、LD1の温度を設定温度に維持して
いるにもかかわらず、出力波長が光フィルタ22の中心
波長λ0 より短くなったとすると、カップリングコンデ
ンサ31の交流出力は、図4(d)に示すように、原低
周波信号とは同一周波数でかつ同位相の信号となる。こ
の交流信号は波形整形器32によって図4(h)に示す
ように矩形波に変換される。
On the contrary, if the output wavelength becomes shorter than the central wavelength λ 0 of the optical filter 22 even though the temperature of the LD 1 is maintained at the set temperature, the AC output of the coupling capacitor 31 becomes as shown in FIG. As shown in d), the original low frequency signal has the same frequency and the same phase. This AC signal is converted by the waveform shaper 32 into a rectangular wave as shown in FIG.

【0036】この矩形波信号を正転/反転入力したAN
D回路33の出力は図4(k)に示すように正極性期間
の割合が多くなる。よって、積分回路38の出力は正極
性レベルとなり、第2の加熱/冷却制御信号が正極性と
なってLD1の温度を上げるように働く。これにより、
LD1の発振波長はλ0 に近付いていく。
AN in which this rectangular wave signal is forward / reversely input
The output of the D circuit 33 has a large proportion of the positive polarity period as shown in FIG. Therefore, the output of the integrating circuit 38 has a positive polarity level, and the second heating / cooling control signal has a positive polarity and acts to raise the temperature of the LD1. This allows
The oscillation wavelength of LD1 approaches λ0.

【0037】すなわち、上記波長制御部24は、光フィ
ルタ22の透過光パワーが極大となるようにLD1の温
度を増減することで、LD1の発振波長を光フィルタ2
2の中心波長λ0 に安定化するものである。ここで、光
フィルタ22は受動素子なので、気密封止や温度安定化
によって、その波長安定度をLD単体に比べて非常に良
好にできる。
That is, the wavelength control section 24 increases or decreases the temperature of the LD1 so that the transmitted light power of the optical filter 22 becomes maximum, so that the oscillation wavelength of the LD1 is adjusted by the optical filter 2.
It stabilizes at the center wavelength λ 0 of 2. Here, since the optical filter 22 is a passive element, its wavelength stability can be made much better than that of a single LD by airtight sealing and temperature stabilization.

【0038】したがって、上記構成によれば、通常のD
FB−LDを使用して発振波長が変動してしまう問題
を、受動素子である安定な光フィルタ22によって波長
を監視し、LD1の温度を制御することにより、LD1
の発振波長を安定化することができる。
Therefore, according to the above configuration, the normal D
The problem that the oscillation wavelength fluctuates using the FB-LD is monitored by controlling the temperature of the LD1 by monitoring the wavelength with the stable optical filter 22 which is a passive element.
The oscillation wavelength of can be stabilized.

【0039】この場合、コストの低い通常のDFB−L
Dを使用でき、しかもLD駆動部の構成はそのままで、
若干の光学部品と信号処理回路を追加するだけで実現で
きるので、図6に示した従来構成と比較して、装置全体
をコンパクトに収めることができる。勿論、光フィルタ
22を任意の中心波長を有するものに交換することで、
他の波長に安定化させることができる。
In this case, a low cost ordinary DFB-L
D can be used, and the configuration of the LD drive unit is the same,
Since it can be realized by adding a few optical components and a signal processing circuit, the entire apparatus can be made compact as compared with the conventional configuration shown in FIG. Of course, by replacing the optical filter 22 with one having an arbitrary center wavelength,
It can be stabilized at other wavelengths.

【0040】以上の結果、低コストでコンパクトな波長
安定化光源を提供することができるので、WDMシステ
ムの各波長光源に利用すれば、各光信号の波長の接近や
重なりを防止して、混信が生じないようにすることがで
き、しかも低コストで実現できる。尚、この発明は上記
実施例に限定されるものではなく、この発明の要旨を逸
脱しない範囲で種々変形しても同様に実施可能であるこ
とはいうまでもない。
As a result of the above, it is possible to provide a low-cost and compact wavelength-stabilized light source. Therefore, if it is used for each wavelength light source of a WDM system, it is possible to prevent the wavelengths of the respective optical signals from approaching each other or overlapping, and to prevent interference. Can be prevented and can be realized at low cost. It is needless to say that the present invention is not limited to the above-described embodiments and can be similarly implemented even if various modifications are made without departing from the gist of the present invention.

【0041】[0041]

【発明の効果】以上述べたようにこの発明によれば、比
較的安価な発光素子と簡単な制御構成によって、低コス
トでコンパクトな波長安定化光源を提供することができ
る。
As described above, according to the present invention, it is possible to provide a low-cost, compact wavelength-stabilized light source with a relatively inexpensive light emitting element and a simple control configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明に係る波長安定化光源の一実施例を
示すブロック構成図である。
FIG. 1 is a block diagram showing an embodiment of a wavelength stabilized light source according to the present invention.

【図2】 同実施例の波長制御部の具体的な構成を示す
ブロック回路図である。
FIG. 2 is a block circuit diagram showing a specific configuration of a wavelength control unit of the embodiment.

【図3】 同実施例の光フィルタの波長透過特性とその
入出力関係を示す図である。
FIG. 3 is a diagram showing a wavelength transmission characteristic of the optical filter of the embodiment and its input / output relationship.

【図4】 上記波長制御部の動作を説明するために各部
波形を示す波形図である。
FIG. 4 is a waveform diagram showing waveforms of various portions for explaining the operation of the wavelength control unit.

【図5】 従来の波長安定化光源の基本構成を示すブロ
ック構成図である。
FIG. 5 is a block configuration diagram showing a basic configuration of a conventional wavelength stabilized light source.

【図6】 従来の波長安定化光源として他の構成例を示
すブロック構成図である。
FIG. 6 is a block configuration diagram showing another configuration example as a conventional wavelength stabilized light source.

【符号の説明】[Explanation of symbols]

1…DFB−LD、2…フォトダイオード、3…ペルチ
エ素子、4…温度センサ、5…筐体、6…LD駆動部、
7…加熱/冷却駆動部、8…温度制御部、11…3電極
LD、12…3電極LD駆動部、13…光分岐器、14
…光フィルタ、15…フォトダイオード、16…波長制
御部、21…光分岐器、22…光フィルタ、23…フォ
トダイオード、24…波長制御部、31…カップリング
コンデンサ、32,35,37…波形成形器、33…A
ND回路、34…低周波信号源、36…遅延回路、38
…積分回路、39…アンプ、40…加算器。
1 ... DFB-LD, 2 ... Photodiode, 3 ... Peltier element, 4 ... Temperature sensor, 5 ... Housing, 6 ... LD drive part,
Reference numeral 7 ... Heating / cooling drive unit, 8 ... Temperature control unit, 11 ... Three-electrode LD, 12 ... Three-electrode LD drive unit, 13 ... Optical splitter, 14
... optical filter, 15 ... photodiode, 16 ... wavelength control section, 21 ... optical branching device, 22 ... optical filter, 23 ... photodiode, 24 ... wavelength control section, 31 ... coupling capacitor, 32,35,37 ... waveform Molding machine, 33 ... A
ND circuit, 34 ... Low frequency signal source, 36 ... Delay circuit, 38
... integrator circuit, 39 ... amplifier, 40 ... adder.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 温度変化に対して発振波長が変動する発
光素子と、 この発光素子を出力光パワーが一定になるように駆動し
て発光素子に単一波長光を出力させる発光素子駆動手段
と、 前記発光素子の温度を制御する加熱冷却素子と、 前記発光素子の出力光の一部を抽出する光分岐器と、 この光分岐器で抽出された光から特定波長光を抽出する
光フィルタと、 この光フィルタで抽出された波長光を検出してその光パ
ワーが極大となるように加熱冷却素子を駆動する加熱冷
却素子駆動手段とを具備する波長安定化光源。
1. A light emitting element whose oscillation wavelength varies with temperature change, and light emitting element driving means for driving the light emitting element so that the output light power is constant and outputting a single wavelength light to the light emitting element. A heating / cooling element for controlling the temperature of the light emitting element, an optical branching device for extracting a part of the output light of the light emitting element, and an optical filter for extracting a specific wavelength light from the light extracted by the optical branching element, A wavelength stabilizing light source comprising: a heating / cooling element driving means for detecting the wavelength light extracted by the optical filter and driving the heating / cooling element so that the optical power becomes maximum.
【請求項2】 前記発光素子は分布帰還型半導体レーザ
であることを特徴とする請求項1記載の波長安定化光
源。
2. The wavelength stabilized light source according to claim 1, wherein the light emitting element is a distributed feedback semiconductor laser.
【請求項3】 前記加熱冷却素子はペルチエ素子である
ことを特徴とする請求項1記載の波長安定化光源。
3. The wavelength stabilized light source according to claim 1, wherein the heating / cooling element is a Peltier element.
【請求項4】 さらに、前記光フィルタの温度を一定に
制御する温度制御手段を備えることを特徴とする請求項
1記載の波長安定化光源。
4. The wavelength stabilized light source according to claim 1, further comprising temperature control means for controlling the temperature of the optical filter to be constant.
【請求項5】 前記加熱冷却素子駆動手段は、前記加熱
冷却素子に微小低周波信号を加え、原低周波信号を基準
に前記光フィルタで抽出される波長光の検出出力に現れ
る低周波成分の位相と周波数の変化を検出し、これらの
検出結果に基づいて前記加熱冷却素子を駆動するように
したことを特徴とする請求項1記載の波長安定化光源。
5. The heating / cooling element driving means applies a minute low-frequency signal to the heating / cooling element, and detects a low-frequency component appearing in a detection output of wavelength light extracted by the optical filter with reference to an original low-frequency signal. 2. The wavelength stabilized light source according to claim 1, wherein changes in phase and frequency are detected, and the heating / cooling element is driven based on the detection results.
JP3854494A 1994-03-09 1994-03-09 Wavelength-stabilized light source Pending JPH07249817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3854494A JPH07249817A (en) 1994-03-09 1994-03-09 Wavelength-stabilized light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3854494A JPH07249817A (en) 1994-03-09 1994-03-09 Wavelength-stabilized light source

Publications (1)

Publication Number Publication Date
JPH07249817A true JPH07249817A (en) 1995-09-26

Family

ID=12528235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3854494A Pending JPH07249817A (en) 1994-03-09 1994-03-09 Wavelength-stabilized light source

Country Status (1)

Country Link
JP (1) JPH07249817A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818857A1 (en) * 1996-07-11 1998-01-14 Nec Corporation Semiconductor laser unit having a function of stabilizing an optical output and a wavelength
US6295147B1 (en) 1997-10-17 2001-09-25 Fujitsu Limited Wavelength multiplexing transmission apparatus and wavelength demultiplexing reception apparatus
FR2820246A1 (en) * 2001-01-26 2002-08-02 Algety Telecom DEVICE AND METHOD FOR CONTROLLING OPTICAL SOURCES
US6496288B2 (en) 1997-10-17 2002-12-17 Fujitsu Limited Wavelength multiplexing transmission apparatus and wavelength demultiplexing reception apparatus
US6522675B1 (en) 1998-11-27 2003-02-18 Nec Corporation Wavelength control circuit and wavelength control method of light emitting device
US6529534B1 (en) 1998-02-27 2003-03-04 Nec Corporation Wavelength controlling circuit for laser signal
CN104298278A (en) * 2014-10-27 2015-01-21 北京航空航天大学 Laser device temperature control system based on photodiode (PD)
US20200295535A1 (en) * 2017-12-15 2020-09-17 Horiba, Ltd. Semiconductor laser device, and method and program for driving the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867513A (en) * 1996-07-11 1999-02-02 Nec Corporation Semiconductor laser unit having a function of stabilizing an optical output and a wavelength
EP0818857A1 (en) * 1996-07-11 1998-01-14 Nec Corporation Semiconductor laser unit having a function of stabilizing an optical output and a wavelength
US6295147B1 (en) 1997-10-17 2001-09-25 Fujitsu Limited Wavelength multiplexing transmission apparatus and wavelength demultiplexing reception apparatus
US6496288B2 (en) 1997-10-17 2002-12-17 Fujitsu Limited Wavelength multiplexing transmission apparatus and wavelength demultiplexing reception apparatus
US7079771B2 (en) 1997-10-17 2006-07-18 Fujitsu Limited Wavelength multiplexing transmission apparatus and wavelength demultiplexing reception apparatus
US6529534B1 (en) 1998-02-27 2003-03-04 Nec Corporation Wavelength controlling circuit for laser signal
US6522675B1 (en) 1998-11-27 2003-02-18 Nec Corporation Wavelength control circuit and wavelength control method of light emitting device
FR2820246A1 (en) * 2001-01-26 2002-08-02 Algety Telecom DEVICE AND METHOD FOR CONTROLLING OPTICAL SOURCES
WO2002060016A3 (en) * 2001-01-26 2003-01-03 Corvis Algety Device and method for feedback control of optical sources
CN104298278A (en) * 2014-10-27 2015-01-21 北京航空航天大学 Laser device temperature control system based on photodiode (PD)
CN104298278B (en) * 2014-10-27 2017-01-18 北京航空航天大学 Laser device temperature control system based on photodiode (PD)
US20200295535A1 (en) * 2017-12-15 2020-09-17 Horiba, Ltd. Semiconductor laser device, and method and program for driving the same
US11764542B2 (en) * 2017-12-15 2023-09-19 Horiba, Ltd. Semiconductor laser device, and method and program for driving the same

Similar Documents

Publication Publication Date Title
JP2914748B2 (en) Semiconductor laser frequency stabilization device
JP2962211B2 (en) Optical transmitter
JPH11340919A (en) Optical transmitter, terminal station device having the optical transmitter and optical communication system
JPH11251673A (en) Wavelength control circuit for laser signal circuit
JPH1093164A (en) Multi pre-wavelength light source and variable discrete wavelength light source
US5127015A (en) Driving circuit of a semiconductor laser
JPH11195839A (en) Laser diode light wavelength controller
JPH061912B2 (en) Frequency shift keying optical transmitter
JPH07249817A (en) Wavelength-stabilized light source
JPH09219554A (en) Photooutput controller of semiconductor laser diode
JP3047855B2 (en) WDM optical transmitter
JP4222469B2 (en) Wavelength monitor and semiconductor laser module
JPH11313046A (en) Control method for optical power of optical transmission signal in divided wavelength multiplexing system
JPH10126341A (en) Optical transmitter and optical network system
US6323976B1 (en) Light source device for frequency division multiplexed optical communications
JPH0783154B2 (en) Wavelength switching light source
JPS6254251B2 (en)
JPH10209973A (en) Optical wavelength multiplex transmission circuit
KR100211583B1 (en) The stabilizing system of laser diode for wavelength division multiplexing
JP2541095B2 (en) Laser wavelength stabilization method
JP3983510B2 (en) Optical amplifier
JP2004134576A (en) Variable wavelength light source, light transmitting device and wavelength controlling method
JP2000068581A (en) Light source module
JP2888267B2 (en) Automatic control circuit of optical narrow band filter
KR19990015722A (en) Transmission apparatus and implementation method with wavelength stabilization in wavelength division multiplex (WDM)