JPH07249618A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07249618A
JPH07249618A JP4218294A JP4218294A JPH07249618A JP H07249618 A JPH07249618 A JP H07249618A JP 4218294 A JP4218294 A JP 4218294A JP 4218294 A JP4218294 A JP 4218294A JP H07249618 A JPH07249618 A JP H07249618A
Authority
JP
Japan
Prior art keywords
film
silane
silicon nitride
nitride film
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4218294A
Other languages
Japanese (ja)
Inventor
Masaki Kuramae
正樹 臧前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu VLSI Ltd
Fujitsu Ltd
Original Assignee
Fujitsu VLSI Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu VLSI Ltd, Fujitsu Ltd filed Critical Fujitsu VLSI Ltd
Priority to JP4218294A priority Critical patent/JPH07249618A/en
Publication of JPH07249618A publication Critical patent/JPH07249618A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a forming method of a silicon nitride film wherein the improvement of oxidation resistance and high speed of film formation are compatible with each other. CONSTITUTION:A silicon nitride film is formed by a thermal CVD method using silane and ammonia as material gas, at a temperature lower than or equal to 630 deg.C and a pressure higher than or equal to 10Torr. In this case, higher order silane such as disilane and trisilane may be used instead of silane as the material gas, and hydrazine or derivative of hydrazine such as monomethylhydrazine and trimethylhydrazine may be used instead of ammonia as the material gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学気相成長法により
シリコン窒化膜を形成する工程を有する半導体装置の製
造方法に関する。近年の半導体装置の製造工程において
は、シリコン窒化膜の重要性が増大し、その高性能化が
要求されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a step of forming a silicon nitride film by a chemical vapor deposition method. In recent years in the manufacturing process of semiconductor devices, the importance of the silicon nitride film is increasing, and higher performance is required.

【0002】[0002]

【従来の技術】DRAMにおいて、熱CVDシリコン窒
化膜の表面を薄く酸化した二層膜をキャパシタ絶縁膜と
して用いているため、シリコン窒化膜には、ポリシリコ
ン等のキャパシタ下地電極まで酸素等の酸化種を通さな
い性質(耐酸化性)が必要とされている。
2. Description of the Related Art In a DRAM, a double-layer film obtained by thinly oxidizing the surface of a thermal CVD silicon nitride film is used as a capacitor insulating film. Species impermeable properties (oxidation resistance) are required.

【0003】従来のシリコン窒化膜は、バッチ式成膜装
置により成膜されており、バッチ間およびバッチ内の均
一な膜厚分布を保つために、原料ガスとして塩化水素化
シランとアンモニアを用い、圧力0.8Torr程度で
成膜を行っている。しかし、耐酸化性を向上させるため
に成膜温度を低下させると、成膜速度が低下するととも
に副生成物である塩化アンモニウムが成膜装置内壁等に
付着する量が増え、成膜装置のクリーニング回数が増大
し、極端な場合は塩化アンモニウムが配管を塞いでポン
プダウンが生じ、スループットの悪化を招いていた。
A conventional silicon nitride film is formed by a batch type film forming apparatus. In order to maintain a uniform film thickness distribution between batches and within a batch, hydrogen chloride silane and ammonia are used as source gases, The film is formed at a pressure of about 0.8 Torr. However, when the film formation temperature is lowered to improve the oxidation resistance, the film formation rate decreases and the amount of by-product ammonium chloride that adheres to the inner wall of the film formation device increases, thus cleaning the film formation device. The number of times increased, and in an extreme case, ammonium chloride clogged the pipe to cause pump down, resulting in deterioration of throughput.

【0004】[0004]

【発明が解決しようとする課題】したがって、耐酸化性
の向上と高い成膜速度を両立することができず、スルー
プットの向上を図ることができないという問題が生じて
いた。本発明は、以上の点に鑑み、耐酸化性の向上と高
い成膜速度を両立することができるシリコン窒化膜の成
膜法を提供することを目的とする。
Therefore, there has been a problem that the improvement of the oxidation resistance and the high film forming rate cannot be achieved at the same time, and the throughput cannot be improved. In view of the above points, an object of the present invention is to provide a method for forming a silicon nitride film capable of achieving both improved oxidation resistance and high film formation rate.

【0005】[0005]

【課題を解決するための手段】本発明にかかる半導体装
置の製造方法においては、原料ガスにシランとアンモニ
アを用い、成膜温度を630℃以下、成膜圧力を10T
orr以上で熱CVD法によりシリコン窒化膜を成膜す
る工程を採用した。
In the method of manufacturing a semiconductor device according to the present invention, silane and ammonia are used as source gases, the film forming temperature is 630 ° C. or less, and the film forming pressure is 10 T.
A process of forming a silicon nitride film by the thermal CVD method at or or higher is adopted.

【0006】この場合、原料ガスのシランに代えて高次
シランを用いることができ、原料ガスのアンモニアに代
えてヒドラジンまたはその誘導体を用いることができ
る。
In this case, higher order silane can be used in place of the source gas silane, and hydrazine or its derivative can be used in place of the source gas ammonia.

【0007】[0007]

【作用】本発明では、前記のように、原料ガスにシラン
とアンモニアを用い、成膜温度を630℃以下、成膜圧
力を10Torr以上で熱CVD法によりシリコン窒化
膜を成膜することにより、副生成物の増加および成膜温
度の低下を招くことなく高い耐酸化性を有するシリコン
窒化膜を得ることができる。
In the present invention, as described above, silane and ammonia are used as the source gas, and the silicon nitride film is formed by the thermal CVD method at the film forming temperature of 630 ° C. or less and the film forming pressure of 10 Torr or more. A silicon nitride film having high oxidation resistance can be obtained without increasing by-products and lowering the film formation temperature.

【0008】この場合、原料ガスのシランに代えて高次
シランを用い、原料ガスのアンモニアに代えてヒドラジ
ンまたはその誘導体を用いてもほぼ同様の効果を奏す
る。
In this case, substantially the same effect can be obtained by using a higher order silane instead of the source gas silane and using hydrazine or a derivative thereof instead of the source gas ammonia.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。図1は、
本発明の半導体装置の製造方法を実施するための成膜装
置の説明図である。この図において、1はベルジャー、
2はガス導入管、3はガスシャワー、4は支持台、5は
ヒーター、6はウェーハ、7は排気管である。
EXAMPLES Examples of the present invention will be described below. Figure 1
It is explanatory drawing of the film-forming apparatus for enforcing the manufacturing method of the semiconductor device of this invention. In this figure, 1 is a bell jar,
Reference numeral 2 is a gas introduction pipe, 3 is a gas shower, 4 is a support, 5 is a heater, 6 is a wafer, and 7 is an exhaust pipe.

【0010】本発明の半導体装置の製造方法を実施する
ための成膜装置は、ガス導入管2と排気管7を有するベ
ルジャー1の内に、支持台4によってSiCを被覆した
グラファイトからなるヒーター5を支持し、その上にウ
ェーハ6を載置できるようになっており、このウェーハ
6の上にSiCを被覆したグラファイトからなるガスシ
ャワー3によって反応ガスを放射するようになってい
る。この成膜装置として、枚葉式減圧CVD装置を用い
ることができる。
A film forming apparatus for carrying out the method of manufacturing a semiconductor device according to the present invention comprises a bell jar 1 having a gas introducing pipe 2 and an exhaust pipe 7, and a heater 5 made of graphite coated with SiC by a supporting base 4. The wafer 6 can be placed on the wafer 6, and the reaction gas is emitted by the gas shower 3 made of graphite coated with SiC on the wafer 6. As this film forming apparatus, a single wafer type low pressure CVD apparatus can be used.

【0011】この成膜装置を用いて、シリコン基板上
に、成膜温度500℃、成膜圧力100Torrで、熱
CVDシリコン窒化膜を堆積した。原料ガスを、シラン
5sccm、アンモニア300sccmとしたときの成
膜速度は約30Åで、従来のバッチ式成膜装置を用いた
成膜方法による場合と同様の値である。
Using this film forming apparatus, a thermal CVD silicon nitride film was deposited on a silicon substrate at a film forming temperature of 500 ° C. and a film forming pressure of 100 Torr. When the source gas is silane 5 sccm and ammonia 300 sccm, the film forming rate is about 30 Å, which is the same value as in the case of the film forming method using the conventional batch type film forming apparatus.

【0012】この実施例ではキャリアガスを用いていな
いが、窒素、水素もしくはアルゴン等をキャリアガスと
して用いることができる。また、この実施例では、原料
ガスとしてシランとアンモニアを用いたが、シランに代
えてジシラン、トリシラン等の高次シラン、アンモニア
に代えてヒドラジンもしくはモノメチルヒドラジン、ジ
メチルヒドラジン等のヒドラジンの誘導体を用いること
もできる。
Although a carrier gas is not used in this embodiment, nitrogen, hydrogen, argon or the like can be used as a carrier gas. Further, in this example, silane and ammonia were used as the source gas, but higher silane such as disilane and trisilane instead of silane, hydrazine or monomethylhydrazine instead of ammonia, or a derivative of hydrazine such as dimethylhydrazine. You can also

【0013】シランに代えてジシラン、トリシラン等の
高次シランを用いた場合は、シランを用いた場合とほぼ
同様の効果を生じ、アンモニアに代えてヒドラジンもし
くはモノメチルヒドラジン、ジメチルヒドラジン等のヒ
ドラジンの誘導体を用いた場合は、アンモニアを用いた
場合とほぼ同様の効果を生じる。
When a higher silane such as disilane or trisilane is used in place of silane, the same effect as in the case of using silane is produced, and hydrazine or a derivative of hydrazine such as monomethylhydrazine or dimethylhydrazine is used in place of ammonia. When using, the same effect as that when using ammonia is produced.

【0014】図2は、基板温度と成膜速度の関係説明図
である。この図によると、基板温度800℃程度から低
下するにしたがって成膜速度が徐々に減少し、600℃
程度から低下すると成膜速度がやや急峻に減少するが、
後述する必要な耐酸化性を得るための基板温度の条件か
ら630℃以下であっても、応用分野にもよるが実用性
を維持していることがわかる。
FIG. 2 is a diagram for explaining the relationship between the substrate temperature and the film formation rate. According to this figure, as the substrate temperature decreases from about 800 ° C, the film formation rate gradually decreases to 600 ° C.
Although the film formation speed decreases abruptly when decreasing from about
It can be seen from the conditions of the substrate temperature for obtaining the necessary oxidation resistance described below that the practicability is maintained even at 630 ° C. or lower depending on the application field.

【0015】ウェーハ上に10〜100Å程度の異なる
膜厚のシリコン窒化膜を堆積した後に、一括してウェッ
ト酸化(900℃,100分間)を行い、酸化前後の膜
厚を測定した。シリコン窒化膜が耐酸化性を失うと、酸
素、またはオゾン等が分解して生じる酸化種がシリコン
窒化膜を通り抜けて、下地のシリコン基板を酸化してし
まうために、酸化後の膜厚は酸化前に比べ急激に増加す
る。
After depositing silicon nitride films having different film thicknesses of about 10 to 100 Å on the wafer, wet oxidation (900 ° C., 100 minutes) was collectively performed to measure the film thickness before and after the oxidation. If the silicon nitride film loses its oxidation resistance, the oxidizing species generated by the decomposition of oxygen or ozone will pass through the silicon nitride film and oxidize the underlying silicon substrate. It increases sharply compared to before.

【0016】図3は、堆積されたシリコン窒化膜の膜厚
と酸化された被膜の厚さの関係説明図である。この図に
示されるように、堆積工程における基板温度が800℃
の場合は、堆積されたシリコン窒化膜の膜厚が90Å程
度で、酸化された被膜の厚さが急激に増加しシリコン窒
化膜の耐酸化性が失われたことを示している。同様に、
堆積工程における基板温度が500℃あるいは625℃
の場合は、堆積されたシリコン窒化膜の膜厚が50Å程
度で酸化された被膜の厚さが急激に増加しシリコン窒化
膜の耐酸化性が失われたことを示している。
FIG. 3 is an explanatory view of the relationship between the thickness of the deposited silicon nitride film and the thickness of the oxidized film. As shown in this figure, the substrate temperature in the deposition process is 800 ° C.
In the case of No. 3, it is shown that the thickness of the deposited silicon nitride film is about 90 Å, the thickness of the oxidized film rapidly increases, and the oxidation resistance of the silicon nitride film is lost. Similarly,
Substrate temperature in deposition process is 500 ℃ or 625 ℃
In the case of No. 2, it is indicated that the thickness of the deposited silicon nitride film was about 50 Å and the thickness of the oxidized film rapidly increased, and the oxidation resistance of the silicon nitride film was lost.

【0017】この事実および関連する測定から、シリコ
ン窒化膜の成膜温度を630℃以下にすると、膜厚が5
0Å程度でも高い耐酸化性が得られることになる。
From this fact and the related measurement, when the film formation temperature of the silicon nitride film is set to 630 ° C. or lower, the film thickness becomes 5
Even at 0Å, high oxidation resistance can be obtained.

【0018】図4は、成膜雰囲気の全圧力と成膜速度の
関係説明図である。この図によると、シリコン窒化膜の
成膜雰囲気の全圧力を高くすると、シリコン窒化膜の成
膜速度は徐々に上昇し、10Torr程度以上、特に5
0Torr以上になると飽和することがわかる。
FIG. 4 is a diagram for explaining the relationship between the total pressure of the film forming atmosphere and the film forming rate. According to this figure, when the total pressure of the film formation atmosphere of the silicon nitride film is increased, the film formation rate of the silicon nitride film is gradually increased to about 10 Torr or more, especially 5 torr.
It can be seen that saturation occurs at 0 Torr or higher.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
成膜速度の低下および副生成物の増加を招くことなく、
高い耐酸化性を有するシリコン窒化膜を得ることがで
き、その結果、半導体装置の特性の向上およびスループ
ットの向上に寄与するところが大きい。
As described above, according to the present invention,
Without lowering the film formation rate and increasing by-products,
A silicon nitride film having high oxidation resistance can be obtained, and as a result, it greatly contributes to the improvement of the characteristics of the semiconductor device and the improvement of the throughput.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の製造方法を実施するため
の成膜装置の説明図である。
FIG. 1 is an explanatory view of a film forming apparatus for carrying out a semiconductor device manufacturing method of the present invention.

【図2】基板温度と成膜速度の関係説明図である。FIG. 2 is an explanatory diagram of a relationship between a substrate temperature and a film formation rate.

【図3】堆積されたシリコン窒化膜の膜厚と酸化された
被膜の厚さの関係説明図である。
FIG. 3 is an explanatory diagram of a relationship between a film thickness of a deposited silicon nitride film and a film thickness of an oxidized film.

【図4】成膜雰囲気の全圧力と成膜速度の関係説明図で
ある。
FIG. 4 is an explanatory diagram of a relationship between a total pressure of a film forming atmosphere and a film forming rate.

【符号の説明】[Explanation of symbols]

1 ベルジャー 2 ガス導入管 3 ガスシャワー 4 支持台 5 ヒーター 6 ウェーハ 7 排気管 1 bell jar 2 gas introduction pipe 3 gas shower 4 support 5 heater 6 wafer 7 exhaust pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスにシランとアンモニアを用い、
成膜温度を630℃以下、成膜圧力を10Torr以上
で熱CVD法によりシリコン窒化膜を成膜する工程を有
することを特徴とする半導体装置の製造方法。
1. A silane and ammonia are used as a source gas,
A method of manufacturing a semiconductor device, comprising a step of forming a silicon nitride film by a thermal CVD method at a film forming temperature of 630 ° C. or less and a film forming pressure of 10 Torr or more.
【請求項2】 原料ガスのシランに代えて、高次シラン
を用いることを特徴とする請求項1に記載された半導体
装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein high-order silane is used instead of silane as a source gas.
【請求項3】 原料ガスのアンモニアに代えて、ヒドラ
ジンまたはその誘導体を用いることを特徴とする請求項
1に記載された半導体装置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein hydrazine or a derivative thereof is used in place of ammonia as a raw material gas.
JP4218294A 1994-03-14 1994-03-14 Manufacture of semiconductor device Withdrawn JPH07249618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4218294A JPH07249618A (en) 1994-03-14 1994-03-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4218294A JPH07249618A (en) 1994-03-14 1994-03-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07249618A true JPH07249618A (en) 1995-09-26

Family

ID=12628861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4218294A Withdrawn JPH07249618A (en) 1994-03-14 1994-03-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07249618A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365231B2 (en) 1998-06-26 2002-04-02 Kabushiki Kaisha Toshiba Ammonium halide eliminator, chemical vapor deposition system and chemical vapor deposition process
JP2003504883A (en) * 1999-07-09 2003-02-04 アプライド マテリアルズ インコーポレイテッド Method for forming a silicon nitride layer on a semiconductor wafer
WO2002064853A3 (en) * 2001-02-12 2003-11-20 Asm Inc Thin films and methods of making them using trisilane
WO2003060184A3 (en) * 2001-12-28 2004-04-22 Applied Materials Inc Method and apparatus for forming silicon containing films
US6815007B1 (en) 2002-03-04 2004-11-09 Taiwan Semiconductor Manufacturing Company Method to solve IMD-FSG particle and increase Cp yield by using a new tougher UFUN season film
KR100498419B1 (en) * 1997-12-30 2005-09-08 삼성전자주식회사 Method for forming silicon-rich nitride layer in semiconductor device
US7005160B2 (en) 2003-04-24 2006-02-28 Asm America, Inc. Methods for depositing polycrystalline films with engineered grain structures
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7718518B2 (en) 2005-12-16 2010-05-18 Asm International N.V. Low temperature doped silicon layer formation
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498419B1 (en) * 1997-12-30 2005-09-08 삼성전자주식회사 Method for forming silicon-rich nitride layer in semiconductor device
US6365231B2 (en) 1998-06-26 2002-04-02 Kabushiki Kaisha Toshiba Ammonium halide eliminator, chemical vapor deposition system and chemical vapor deposition process
JP2003504883A (en) * 1999-07-09 2003-02-04 アプライド マテリアルズ インコーポレイテッド Method for forming a silicon nitride layer on a semiconductor wafer
JP4889173B2 (en) * 1999-07-09 2012-03-07 アプライド マテリアルズ インコーポレイテッド Method for forming a silicon nitride layer on a semiconductor wafer
US6900115B2 (en) 2001-02-12 2005-05-31 Asm America, Inc. Deposition over mixed substrates
WO2002080244A3 (en) * 2001-02-12 2004-03-18 Asm Inc Improved process for deposition of semiconductor films
US7273799B2 (en) 2001-02-12 2007-09-25 Asm America, Inc. Deposition over mixed substrates
US6743738B2 (en) 2001-02-12 2004-06-01 Asm America, Inc. Dopant precursors and processes
US6716751B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and processes
US6821825B2 (en) * 2001-02-12 2004-11-23 Asm America, Inc. Process for deposition of semiconductor films
US7285500B2 (en) 2001-02-12 2007-10-23 Asm America, Inc. Thin films and methods of making them
US6716713B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and ion implantation processes
US6958253B2 (en) 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
US6962859B2 (en) 2001-02-12 2005-11-08 Asm America, Inc. Thin films and method of making them
WO2002064853A3 (en) * 2001-02-12 2003-11-20 Asm Inc Thin films and methods of making them using trisilane
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
KR101027485B1 (en) * 2001-02-12 2011-04-06 에이에스엠 아메리카, 인코포레이티드 Improved process for deposition of semiconductor films
US7585752B2 (en) 2001-02-12 2009-09-08 Asm America, Inc. Process for deposition of semiconductor films
US7186582B2 (en) 2001-02-12 2007-03-06 Asm America, Inc. Process for deposition of semiconductor films
WO2003060184A3 (en) * 2001-12-28 2004-04-22 Applied Materials Inc Method and apparatus for forming silicon containing films
US6815007B1 (en) 2002-03-04 2004-11-09 Taiwan Semiconductor Manufacturing Company Method to solve IMD-FSG particle and increase Cp yield by using a new tougher UFUN season film
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US8921205B2 (en) 2002-08-14 2014-12-30 Asm America, Inc. Deposition of amorphous silicon-containing films
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7005160B2 (en) 2003-04-24 2006-02-28 Asm America, Inc. Methods for depositing polycrystalline films with engineered grain structures
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7718518B2 (en) 2005-12-16 2010-05-18 Asm International N.V. Low temperature doped silicon layer formation
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition

Similar Documents

Publication Publication Date Title
US20210351031A1 (en) Selective deposition using hydrophobic precursors
JPH07249618A (en) Manufacture of semiconductor device
US6391803B1 (en) Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
JP3990792B2 (en) Use of SiH4 soak and purge in the deposition process
US7297641B2 (en) Method to form ultra high quality silicon-containing compound layers
US5695819A (en) Method of enhancing step coverage of polysilicon deposits
US20070111545A1 (en) Methods of forming silicon dioxide layers using atomic layer deposition
US20020164890A1 (en) Method of forming silicon containing thin films by atomic layer deposition utilizing s12cl6 and nh3
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
US11417518B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US5736423A (en) Method for depositing very thin PECVD SiO2 in 0.5 micron and 0.35 micron technologies
US9196476B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
US5510297A (en) Process for uniform deposition of tungsten silicide on semiconductor wafers by treatment of susceptor having aluminum nitride surface thereon with tungsten silicide after cleaning of susceptor
JP2685028B2 (en) Method for manufacturing semiconductor device
JP2687758B2 (en) Method for manufacturing semiconductor device
JP3502504B2 (en) Method for depositing silicon oxide layer
US20030211712A1 (en) Epitaxial plasma enhanced chemical vapor deposition (PECVD) method providing epitaxial layer with attenuated defects
JPH06283453A (en) Manufacture of semiconductor device
JPH10209073A (en) Formation of barrier film
JP2002343792A (en) Film forming method and device thereof
KR20030064083A (en) A Method Of Forming Silicon Nitride Thin Film by Atomic Layer Deposition
JPH06181205A (en) Method of manufacturing semiconductor device
KR940010158B1 (en) Tungsten film depositing method using pecvd
JPH021124A (en) Manufacture of dielectric film
KR20230036982A (en) Topology-selective deposition method and structure formed using same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605