JPH07248776A - Structure of composite sound absorbing material - Google Patents

Structure of composite sound absorbing material

Info

Publication number
JPH07248776A
JPH07248776A JP6039963A JP3996394A JPH07248776A JP H07248776 A JPH07248776 A JP H07248776A JP 6039963 A JP6039963 A JP 6039963A JP 3996394 A JP3996394 A JP 3996394A JP H07248776 A JPH07248776 A JP H07248776A
Authority
JP
Japan
Prior art keywords
layer
spring
spring layer
composite
soundproof material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6039963A
Other languages
Japanese (ja)
Inventor
Senji Kitahara
専治 北原
Hiroyuki Nagase
博之 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKISO KOGYO KK
NIPPON SEKISOO KOGYO KK
Original Assignee
NIPPON SEKISO KOGYO KK
NIPPON SEKISOO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKISO KOGYO KK, NIPPON SEKISOO KOGYO KK filed Critical NIPPON SEKISO KOGYO KK
Priority to JP6039963A priority Critical patent/JPH07248776A/en
Publication of JPH07248776A publication Critical patent/JPH07248776A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease vibration and noise in a lower frequency region than heretofore with a structure of a composite sound absorbing material mainly composed of a vibration damping layer and a spring-mass composite by lowering the air permeation resistance of the spring layer, thereby making the resonance frequency of the spring layer lower than heretofore. CONSTITUTION:This structure consists of a structure of four layers formed by having a corrugated sheet S atop the vibration damping layer 1, laminating the spring layer 2 on this corrugated sheet S and further laminating the mass layer 3 on the spring layer 2. The corrugated sheet S is the core of a corrugated fiberboard. A bituminous vibration damping material having a sp. gr. of 1.6 and thickness of 3mm is used for the vibration damping layer 1. Resin felt of a porous material having density of 0.055g/cm<3> and thickness of 15mm is used as the spring layer 2. A vinyl chloride sheet having a sp. gr. of 1.70 and thickness of 2mm is used as the mass layer 3. Air in the spring layer 2 is liable to move from the layer of the corrugated sheet S toward the outside of the sound absorbing material structure and, therefore, the air permeation resistance of the spring layer 2 is reduced and the resonance frequency of the spring layer 2 is made lower than heretofore.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車、家電製品、建材
等に使用される複合防音材構造に関し、さらに詳細には
制振材及びばね−質量複合体を主体とする複合防音材構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite soundproof material structure used for automobiles, home electric appliances, building materials, etc., and more particularly to a composite soundproof material structure mainly composed of a vibration damping material and a spring-mass composite.

【0002】[0002]

【従来の技術】従来、自動車のフロア等の振動及び騒音
を低減するために使用されている制振材及びばね−質量
複合体を主体とする複合防音材は図8に示されるよう
に、制振材20の上にばね層21及び質量層22からな
るばね−質量複合体23が積層されてなる三層構造を有
している。その他の従来の複合防音材としては、図14
及び図15に示されるように特開昭58−127998
号公報に開示のものがある。この防音材は自動車等の当
該部分31に、ばね層33と質量層34とで構成された
遮音板35が接着層32によって貼着されたものであ
り、ばね層33の全範囲に沿って当該部分31に対向し
て溝又は凹部36,37を有する。これらは遮音板35
全体にとって必要な目標吸音効果が達成されるよう構成
され配設されている。そして特開昭58−127998
号公報に開示された複合防音材の目的はばね層33の材
料を節約し、遮音板35の軽量化を図ることにある。
2. Description of the Related Art Conventionally, a vibration damping material and a composite soundproofing material mainly composed of a spring-mass composite, which are used to reduce vibrations and noises on a floor of an automobile, are shown in FIG. It has a three-layer structure in which a spring-mass composite 23 including a spring layer 21 and a mass layer 22 is laminated on the vibration material 20. As another conventional composite soundproofing material, see FIG.
And as shown in FIG. 15, JP-A-58-127998.
There is one disclosed in the publication. This soundproofing material is a sound insulating plate 35 composed of a spring layer 33 and a mass layer 34 adhered to the relevant portion 31 of an automobile or the like by an adhesive layer 32, and along the entire range of the spring layer 33. Grooves or recesses 36, 37 are provided opposite the portion 31. These are sound insulation boards 35
It is constructed and arranged to achieve the desired sound absorption effect for the whole. And JP-A-58-127998
The purpose of the composite soundproofing material disclosed in the publication is to save the material of the spring layer 33 and to reduce the weight of the sound insulating plate 35.

【0003】[0003]

【発明が解決しようとする課題】しかしこれら従来の複
合防音材においては、ばね層の共振周波数は200〜5
00Hzにあるため、この共振周波数より高い周波数領域
では振動及び騒音を低減するが、この共振周波数付近や
それ以下の周波数領域においては逆に振動及び騒音が増
幅される問題があった。また特開昭58−127998
号公報に開示の防音材において溝36,37と記載され
ているものは図14及び図15に示されるように実際に
は端部の切り欠き溝及び独立した凹部であり、後述の比
較例3に示されるように、この様な端部の切り欠き溝を
設けることによっては、ばね層の共振周波数は変化しな
い。そしてばね層のばね特性はその材質自体のばねとば
ね層の中に含まれる空気ばねの二つがあり、空気ばねの
影響が大きいにもかかわらず、空気ばねのばね定数を低
下させるために、ばね層の通気抵抗を低減する構成とし
た複合防音材は従来提供されていなかった。そこで本発
明の課題は制振材及びばね−質量複合体を主体とする複
合防音材において、従来着目されていなかったばね層の
通気抵抗を低減することにより、ばね層の共振周波数を
従来より低下させ、よって従来よりも低周波数領域にお
いて振動及び騒音を低減させ得る複合防音材の構造を提
供することにある。
However, in these conventional composite soundproofing materials, the resonance frequency of the spring layer is 200-5.
Since it is at 00 Hz, vibration and noise are reduced in the frequency range higher than this resonance frequency, but there is a problem that vibration and noise are amplified in the frequency range near this resonance frequency and below. In addition, JP-A-58-127998
In the soundproofing material disclosed in the publication, what is described as the grooves 36 and 37 is actually a cutout groove at the end and an independent recess as shown in FIGS. As shown in FIG. 5, the resonance frequency of the spring layer does not change by providing such a notch groove at the end. There are two spring characteristics of the spring layer, that is, the spring of the material itself and the air spring contained in the spring layer. No composite soundproofing material having a structure for reducing the ventilation resistance of the layer has been provided so far. Therefore, an object of the present invention is to reduce the resonance frequency of the spring layer from the conventional one by reducing the ventilation resistance of the spring layer, which has not been paid attention in the past, in the composite soundproofing material mainly composed of the damping material and the spring-mass composite. Therefore, it is an object of the present invention to provide a structure of a composite soundproofing material capable of reducing vibration and noise in a lower frequency range than ever before.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の複合防音材構造は、空気を含む多孔質
のばね層上に質量層を重ねたばね−質量複合体層を制振
層の上に配置してなる複合防音材構造であって、前記制
振層とこの上に配置される前記ばね層間には、該両層の
境界面に沿った一端と他端を連通し、ばね層内の空気を
外部に連通させる通気道手段が設けられてなることを特
徴とする。そして請求項2に記載の複合防音材構造は、
請求項1に記載の複合防音材構造において、通気道手段
が、ばね層に接する制振層面に凹設した溝であることを
特徴とする。また請求項3に記載の複合防音材構造は、
請求項1に記載の複合防音材構造において、通気道手段
が、制振層に接するばね層面に凹設した溝であることを
特徴とする。さらに請求項4に記載の複合防音材構造
は、請求項1に記載の複合防音材構造において、通気道
手段が、制振層とばね層間に介在され、かつばね層の空
気を外部に連通させる機能を有する波形シ−ト構造物で
あることを特徴とする。
In order to solve the above problems, the composite soundproofing material structure according to claim 1 is characterized in that a spring-mass composite layer in which a mass layer is superposed on a porous spring layer containing air is damped. A composite soundproof material structure arranged on a layer, wherein one end and the other end along the boundary surface of the both layers are communicated between the damping layer and the spring layer arranged on the damping layer, It is characterized in that a ventilation passage means for communicating the air in the spring layer to the outside is provided. And the composite soundproof material structure according to claim 2,
In the composite soundproofing material structure according to claim 1, the ventilation passage means is a groove recessed in the surface of the damping layer in contact with the spring layer. Further, the composite soundproof material structure according to claim 3,
In the composite soundproof material structure according to claim 1, the ventilation passage means is a groove recessed in the surface of the spring layer in contact with the damping layer. Furthermore, the composite soundproof material structure according to claim 4 is the composite soundproof material structure according to claim 1, wherein the ventilation passage means is interposed between the damping layer and the spring layer, and allows the air in the spring layer to communicate with the outside. It is a corrugated sheet structure having a function.

【0005】前記制振層としては、一般には瀝青系制振
シートが用いられる。この瀝青系制振シートとしては例
えば、車両床面の複雑形状に追従して密着させる必要か
ら軟化温度約60〜100℃で、床鋼板への融着温度が
約120〜180℃に調整された車両防音材用の瀝青系
シートを使用することができる。
As the damping layer, a bitumen-based damping sheet is generally used. As this bituminous damping sheet, for example, the softening temperature is adjusted to about 60 to 100 ° C. and the fusion temperature to the floor steel sheet is adjusted to about 120 to 180 ° C. because it is necessary to closely adhere to the vehicle floor surface by following the complicated shape. Bituminous sheets for vehicle sound insulation can be used.

【0006】前記ばね層としては、ばね層の空気ばねよ
りも小さいばね定数を有する材質が使用される。これは
材質のばね定数が空気ばねよりも大きい場合には、材質
のばね定数によってばね層の共振周波数が定まってしま
うためである。このような材質としては例えば空気を含
む多孔質組織の層体が用いられ、具体的には繊維系フェ
ルト、軟質の発泡ポリウレタンなどの多孔質材が挙げら
れる。そして繊維系フェルトの一例であるレジンフェル
トには天然もしくは合成繊維又はその再生繊維を解綿積
層又はニ−ドルパンチによりフェルト状にしたもの、さ
らに繊維のバインダとして樹脂などを含浸させたり、表
面スプレ−コ−トさせたものがある。
As the spring layer, a material having a spring constant smaller than that of the air spring of the spring layer is used. This is because when the spring constant of the material is larger than that of the air spring, the resonance frequency of the spring layer is determined by the spring constant of the material. As such a material, for example, a layered body having a porous structure containing air is used, and specific examples thereof include a porous material such as fiber felt and soft polyurethane foam. A resin felt, which is an example of a fiber-based felt, is a natural or synthetic fiber or a regenerated fiber of which is made into a felt shape by deflocculation lamination or a needle punch, and is further impregnated with a resin as a binder of the fiber, or a surface spray. There is one that has been coated.

【0007】前記質量層としては、例えばオレフィン系
ゴム,ジエン系ゴム又は塩ビを主成分とする約1.5〜
6.0mm厚に成形した比重の大きいシ−トが用いられ
る。
The mass layer is composed of, for example, olefin-based rubber, diene-based rubber, or vinyl chloride as a main component, and is about 1.5-.
A sheet having a large specific gravity formed to a thickness of 6.0 mm is used.

【0008】一般に前記質量層及び前記ばね層は接着材
で貼着されることにより、前記ばね−質量複合体とさ
れ、このばね−質量複合体を前記制振層上面に、前記質
量層を最上面として載置することにより複合防音材とさ
れる。
In general, the mass layer and the spring layer are adhered with an adhesive to form the spring-mass composite, and the spring-mass composite is placed on the upper surface of the damping layer and the mass layer is placed on top. A composite soundproof material is obtained by placing it on the upper surface.

【0009】前記通気道手段とは、ばね層自身が本来有
する多孔質の孔とは別に設けられた、ばね層内に含まれ
る空気の移動を容易にするためにの手段である。
The air passage means is a means provided for the purpose of facilitating the movement of the air contained in the spring layer, which is provided separately from the porous holes originally possessed by the spring layer itself.

【0010】[0010]

【作用】請求項1に記載の複合防音材構造によると、ば
ね層に含まれる空気は前記通気道手段により複合防音材
外部へ移動し易くなるので、ばね層の通気抵抗が低減さ
れ、これによりばね層の共振周波数が低下する。請求項
2及び請求項3に記載の複合防音材構造によると、ばね
層に含まれる空気は前記溝を通って複合防音材外部へ移
動し易くなるので、ばね層の通気抵抗が低減され、これ
によりばね層の共振周波数が低下する。請求項4に記載
の複合防音材構造によると、波形シ−ト構造物はばね層
に含まれる空気を外部に連通させる。従って、ばね層に
含まれる空気は複合防音材外部へ移動し易くなるので、
ばね層の通気抵抗が低減され、これによりばね層の共振
周波数が低下する。
According to the structure of the composite soundproofing material of claim 1, the air contained in the spring layer is easily moved to the outside of the composite soundproofing material by the air passage means, so that the ventilation resistance of the spring layer is reduced. The resonance frequency of the spring layer decreases. According to the composite soundproof material structure of claims 2 and 3, since the air contained in the spring layer easily moves to the outside of the composite soundproof material through the groove, the ventilation resistance of the spring layer is reduced. This reduces the resonance frequency of the spring layer. According to the composite soundproof material structure of the fourth aspect, the corrugated sheet structure allows the air contained in the spring layer to communicate with the outside. Therefore, since the air contained in the spring layer easily moves to the outside of the composite soundproof material,
The ventilation resistance of the spring layer is reduced, which lowers the resonance frequency of the spring layer.

【0011】[0011]

【実施例】次に、本発明の実施例について説明する。 実施例1 本例1の防音材構造の課題は前記した本発明の課題に加
えて、さらに従来よりも軽量とされ得る防音材構造を提
供することにある。またさらにもう一つの課題は制振材
及びばね層間の摩擦が大とされ得る防音材構造を提供す
ることにある。本例1の防音材構造は図1に示される様
に、制振層1及びその上面に、ばね層2及び質量層3か
らなるばね−質量複合体4を有してなる。すなわち本例
1の防音材は制振層1の上面にばね層2を積層し、この
ばね層2の上面にさらに質量層3を積層した三層の構造
よりなる。そしてばね層2と接する制振材1の片面にお
いては通気道手段として深さ1mm、幅5mm、ピッチ20
mmの溝Mが複数本形成されている。これらの溝Mは図2
に示される様に、制振層1の一端から他端まで連続し、
防音材の外部と連通している。なお本例の制振層1とし
ては、比重1.60、厚さ3mmの瀝青系制振材を使用
し、ばね層2としては、多孔質材料のレジンフェルトで
あって密度0.055g/cm3 、厚さ10mmのものを使
用した。また本例の質量層3としては比重1.70、厚
さ2mmの塩化ビニルシ−トを使用した。これらの使用し
た材料は一般に車両防音材に使用されている材料であ
る。本例1の防音材構造はばね層2内の空気が溝Mから
防音材外部に移動し易くなるので、ばね層2の通気抵抗
が低減されることにより、ばね層2の共振周波数が従来
より低下し、よって従来よりも低周波数領域において振
動及び騒音を低減させ得る効果を有する。また本例1の
防音材構造は制振層1が溝Mを有することにより従来よ
りも軽量とされる利点がある。なお後述の実施例2にお
いてばね層2に同形同大の溝Mを設ける本例2の場合と
比較して、制振層1の比重は大きいため制振材1に溝M
を設ける本例1の方が軽量化の効果は本例2よりも大き
い。また制振材1に溝Mを形成することは加工が容易で
あるという利点がある。さらに制振層1上面の複数本の
溝Mにより制振材1に接触するばね層2と制振層1間の
摩擦が大きくされ、制振層1上においてばね層2が滑
り、ずれることが防止され得る。
EXAMPLES Next, examples of the present invention will be described. Example 1 In addition to the problems of the present invention described above, the problem of the soundproof material structure of the first example is to provide a soundproof material structure that can be made lighter than conventional ones. Still another object is to provide a soundproof material structure in which the friction between the damping material and the spring layer can be increased. As shown in FIG. 1, the soundproof material structure of the present Example 1 includes a damping layer 1 and a spring-mass composite body 4 including a spring layer 2 and a mass layer 3 on the upper surface thereof. That is, the soundproof material of the first example has a three-layer structure in which the spring layer 2 is laminated on the upper surface of the damping layer 1, and the mass layer 3 is further laminated on the upper surface of the spring layer 2. On one side of the damping material 1 in contact with the spring layer 2, a depth of 1 mm, a width of 5 mm and a pitch of 20 are provided as ventilation passage means.
A plurality of mm-shaped grooves M are formed. These grooves M are shown in FIG.
As shown in, continuous from one end of the damping layer 1 to the other end,
It communicates with the outside of the soundproof material. As the damping layer 1 of this example, a bituminous damping material having a specific gravity of 1.60 and a thickness of 3 mm was used, and as the spring layer 2, a resin felt of a porous material having a density of 0.055 g / cm 3 was used. 3 , the thickness of 10 mm was used. As the mass layer 3 of this example, a vinyl chloride sheet having a specific gravity of 1.70 and a thickness of 2 mm was used. These used materials are materials generally used for vehicle soundproofing materials. In the soundproof material structure of the first example, since the air in the spring layer 2 easily moves from the groove M to the outside of the soundproof material, the ventilation resistance of the spring layer 2 is reduced, so that the resonance frequency of the spring layer 2 is higher than that of the conventional one. Therefore, there is an effect that vibration and noise can be reduced in a lower frequency range than in the past. In addition, the soundproofing material structure of the first example has an advantage that the vibration damping layer 1 has the groove M and is lighter than the conventional one. As compared with the case of the present example 2 in which the spring layer 2 is provided with the grooves M of the same shape and size in the second embodiment described later, the specific gravity of the damping layer 1 is large, and thus the groove M is formed in the damping material 1.
The effect of weight reduction is greater in the present example 1 in which the above is provided than in the present example 2. Further, forming the groove M in the vibration damping material 1 has an advantage that processing is easy. Further, due to the plurality of grooves M on the upper surface of the damping layer 1, the friction between the spring layer 2 and the damping layer 1 in contact with the damping material 1 is increased, and the spring layer 2 may slip and slip on the damping layer 1. Can be prevented.

【0012】実施例2 本例2の防音材構造は図3に示す様に、制振層1には溝
Mを設けず、代わりに、ばね層2の制振層1と接する片
面において通気道手段として深さ1mm、幅5mm、ピッチ
20mmの溝Mが複数本形成されたものであり、その他の
構成及び各材料は本例1の防音材構造と同様である。ま
た溝Mは図4に示される様に、ばね層2の一端から他端
まで連続し、防音材の外部と連通している。本例2の防
音材構造はばね層2内の空気が溝Mから防音材外部に移
動し易くなるので、ばね層2の通気抵抗が低減されるこ
とにより、ばね層2の共振周波数が従来より低下し、よ
って従来よりも低周波数領域において振動及び騒音を低
減させ得る効果を有する。
Example 2 In the soundproof material structure of Example 2, as shown in FIG. 3, the groove M is not provided in the damping layer 1, and instead, the ventilation passage is provided on one surface of the spring layer 2 which is in contact with the damping layer 1. As a means, a plurality of grooves M having a depth of 1 mm, a width of 5 mm and a pitch of 20 mm are formed, and other configurations and respective materials are the same as those of the soundproof material structure of the first example. As shown in FIG. 4, the groove M is continuous from one end to the other end of the spring layer 2 and communicates with the outside of the soundproof material. In the soundproof material structure of the second example, since the air in the spring layer 2 easily moves from the groove M to the outside of the soundproof material, the ventilation resistance of the spring layer 2 is reduced, so that the resonance frequency of the spring layer 2 is lower than that of the conventional one. Therefore, there is an effect that vibration and noise can be reduced in a lower frequency range than in the past.

【0013】実施例3 本例3の防音材構造は図5に示される様に、ばね層2に
おいて、通気道手段として幅10mm、ピッチ50mmの間
隙Kが形成されており、その他の構成及び各材料は本例
1の防音材構造と同様である。この間隙Kは図6に示さ
れる様に、防音材の一端から他端まで貫通されている。
本例3の防音材構造は、ばね層内の空気が間隙Kから防
音材外部に移動し易くなるので、ばね層の通気抵抗が低
減されることにより、ばね層の共振周波数が従来より低
下し、よって従来よりも低周波数領域において振動及び
騒音を低減させ得る効果を有する。そして本例3の防音
材構造の上記効果は、後述する試験例において示される
ように本例1及び本例2の防音材構造と比較してより優
れている。なお本例1、2及び本例3の防音材構造にお
いては後述の本例4の防音材構造と比較して、通気道手
段として別の部材を使用していないため、部材を別に必
要としない利点がある。
Example 3 As shown in FIG. 5, in the soundproof material structure of Example 3, a gap K having a width of 10 mm and a pitch of 50 mm is formed in the spring layer 2 as a ventilation passage means. The material is the same as that of the soundproof material structure of the first example. As shown in FIG. 6, this gap K penetrates from one end to the other end of the soundproof material.
In the soundproof material structure of the third example, the air in the spring layer easily moves from the gap K to the outside of the soundproof material, so that the ventilation resistance of the spring layer is reduced, so that the resonance frequency of the spring layer is lowered as compared with the conventional case. Therefore, there is an effect that vibration and noise can be reduced in a lower frequency range than in the past. And the above-mentioned effect of the soundproof material structure of the present example 3 is more excellent as compared with the soundproof material structure of the present example 1 and the present example 2 as shown in a test example described later. Note that, in the soundproof material structures of the first, second and third examples, as compared with the soundproof material structure of the fourth example to be described later, since another member is not used as the ventilation passage means, a separate member is not required. There are advantages.

【0014】実施例4 本例4の防音材構造の課題は前記した本発明の課題に加
えて、さらに通気道手段の作成が容易とされ得る防音材
構造を提供することにある。本例4の防音材構造は図7
に示す様に、制振層1の上面全体に通気道手段として波
状シ−トSを有し、この波状シ−トS上にばね層2を及
びばね層2上にさらに質量層3を積層した四層の構造よ
りなる。制振層1、ばね層2及び質量層3としては各々
本例1と同じ材料を使用した。本例の波状シ−トSとし
てはダンボ−ルの芯を使用した。この波状シ−トSを制
振層1及びばね層2間に設けることにより、波状シ−ト
Sとばね層2との間に間隙Kが波状シ−トSの波の数と
略同数生じる。これらの通気道手段である間隙Kは防音
材構造の一端と他端とを連通する。これらの間隙Kはば
ね層2に接しており、また防音材構造の一端と他端とを
連通し、複合防音材構造外部と連通していることから、
ばね層2内の空気はこれらの間隙Kを通り、複合防音材
構造外部へ移動し易くなる。従ってばね層2の通気抵抗
が低減され、これにより本例4の防音材構造はばね層2
の共振周波数が従来より低下され、よって従来よりも低
周波数領域において振動及び騒音を低減させ得る効果を
得ることができる。そして本例4の防音材構造の上記効
果は、後述する試験例において示されるように本例1及
び本例2の防音材構造と比較してより優れている。また
波状シ−トSは紙製であることから、本例4の防音材構
造は軽量とされる利点がある。さらに波状シ−トSとし
てダンボ−ルの芯を使用していることから安価であり、
入手が容易である利点がある。さらに本例4の防音材構
造において通気道手段である間隙Kの作成は制振層1上
に波状シ−トSを載せ、さらにこの波状シ−トSの上に
ばね層2及び質量層3を接着させて製造したばね−質量
複合体4を載せることにより作成でき容易である。
Embodiment 4 In addition to the above-mentioned problems of the present invention, the problem of the soundproof material structure of the fourth embodiment is to provide a soundproof material structure in which ventilation passage means can be easily manufactured. The soundproofing material structure of this Example 4 is shown in FIG.
As shown in FIG. 3, a wave-like sheet S is provided on the entire upper surface of the vibration-damping layer 1 as a ventilation means, and the spring layer 2 is laminated on the wave-like sheet S and the mass layer 3 is further laminated on the spring layer 2. It has a four-layer structure. The same material as in Example 1 was used for the damping layer 1, the spring layer 2 and the mass layer 3. As the corrugated sheet S of this example, a core of a dumbbell was used. By providing the corrugated sheet S between the vibration damping layer 1 and the spring layer 2, a gap K is formed between the corrugated sheet S and the spring layer 2 in substantially the same number as the number of waves of the corrugated sheet S. . The gap K, which is the air passage means, connects one end and the other end of the soundproof structure. Since these gaps K are in contact with the spring layer 2, and one end and the other end of the soundproof material structure are communicated with each other, and are communicated with the outside of the composite soundproof material structure,
The air in the spring layer 2 easily passes through these gaps K to the outside of the composite soundproof material structure. Therefore, the air flow resistance of the spring layer 2 is reduced, and thus the soundproofing material structure of the present Example 4 has the spring layer 2
The resonance frequency of is reduced as compared with the related art, so that it is possible to obtain an effect of reducing vibration and noise in a lower frequency range than the related art. And the above-mentioned effect of the soundproof material structure of the present example 4 is more excellent as compared with the soundproof material structure of the present example 1 and the present example 2 as shown in a test example described later. Further, since the corrugated sheet S is made of paper, the soundproof material structure of Example 4 has an advantage of being lightweight. Furthermore, since the core of the dumbbell is used as the corrugated sheet S, it is inexpensive,
It has the advantage of being readily available. Further, in the soundproof material structure of the present Example 4, the gap K, which is the ventilation passage means, is formed by placing the wavy sheet S on the damping layer 1, and further on the wavy sheet S, the spring layer 2 and the mass layer 3 are formed. It can be easily prepared by mounting the spring-mass composite 4 manufactured by adhering.

【0015】比較例1 比較例1の防音材構造は本例1の防音材構造において制
振層1に溝Mを有していない点以外は本例1と同様の構
成であり、各材料も同じものを使用している。すなわち
図8に示されるように、制振材20の上にばね層21及
び質量層22からなるばね−質量複合体23が積層され
てなる三層構造よりなる。 比較例2 比較例2の防音材構造は比較例1の防音材構造において
ばね層21の厚さ10mmを15mmに変えた以外は比較例
1と同様の構成であり、各材料も同じものを使用してい
る。 比較例3 比較例3の防音材構造は図9に示される様に特開昭58
−127998号公報に開示の防音材の構造に類似の構
造であり、すなわち比較例2の防音材構造においてばね
層に端部の切り欠き溝38及び中心部の凹部39を各々
複数個設けた構造を有している。これらの切り欠き溝3
8及び中心部の凹部39の深さは15mmであり、すなわ
ち、ばね層の厚み分を全て除去した。この理由は特開昭
58−127998号公報に開示の防音材の構造では切
り欠き溝38及び中心部の凹部39の深さはばね層の厚
み分よりは小さいことは図からわかるが、正確な深さは
記載されていないので、最もばね層の通気抵抗が低減さ
れ得ると考えられるばね層の厚み分を全て除去した場合
について後記の試験を行うためである。
Comparative Example 1 The soundproof material structure of Comparative Example 1 has the same structure as that of the soundproof material structure of Example 1 except that the vibration damping layer 1 does not have the groove M. Uses the same. That is, as shown in FIG. 8, it has a three-layer structure in which a spring-mass composite 23 composed of a spring layer 21 and a mass layer 22 is laminated on a damping material 20. Comparative Example 2 The soundproof material structure of Comparative Example 2 has the same configuration as that of Comparative Example 1 except that the thickness 10 mm of the spring layer 21 is changed to 15 mm in the soundproof material structure of Comparative Example 1, and the same materials are used. is doing. Comparative Example 3 The soundproofing material structure of Comparative Example 3 is shown in FIG.
The structure is similar to the structure of the soundproofing material disclosed in Japanese Patent Application Laid-Open No. 127998, that is, the soundproofing material structure of Comparative Example 2 has a plurality of cutout grooves 38 at the ends and a plurality of recesses 39 at the center in the spring layer. have. These notches 3
The depth of 8 and the central recess 39 was 15 mm, that is, the entire thickness of the spring layer was removed. The reason for this is that in the structure of the soundproofing material disclosed in Japanese Patent Application Laid-Open No. 58-127998, the depth of the notch groove 38 and the recess 39 in the central portion is smaller than the thickness of the spring layer, but it is clear from the figure that it is accurate. This is because, since the depth is not described, the test described below is performed in the case where all the thickness of the spring layer, which is considered to be most likely to reduce the airflow resistance of the spring layer, is removed.

【0016】試験例 次に前記した実施例1〜4の防音材と比較例1〜3の防
音材の防音性能を比較検討する為に以下の試験を実施し
た。本試験に用いる試験片を以下の方法で作成した。大
きさ500mm×600mm、厚さ1.6mmの鋼板パネルに
制振材1を熱融着させた後にこの制振層1の上面にばね
層2を積層し、このばね層2の上面にさらに質量層3を
積層することにより、本例1の防音材構造の試験片を作
成した。本例2ないし本例4及び比較例1及び比較例2
の防音材構造の試験片も同様に同じ鋼板パネルに制振層
1を熱融着させた後に各防音材構造のその他の各層を順
次重ねて載置することにより作成した。前記の7種(本
例1ないし本例4及び比較例1ないし比較例3)の各試
験片Aについて以下の試験を行った。
Test Example Next, the following test was conducted in order to compare and examine the soundproofing performance of the soundproofing materials of Examples 1 to 4 and the soundproofing materials of Comparative Examples 1 to 3. The test piece used for this test was created by the following method. After the damping material 1 is heat-sealed to a steel plate panel having a size of 500 mm × 600 mm and a thickness of 1.6 mm, the spring layer 2 is laminated on the upper surface of the damping layer 1, and the mass of the upper surface of the spring layer 2 is further increased. By laminating the layer 3, a test piece having the soundproof material structure of Example 1 was prepared. Examples 2 to 4 and Comparative Examples 1 and 2
Similarly, the test piece having the soundproof material structure was prepared by heat-sealing the damping layer 1 on the same steel plate panel and then sequentially stacking the other layers of each soundproof material structure. The following tests were performed on each of the seven types of test pieces A (Examples 1 to 4 and Comparative Examples 1 to 3).

【0017】前記の7種の試験片Aの各々を図10に示
すパネル加振治具6の載置枠9内に固定し、図11に示
す加振試験器10を用いて以下に記載するパネル加振法に
より各防音材構造の防音性能を調べた。
Each of the above-mentioned seven kinds of test pieces A is fixed in the mounting frame 9 of the panel vibrating jig 6 shown in FIG. 10, and described below by using the vibrating tester 10 shown in FIG. The soundproof performance of each soundproof material structure was investigated by the panel vibration method.

【0018】すなわち、図11に示すように、試験片A
を載置し固定する載置枠9は、天井部12より吊りゴム
13によって水平状に柔らかく吊下げられ、かつ載置枠
9の下方にはフレーム8を介して加振器7が連結されて
いる。加振器7はパワーアンプ14、バンド・パスフィ
ルタ15(10〜1000Hzの帯域周波数帯)を介しランダム
ノイズジェネレータ16に接続され、このジェネレータ
16によって、ランダムノイズを発振し加振を行う。載
置枠9に固定した試験片Aにおける質量層3の中心部
と、鋼板パネル5の中心部には加速度ピックアップセン
サ17が配設され、その信号はチャージアンプ18を介
してFFT分析器(フーリエ交換器)19に入力され、
鋼板パネル5と試験片Aの質量層3の中央の伝達関数を
測定し、振動伝達性能とする。すなわち、鋼板パネル5
の振動(入力側)をX1 ,質量層3の中央振動(応答
側)をX2 とすると振動伝達性能はX2 /X1 となる。
That is, as shown in FIG.
The mounting frame 9 for mounting and fixing is horizontally and softly hung from the ceiling portion 12 by the suspending rubber 13, and below the mounting frame 9 the vibrator 7 is connected via the frame 8. There is. The vibrator 7 is connected to a random noise generator 16 via a power amplifier 14 and a band pass filter 15 (band frequency band of 10 to 1000 Hz), and the generator 16 oscillates random noise to perform vibration. An acceleration pickup sensor 17 is provided at the center of the mass layer 3 of the test piece A fixed to the mounting frame 9 and at the center of the steel plate panel 5, and the signal from the acceleration pickup sensor 17 is transmitted via a charge amplifier 18 to an FFT analyzer (Fourier Fourier transform). (Exchanger) 19
The transfer function at the center of the steel plate panel 5 and the mass layer 3 of the test piece A is measured and used as the vibration transfer performance. That is, the steel plate panel 5
Vibration (input side) X 1 of the vibration transfer performance and a central vibration of the mass layer 3 (responder) and X 2 is the X 2 / X 1.

【0019】本例1ないし本例4及び比較例1及び比較
例2の試験片Aについて、前記の方法で常温における防
音性能を調べた結果を図12及び図13に示す。図12
中、グラフIは本例1、グラフIIは本例2、グラフIII
は本例3、グラフIVは本例4及びグラフVは比較例1に
ついての結果を各々示している。また、図13中、グラ
フVIは比較例2、グラフVII は比較例3についての結果
を各々示している。図12及び図13中、縦軸は振動倍
率[dB]及び横軸は周波数[Hz]を各々示す。
The results of examining the soundproofing performance of the test pieces A of Examples 1 to 4 and Comparative Examples 1 and 2 at room temperature by the above method are shown in FIGS. 12 and 13. 12
Among them, Graph I is Example 1 and Graph II is Example 2 and Graph III
Shows the results of Example 3, Graph IV shows the results of Example 4, and Graph V shows the results of Comparative Example 1. In addition, in FIG. 13, Graph VI shows the results for Comparative Example 2 and Graph VII shows the results for Comparative Example 3. 12 and 13, the vertical axis represents the vibration magnification [dB] and the horizontal axis represents the frequency [Hz].

【0020】図12に示される様に、100〜500Hz
の広い周波数領域においてグラフI、II、III 及びグラ
フIVの結果はグラフVよりもその振動倍率が小さい周波
数領域が大部分であり、さらにはその振動倍率の差が大
きい周波数領域が広い。従って、本例1ないし本例4は
比較例1と比べてより低周波数領域において振動及び騒
音を低減させ得る複合防音材の構造であることがわか
る。特にグラフIII 及びグラフIVはグラフVとの振動倍
率の差が大きく比較例1に比べて、本例3及び本例4の
防音材構造の制振及び防音性能が非常に優れていること
がわかる。
As shown in FIG. 12, 100 to 500 Hz
In graphs I, II, III and IV in a wide frequency range, the frequency range where the vibration magnification is smaller than that of the graph V is large, and the frequency range where the difference in the vibration magnification is large is wide. Therefore, it can be seen that Examples 1 to 4 have a structure of the composite soundproof material that can reduce vibration and noise in the lower frequency region as compared with Comparative Example 1. In particular, the graphs III and IV have a large difference in vibration magnification from the graph V, and it can be seen that compared with Comparative Example 1, the soundproofing material structures of Examples 3 and 4 are very excellent in vibration damping and soundproofing performance. .

【0021】また図13に示される様に、グラフVI及び
グラフVII の振動倍率にはほとんど差がなく、従って従
来の防音材構造である比較例2及び特開昭58−127
998号公報に開示の防音材構造である比較例3の制振
及び防音性能には差異がなく、特開昭58−12799
8号公報に開示の防音材構造によってはばね層の共振周
波数を従来より低下させることはできないことが理解さ
れる。そして上記の本実施例1ないし4に記載の防音材
の構造においては、踏み心地等のクッション性は従来の
防音材と同じであり、溝M、間隙K又波状シ−トSを設
けることによりクッション性能が損なわれることはなか
った。
Further, as shown in FIG. 13, there is almost no difference in the vibration magnification between the graph VI and the graph VII, so that the conventional soundproofing material structure of Comparative Example 2 and Japanese Patent Laid-Open No. 58-127.
There is no difference in the vibration damping and soundproofing performance of Comparative Example 3 having the soundproofing material structure disclosed in Japanese Patent Laid-Open No. 998/1988.
It is understood that the resonance frequency of the spring layer cannot be lowered more than before by the soundproof material structure disclosed in Japanese Patent Publication No. In the structure of the soundproof material described in the first to fourth embodiments, the cushioning property such as the feeling of stepping is the same as that of the conventional soundproof material, and the groove M, the gap K, and the corrugated sheet S are provided. The cushion performance was not impaired.

【0022】[0022]

【発明の効果】請求項1ないし請求項4の発明によると
ばね層の通気抵抗を低減することにより、ばね層の共振
周波数を従来より低下させ、よって従来よりも低周波数
領域において振動及び騒音を低減させ得る複合防音材の
構造となしうる。従って従来よりもより良好な防音性能
を有する複合防音材の構造が提供される。請求項2の発
明によると上記効果に加えてさらに従来よりも軽量な防
音材構造とされる。請求項4の発明によると上記効果に
加えてさらに通気道手段の作成が容易な防音材構造とさ
れる。
According to the first to fourth aspects of the present invention, the ventilation resistance of the spring layer is reduced to lower the resonance frequency of the spring layer as compared with the conventional one, and thus to reduce vibration and noise in the lower frequency range than the conventional one. The structure of the composite soundproof material can be reduced. Therefore, a structure of a composite soundproof material having better soundproofing performance than before is provided. According to the second aspect of the present invention, in addition to the above effects, a soundproof structure having a lighter weight than the conventional one is provided. According to the invention of claim 4, in addition to the above effects, a soundproof material structure is provided in which the ventilation passage means can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本例1の防音材構造の縦断面図である。FIG. 1 is a vertical cross-sectional view of a soundproof material structure according to a first example.

【図2】本例1の制振層の上面図である。FIG. 2 is a top view of the damping layer of the first example.

【図3】本例2の防音材構造の縦断面図である。FIG. 3 is a vertical cross-sectional view of the soundproof material structure of the second example.

【図4】本例2のばね層の下面図であるFIG. 4 is a bottom view of a spring layer of the second example.

【図5】本例3の防音材構造の縦断面である。FIG. 5 is a vertical cross section of the soundproofing material structure of the third example.

【図6】図4におけるA−A線断面図である。6 is a cross-sectional view taken along the line AA in FIG.

【図7】本例4の防音材構造の縦断面図である。FIG. 7 is a vertical cross-sectional view of a soundproofing material structure according to a fourth example.

【図8】従来の防音材構造又は比較例1、比較例2の防
音材構造の縦断面図である。
FIG. 8 is a vertical cross-sectional view of a conventional soundproof material structure or a soundproof material structure of Comparative Examples 1 and 2.

【図9】比較例3の防音材構造のばね層の下面図であ
る。
9 is a bottom view of a spring layer having a soundproof material structure according to Comparative Example 3. FIG.

【図10】パネル加振治具の斜視図である。FIG. 10 is a perspective view of a panel vibrating jig.

【図11】加振試験器の説明図である。FIG. 11 is an explanatory diagram of a vibration tester.

【図12】周波数と振動倍率との関係を示すグラフであ
る。
FIG. 12 is a graph showing a relationship between frequency and vibration magnification.

【図13】周波数と振動倍率との関係を示すグラフであ
る。
FIG. 13 is a graph showing the relationship between frequency and vibration magnification.

【図14】従来の防音材構造の縦断面図である。FIG. 14 is a vertical cross-sectional view of a conventional soundproof material structure.

【図15】従来の防音材構造のばね層の底面図である。FIG. 15 is a bottom view of a spring layer of a conventional soundproof material structure.

【符号の説明】[Explanation of symbols]

1 制振層 2 ばね層 3 質量層 4 ばね−質量複合体 M 溝 K 間隙 S 波状シ−ト A 試験片 1 Damping Layer 2 Spring Layer 3 Mass Layer 4 Spring-Mass Complex M Groove K Gap S Wavy Sheet A Test Piece

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 空気を含む多孔質のばね層上に質量層を
重ねたばね−質量複合体層を制振層の上に配置してなる
複合防音材構造であって、前記制振層とこの上に配置さ
れる前記ばね層間には、該両層の境界面に沿った一端と
他端を連通し、ばね層内の空気を外部に連通させる通気
道手段が設けられてなることを特徴とした複合防音材構
造。
1. A composite soundproof material structure comprising a spring-mass composite layer, in which a mass layer is laminated on a porous spring layer containing air, disposed on a damping layer, the damping layer and the damping layer Between the spring layers arranged on the upper side, there is provided an air passage means for communicating one end and the other end along the boundary surface of the both layers and for communicating the air in the spring layers to the outside. Composite soundproof material structure.
【請求項2】 通気道手段が、ばね層に接する制振層面
に凹設した溝である請求項1に記載の複合防音材構造。
2. The composite soundproof material structure according to claim 1, wherein the ventilation passage means is a groove recessed in the surface of the damping layer in contact with the spring layer.
【請求項3】 通気道手段が、制振層に接するばね層面
に凹設した溝である請求項1に記載の複合防音材構造。
3. The composite soundproof material structure according to claim 1, wherein the ventilation passage means is a groove recessed in the surface of the spring layer in contact with the damping layer.
【請求項4】 通気道手段が、制振層とばね層間に介在
され、かつばね層の空気を外部に連通させる機能を有す
る波形シ−ト構造物である請求項1に記載の複合防音材
構造。
4. The composite soundproof material according to claim 1, wherein the ventilation passage means is a corrugated sheet structure interposed between the damping layer and the spring layer and having a function of communicating the air of the spring layer to the outside. Construction.
JP6039963A 1994-03-10 1994-03-10 Structure of composite sound absorbing material Pending JPH07248776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6039963A JPH07248776A (en) 1994-03-10 1994-03-10 Structure of composite sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6039963A JPH07248776A (en) 1994-03-10 1994-03-10 Structure of composite sound absorbing material

Publications (1)

Publication Number Publication Date
JPH07248776A true JPH07248776A (en) 1995-09-26

Family

ID=12567623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6039963A Pending JPH07248776A (en) 1994-03-10 1994-03-10 Structure of composite sound absorbing material

Country Status (1)

Country Link
JP (1) JPH07248776A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035050A (en) * 2002-03-19 2002-05-09 권회현 Door
KR20030047441A (en) * 2001-12-10 2003-06-18 (주)대한솔루션 sound absorbing and insulating material having air pocket
JP2004210287A (en) * 1998-05-12 2004-07-29 Rieter Automotive (Internatl) Ag Vehicle component having sound effect
JP2008508139A (en) * 2004-08-04 2008-03-21 ダイムラー・アクチェンゲゼルシャフト Sound insulation for automobile passenger compartment
KR100950602B1 (en) * 2008-12-22 2010-04-01 엔브이에이치코리아(주) Soundproofing material for automobile interior
US20120118664A1 (en) * 2010-09-28 2012-05-17 Tokai Rubber Industries, Ltd. Tubular body soundproof cover and covered tubular body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210287A (en) * 1998-05-12 2004-07-29 Rieter Automotive (Internatl) Ag Vehicle component having sound effect
KR20030047441A (en) * 2001-12-10 2003-06-18 (주)대한솔루션 sound absorbing and insulating material having air pocket
KR20020035050A (en) * 2002-03-19 2002-05-09 권회현 Door
JP2008508139A (en) * 2004-08-04 2008-03-21 ダイムラー・アクチェンゲゼルシャフト Sound insulation for automobile passenger compartment
KR100950602B1 (en) * 2008-12-22 2010-04-01 엔브이에이치코리아(주) Soundproofing material for automobile interior
US20120118664A1 (en) * 2010-09-28 2012-05-17 Tokai Rubber Industries, Ltd. Tubular body soundproof cover and covered tubular body
US8434587B2 (en) * 2010-09-28 2013-05-07 Tokai Rubber Industries, Ltd. Tubular body soundproof cover and covered tubular body

Similar Documents

Publication Publication Date Title
US8172040B2 (en) Active/passive distributed absorber for vibration and sound radiation control
JP2648991B2 (en) Sound insulation and noise reduction composite member and sound insulation layer of the composite member
EP1612768B1 (en) Ultralight soundproof material
EP1682385B1 (en) Sound insulating system
US8025124B2 (en) Broadband passive distributed tuned vibration and acoustic absorber for modally dense structures
JP2006511830A (en) Ultralight trim composite
JP4691388B2 (en) Ultralight soundproof material
JP2012196966A (en) Soundproof assembly, its use for soundproof sealed space, and method for manufacturing the same
KR20130038196A (en) Automotive trim part for sound insulation and absorption
WO2006027936A1 (en) Double wall structure
CN1754201B (en) Sound-absorbing structure using thin film
JP2007502748A (en) Noise reduction components such as vehicle floor panels
JPH07248776A (en) Structure of composite sound absorbing material
JP2008508493A (en) Active / passive distributed absorber for vibration and sound radiation suppression
JP3755191B2 (en) Floor vibration attenuator and steel floor structure provided with the same
JP4027068B2 (en) Sound absorbing material
JPH1037619A (en) Sound-proof door
JPH11324707A (en) Sound insulating cover material
JP6929532B2 (en) Soundproof panel
JPS63199182A (en) Structure of dash panel for vehicle
JP2003122370A (en) Acoustic material
JP2003150170A (en) Sound absorbing and vibration damping material
KR100427235B1 (en) Soundproof material for lower body of car
JPS59199243A (en) Vibration damping heat-insulating material
JPH11286065A (en) Sound absorbing and insulating member