JPH07248222A - Method for measuring shape of hot-rolled steel plate - Google Patents

Method for measuring shape of hot-rolled steel plate

Info

Publication number
JPH07248222A
JPH07248222A JP4021994A JP4021994A JPH07248222A JP H07248222 A JPH07248222 A JP H07248222A JP 4021994 A JP4021994 A JP 4021994A JP 4021994 A JP4021994 A JP 4021994A JP H07248222 A JPH07248222 A JP H07248222A
Authority
JP
Japan
Prior art keywords
shape
temperature
average temperature
steel sheet
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4021994A
Other languages
Japanese (ja)
Inventor
Naoki Nakada
直樹 中田
Hiroyuki Ogawa
博之 小川
Hiroshi Kuwako
浩 桑子
Tokuharu Ishibashi
徳春 石橋
Norio Kanemoto
規生 金本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4021994A priority Critical patent/JPH07248222A/en
Publication of JPH07248222A publication Critical patent/JPH07248222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a method for measuring a shape of a hot-rolled steel plate after being cooled. CONSTITUTION:A surface temperature in a widthwise direction of a steel plate cooled after being hot rolled is continuously measured at least at three points of a central part and both end parts. An average temperature at each measuring point within a reference measuring time DELTAt is calculated every moment. The measuring point showing the highest value among the calculated average temperature is selected and a temperature difference delta between the maximum and minimum values of the measured temperature at the selected position is obtained. If the temperature difference delta is equal to or larger than a preset reference temperature difference deltaS, the steel plate is judged to be improper in shape. When the average temperature at the central part is higher than the average temperature at both end parts, the steel plate is judged to form wave in the middle part. When the average temperature of each of both end parts is higher than that of the central part, the steel plate is judged to have waves in both edges. Meanwhile, when the average temperature at one end part is lower than that at the central part, a wave in one edge is judged. Moreover, when the average temperature of the left end part is higher than that at the right end part, a wave in the left edge is determined. To the contrary, if the average temperature at the right end part is higher than that at the left end part, the steel plate is judged to have a wave in the right edge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱延鋼板の形状測定方
法に係り、特に熱延鋼板の冷却後の形状を測定する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the shape of a hot rolled steel sheet, and more particularly to a method for measuring the shape of the hot rolled steel sheet after cooling.

【0002】[0002]

【従来の技術】通常、形状の良好な熱延鋼板を製造する
ことは、圧延製品の品質を確保するのみでなく、圧延機
への通板やコイラへの巻き取りなどを安定に行い、高い
歩留りを維持するためにも重要なことである。従来、熱
間圧延ラインでの鋼板形状は、たとえば仕上スタンド出
側に取付けた形状計を用いて測定するとか、あるいはオ
ペレータの目視によって判定され、それらの情報に基づ
いてワークロールベンダなどを介して調整されながら圧
延が行われていた。
2. Description of the Related Art In general, manufacturing a hot-rolled steel sheet having a good shape not only ensures the quality of rolled products, but also makes it possible to perform rolling on a rolling mill and winding on a coiler stably, which is high. It is also important for maintaining the yield. Conventionally, the steel plate shape in the hot rolling line is measured by, for example, using a shape meter attached to the exit side of the finishing stand, or visually determined by an operator, and based on the information, a work roll bender or the like is used. Rolling was being performed while being adjusted.

【0003】一方、近年の計測技術の発達はめざまし
く、形状測定装置の熱間圧延ラインへの導入の試みも盛
んである。そのひとつとして、仕上スタンド出側で鋼板
の幅方向に複数のレーザ距離計を配置して、鋼板との距
離を測定して形状を判定する方法が知られている。ま
た、仕上スタンド間で鋼板幅方向の張力分布を測定する
ことによって形状を判定する技術もある。
On the other hand, the development of measuring technology in recent years has been remarkable, and attempts are being made to introduce a shape measuring apparatus into a hot rolling line. As one of them, there is known a method in which a plurality of laser rangefinders are arranged on the exit side of the finishing stand in the width direction of the steel sheet and the distance to the steel sheet is measured to determine the shape. There is also a technique for determining the shape by measuring the tension distribution in the width direction of the steel sheet between the finishing stands.

【0004】また、仕上圧延後の形状が良好であっても
冷却が幅方向で均一に行われない場合は、冷却中に熱応
力によって鋼板が歪みその形状が悪化するから、巻き取
りが安定して行えなくなるなどの問題が生じる。そこ
で、鋼板は幅方向に均一に冷却する必要があるが、この
ことは均一な材質を得るためにも重要なことである。こ
のような鋼板の冷却に用いられる冷却設備としては、通
常、冷却水を供給するノズルが等間隔に配置されてお
り、また鋼板の端部が過度に冷却されるのを防ぐための
マスキング装置が設置されているもの(たとえば特開昭
59− 24511号公報参照)もある。
Further, even if the shape after finish rolling is good, if the cooling is not performed uniformly in the width direction, the steel sheet is distorted by thermal stress during cooling and the shape is deteriorated, so that the winding is stable. There is a problem that you can not do it. Therefore, the steel sheet needs to be cooled uniformly in the width direction, which is important for obtaining a uniform material. As cooling equipment used for cooling such a steel sheet, nozzles for supplying cooling water are usually arranged at equal intervals, and a masking device for preventing excessive cooling of the end portion of the steel sheet is provided. What is installed (for example,
59-24511).

【0005】冷却後の鋼板は、たとえば放射温度計によ
って幅方向中央の表面温度が測定され、目標の巻き取り
温度を得るために、フィードバックなどの制御によって
冷却設備からの冷却水の供給量が調整される。この場
合、前記温度計に加えて幅方向の温度測定が可能な放射
温度計が設置されることが多い。しかし、冷却設備を通
過した後、すなわち巻き取り前の鋼板の形状を直接測定
する装置が設置されることが少なく、通常はテレビモニ
タを通して目視で形状を判断しているにすぎないのであ
る。
For the steel sheet after cooling, the surface temperature at the center in the width direction is measured by, for example, a radiation thermometer, and in order to obtain the target winding temperature, the amount of cooling water supplied from the cooling equipment is adjusted by control such as feedback. To be done. In this case, in addition to the thermometer, a radiation thermometer capable of measuring the temperature in the width direction is often installed. However, a device that directly measures the shape of the steel sheet after passing through the cooling equipment, that is, before winding, is rarely installed, and the shape is usually only visually determined through a television monitor.

【0006】また、従来の技術で製造可能な熱延鋼板の
最小板厚は1.2 mm程度であったが、圧延速度の高速化と
かエンドレス圧延の採用や通板安定化技術の進歩によっ
て、板厚が0.8 〜1.0 mm程度の熱延鋼板の製造も可能と
なりつつある。これによって、従来必ず通過させていた
冷間圧延工程を省略し得る製品品種も増大し、大幅な製
造コストの削減が可能となっている。
The minimum thickness of hot-rolled steel sheet that can be manufactured by the conventional technique was about 1.2 mm, but the sheet thickness has been improved by the increase of rolling speed, the adoption of endless rolling, and the progress of stripping stabilization technology. It is becoming possible to manufacture hot-rolled steel sheets with a thickness of 0.8 to 1.0 mm. As a result, the number of product types that can omit the cold rolling process that has always been passed through has been increased, and it is possible to significantly reduce the manufacturing cost.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
たような従来技術においては、冷却設備を通過後の鋼板
の形状測定装置の設置がなされておらずに、幅方向での
冷却むらによって生じる形状不良の監視はテレビモニタ
を通して目視により判断するしか手段がなかったから、
製品製造中におけるオペレータの形状監視作業の負荷が
大きくなることが避けられないという問題があった。
However, in the prior art as described above, the shape measuring device for the steel sheet after passing through the cooling equipment is not installed, and the shape defect caused by the uneven cooling in the width direction is caused. The only way to monitor was to make a visual judgment through a TV monitor.
There is a problem that it is inevitable that the load of the operator's shape monitoring work during product manufacturing increases.

【0008】また、前記したように従来よりも板厚が薄
い製品を製造する場合は、わずかな幅方向の冷却むらで
も形状不良につながるから、冷却後の形状の測定を行い
ながら安定させるべき冷却条件を設定することがますま
す重要となる。これに対し、冷却設備の出側にも、仕上
スタンド出側と同様に鋼板幅方向に複数のX線距離計を
設置して、形状を測定する方法も考えられるが、設備コ
ストが高くなるという問題が生じるから実現が困難であ
る。
Further, as described above, when manufacturing a product having a thinner plate thickness than the conventional one, even a slight cooling unevenness in the width direction leads to a defective shape. Therefore, the cooling should be stabilized while measuring the shape after cooling. Setting conditions is becoming more important. On the other hand, a method of installing a plurality of X-ray distance meters in the width direction of the steel plate on the outlet side of the cooling equipment to measure the shape is also conceivable, but the equipment cost is high. It is difficult to implement because of problems.

【0009】ところで、冷却中の鋼板の形状が乱れて凹
凸が生じると、図5に示すように、鋼板1の両端部の凸
部1a上面では供給された冷却水2が滞留しにくくなる
ため冷却能力が低下する。また、通常は冷却ゾーンの出
側ではサイドスプレーなどにより鋼板上面に滞留する水
(以下、載り水という)を側方に吹き飛ばしているが、
水は低い方に集まるから形状が悪い鋼板の上には載り水
が残ることがある。
By the way, when the shape of the steel sheet during cooling is disturbed and unevenness is generated, as shown in FIG. Ability decreases. Further, normally, on the outlet side of the cooling zone, the water (hereinafter referred to as “laden water”) staying on the upper surface of the steel plate is blown off to the side by side spray or the like.
Since water collects in the lower part, it may rest on the steel plate with a bad shape and remain.

【0010】こうした場合、この後も載り水が局所的な
水冷を行ってしまい、鋼板の長手方向にも冷却むらが生
じてしまう。したがって、冷却中、冷却むらによってい
ったん形状不良が生じると、これがさらに冷却むらを拡
大し、ますます形状を悪化させるという悪循環となるの
である。本発明は、上記のような従来技術の有する課題
を解決した熱延鋼板の形状測定方法を提供することを目
的とする。
In such a case, after this, the mounting water locally cools the water, and uneven cooling occurs in the longitudinal direction of the steel sheet. Therefore, during cooling, once the shape irregularity occurs due to the uneven cooling, this further expands the uneven cooling and becomes a vicious cycle in which the shape is further deteriorated. An object of the present invention is to provide a method for measuring the shape of a hot-rolled steel sheet, which solves the problems of the above-mentioned conventional techniques.

【0011】[0011]

【課題を解決するための手段】本発明の熱延鋼板の形状
測定方法は、熱延鋼板の冷却後の形状を測定する方法で
あって、熱間圧延後に水冷した鋼板の幅方向の表面温度
を、その中央部と両端部の少なくとも3個所について連
続的に測定する工程と、前記各測定点について基準測定
時間Δt内での平均温度を時々刻々算出する工程と、こ
れら算出された各平均温度値の中から最も高い値を示す
測定位置を選択する工程と、選択された測定位置におけ
る測定温度の最大値と最小値との温度差δを求める工程
と、この温度差δがあらかじめ与えられた基準温度差δ
S に比較して等しいかあるいは大きい場合は形状不良あ
りと判定し、温度差δが基準温度差δS よりも小さい場
合は形状良好と判定する工程とからなることを特徴とす
る。
A method for measuring the shape of a hot-rolled steel sheet according to the present invention is a method for measuring the shape of a hot-rolled steel sheet after cooling, and the surface temperature in the width direction of the water-cooled steel sheet after hot rolling. For continuously measuring at least three points at the center and both ends thereof, for calculating the average temperature within the reference measurement time Δt for each of the measurement points, and for each of the calculated average temperatures. The step of selecting the measurement position showing the highest value from among the values, the step of obtaining the temperature difference δ between the maximum value and the minimum value of the measured temperature at the selected measurement position, and this temperature difference δ was given in advance. Reference temperature difference δ
If it is equal to or larger than S , it is determined that there is a defective shape, and if the temperature difference δ is smaller than the reference temperature difference δ S, the shape is determined to be good.

【0012】また、本発明の熱延鋼板の形状測定方法
は、前記形状不良ありと判定する工程に続けて、中央部
の平均温度値が両端部の各平均温度値より大きい場合は
腹波と判定し、小さい場合は耳伸びと判定する工程と、
前記耳伸びと判定する工程の後に、両端部とも平均温度
が中央部よりも大きい場合に両耳波と判定し、端部の片
方が中央部よりも小さい場合は片耳波と判定する工程と
を付加してなることを特徴とする。
Further, in the method for measuring the shape of a hot-rolled steel sheet of the present invention, following the step of determining that there is a defective shape, when the average temperature value of the central portion is higher than each average temperature value of both ends, an abdominal wave is generated. Judgment, and if it is small, the process of determining the ear extension,
After the step of determining the ear extension, it is determined as both ear waves when the average temperature at both ends is larger than the central portion, and when one of the end portions is smaller than the central portion, it is determined as one ear wave. It is characterized by being added.

【0013】[0013]

【作 用】本発明によれば、熱間圧延後に水冷された鋼
板の表面温度をその幅方向に3点以上連続的に測定する
ことによって、鋼板の形状を精度よく判定することが可
能となる。以下に、形状の測定原理について詳細に説明
する。すなわち、通常、鋼板幅方向で温度が高い部分
は、他の部分に比べて熱収縮が小さいため、実質的な鋼
板長さが長くなる。ところが、鋼板各部分は互いに拘束
しあって幅方向で長さが変化することができない。たと
えば実質的な鋼板長さが長い高温部では、圧縮の熱応力
がはたらく。この圧縮応力がある程度大きくなると座屈
が起こり、凹凸(形状不良)が発生する。
[Operation] According to the present invention, the shape of the steel sheet can be accurately determined by continuously measuring the surface temperature of the water-cooled steel sheet after hot rolling in three or more points in the width direction. . The principle of measuring the shape will be described in detail below. That is, in general, the portion where the temperature is high in the width direction of the steel sheet has a smaller heat shrinkage than the other portions, so that the substantial length of the steel sheet becomes long. However, the respective portions of the steel sheet are constrained to each other and cannot change in length in the width direction. For example, the thermal stress of compression works in a high temperature portion where the length of the steel sheet is substantially long. When this compressive stress becomes large to some extent, buckling occurs and unevenness (defective shape) occurs.

【0014】凹凸がいったん発生すると載り水は凹部に
滞留しやすくなり、この部分を冷却する。また、一方
で、凸部には水が載りにくくなるから、他の部分と比べ
て冷却能力が著しく低下する。このように、凹凸がある
場所では幅方向のみならず長手方向でも冷却むらが発生
する。これに対し、凹凸のない部分では載り水が一様に
滞留するため、安定した冷却能力が維持できる。
Once the unevenness occurs, the mounting water easily stays in the recessed portion and cools this portion. On the other hand, on the other hand, it becomes difficult for water to be deposited on the convex portions, so that the cooling capacity is significantly reduced as compared with other portions. As described above, in the place where there is unevenness, uneven cooling occurs not only in the width direction but also in the longitudinal direction. On the other hand, the resting water is uniformly accumulated in the portion having no unevenness, so that the stable cooling capacity can be maintained.

【0015】つまり、座屈が起こり凹凸が発生しやすい
箇所は、幅方向のうち最も温度の高い部分であり、ここ
では長手方向にもある程度の温度変動があると考えてよ
い。また、形状不良には腹波、両耳波、片耳波の3種類
があるのが一般的であるから、これらを判別して測定す
るためには少なくとも鋼板中央部と両端の3箇所での温
度測定が必要である。
That is, the portion where buckling is likely to occur and unevenness is likely to occur is the highest temperature portion in the width direction, and here it can be considered that there is some temperature variation in the longitudinal direction as well. In addition, since there are generally three types of shape defects, an abdominal wave, both ear waves, and one ear wave, in order to distinguish and measure these, the temperature at least at the central portion of the steel plate and at three locations at both ends Measurement is required.

【0016】つぎに、本発明による形状測定の手順につ
いて説明する。 ある基準測定時間Δt内で鋼板中央部および左右両
端部の3箇所における各測定点での表面温度TC
LE,TREを連続的に測定する。 各測定点での平均温度TC * ,TLE * ,TRE * を時
々刻々算出する。 算出した各平均温度値の中から最も高い値を示す測
定位置を選択する。 選択された測定位置における測定温度の最大値と最
小値との温度差δを求める。 この温度差δがあらかじめ与えられた基準温度差δ
S に比較して等しいかあるいは大きい場合は形状不良あ
りと判定し、その他の場合は形状良好と判定する。 中央部の平均温度値TC * が左右両端部の平均温度
値TLE * ,TRE * より大きい場合は形状が腹波と判定
し、その他の場合は耳伸びと判定する。 さらに、耳伸びと判定した後に、左右両端部の平均
温度値TLE * ,TRE * が中央部の平均温度値TC * より
も大きい場合は形状が両耳波であると判定し、その他の
場合は片耳波と判定する。
Next, the procedure of shape measurement according to the present invention will be described. Surface temperature T C at each measurement point at three points of the central portion of the steel sheet and both left and right ends within a certain reference measurement time Δt,
Continuously measure T LE and T RE . The average temperatures T C * , T LE * , and T RE * at each measurement point are calculated moment by moment. A measurement position showing the highest value is selected from the calculated average temperature values. The temperature difference δ between the maximum value and the minimum value of the measured temperature at the selected measurement position is calculated. This temperature difference δ is a reference temperature difference δ given in advance.
When it is equal to or larger than S , it is determined that there is a defective shape, and in other cases, it is determined that the shape is good. When the average temperature value T C * of the central portion is larger than the average temperature values T LE * and T RE * of the left and right ends, it is determined that the shape is an abdominal wave, and in other cases, it is determined that the shape is ear extension. Furthermore, if the average temperature values T LE * and T RE * at the left and right ends are greater than the average temperature value T C * at the center after the determination of ear extension, then it is determined that the shape is binaural. In case of, it is judged as one ear wave.

【0017】上記の手順を図1にまとめて示した。な
お、上記の基準測定時間Δtの大きさとしては、鋼板が
4〜5m 程度走行する時間とすればよい。これは、形状
不良部分の凹凸が繰り返される単位長さがたかだか4〜
5m 程度であるからである。また、形状不良の判定基準
である基準温度差δS は20℃程度にするのがよい。これ
は、鋼板には長手方向にも多少は温度差があるが、これ
を誤って形状不良と判定してしまうこともあり、δS
非常に小さくとることは好ましくないからである。逆
に、δS を40〜50℃程度の大きな値にすると、形状不良
があっても検出できなくなるという問題が生じる恐れが
ある。
The above procedure is shown in FIG. The reference measurement time Δt may be set to a time during which the steel sheet travels for about 4 to 5 m. This is because the unit length at which irregularities of the defective shape is repeated is at most 4 to 4.
This is because it is about 5 m. The reference temperature difference Δ S, which is the criterion for determining the shape defect, is preferably about 20 ° C. This is because there is a slight temperature difference in the steel sheet in the longitudinal direction, but this may be erroneously determined as a defective shape, and it is not preferable to make δ S very small. On the contrary, if δ S is set to a large value of about 40 to 50 ° C, there is a possibility that even if there is a defective shape, it cannot be detected.

【0018】このように、幅方向で温度の高い部分を検
出し、長手方向の温度変動も調べながら鋼板形状を判定
するから、測定は非常に正確に行われる。これによっ
て、レーザ距離計などの高価な測定装置を別途取付ける
ことも必要がなくなったうえ、形状の監視作業が不要と
なり、省力化を図ることも可能である。また、測定した
データを用いれば、巻き取り時の形状に関するコイル管
理も可能となる。さらに、これらのデータを学習するこ
とによって、幅方向で均一な最適の冷却条件を求めるこ
とができるから、形状を安定させることも可能となる。
As described above, the portion having a high temperature in the width direction is detected, and the shape of the steel sheet is determined while checking the temperature variation in the longitudinal direction. Therefore, the measurement is performed very accurately. As a result, it is not necessary to separately install an expensive measuring device such as a laser range finder, and the shape monitoring work is not required, and labor can be saved. Further, by using the measured data, it is possible to manage the coil regarding the shape at the time of winding. Furthermore, by learning these data, it is possible to obtain an optimum cooling condition that is uniform in the width direction, so that it is possible to stabilize the shape.

【0019】[0019]

【実施例】以下に、本発明の実施例について図面を参照
して説明する。図2は、本発明の形状測定装置を熱間圧
延ラインの冷却設備出側に適用した例を示す概要図であ
る。図に示すように、熱間仕上圧延機3で圧延された鋼
板1は冷却設備4で冷却されながらコイラ5で巻き取ら
れるのであるが、その際、冷却設備4の入側(熱間仕上
圧延機3の出側)に設置されたX線板厚計6、形状測定
装置7、入側放射温度計8によって、板厚、形状、表面
温度がそれぞれ測定される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic diagram showing an example in which the shape measuring apparatus of the present invention is applied to the cooling equipment outlet side of a hot rolling line. As shown in the figure, the steel sheet 1 rolled by the hot finish rolling mill 3 is wound by the coiler 5 while being cooled by the cooling equipment 4, and at that time, the inlet side of the cooling equipment 4 (hot finish rolling) is used. The X-ray plate thickness meter 6, the shape measuring device 7, and the entrance side radiation thermometer 8 installed on the exit side of the machine 3 measure the plate thickness, shape, and surface temperature, respectively.

【0020】また冷却設備4の出側(コイラ5の入側)
に設けられた出側放射温度計9によって冷却後の表面温
度が測定される。この出側放射温度計9は鋼板1の幅方
向の温度分布を連続的に測定することができ、その測定
信号は演算装置10に入力される。そして、演算装置10で
中央位置と左右両端部の温度が読み取られ、前記した
〜の手順でデータ処理がなされる。
The outlet side of the cooling equipment 4 (the inlet side of the coiler 5)
The surface temperature after cooling is measured by the emission radiation thermometer 9 provided in the. The emission side radiation thermometer 9 can continuously measure the temperature distribution in the width direction of the steel plate 1, and the measurement signal is input to the arithmetic unit 10. Then, the arithmetic unit 10 reads the temperatures at the central position and the left and right ends, and the data processing is performed by the above-described procedures (1) to (3).

【0021】このように構成された装置を用いて、低炭
素鋼からなる板厚4mmで板幅1000mmの鋼板が目標巻き取
り温度を550 ℃とし、速度600 mpm で走行する場合の冷
却後の幅方向温度分布を測定した。このとき、データの
サンプリングタイムは0.05sec とし、形状を判断する基
準測定時間Δtは0.5secとし、基準温度差δS を20℃と
した。
Using the thus constructed apparatus, a steel sheet having a thickness of 4 mm and a width of 1000 mm made of low carbon steel has a target winding temperature of 550 ° C. and a width after cooling when traveling at a speed of 600 mpm. The directional temperature distribution was measured. At this time, the data sampling time was 0.05 sec, the reference measurement time Δt for determining the shape was 0.5 sec, and the reference temperature difference δ S was 20 ° C.

【0022】これらの測定の結果に基づき、演算装置8
において、幅方向3点の測定温度の平均値を求め、それ
らの大小を比較するとともに、各測定点での温度変動が
判定基準である基準温度差δS を超えるかどうかの判定
を行った。すなわち、選択された測定位置における測定
温度の最大と最小の差がδS に対して等しいかあるいは
大きい場合に形状不良と判定した。また、前記測定温度
の最大と最小の差がδ S よりも小さい場合には形状が良
好であると判定した。なお、形状不良の判定基準は、表
1に示すように決定した。
Based on the results of these measurements, the arithmetic unit 8
In, the average value of the measured temperature at three points in the width direction is calculated,
The temperature fluctuations at each measurement point are
Reference temperature difference δSWhether to exceed
I went. That is, the measurement at the selected measurement position
The difference between the maximum and minimum temperature is δSEqual to or
When it was large, it was determined that the shape was defective. Also, the measured temperature
The difference between the maximum and the minimum of δ SShape is better if smaller than
It was judged to be good. In addition, the criteria for determining the shape defect are
It was determined as shown in 1.

【0023】[0023]

【表1】 [Table 1]

【0024】つぎに、形状不良と判定されたものの具体
的温度パターンについて説明する。図3(a) ,(b) は鋼
板温度の時間変化の測定パターンを示すもので、また、
図4(a) 〜(e) は幅方向温度分布の測定パターンを示す
ものであり、これら図3および図4の測定パターンと鋼
板形状との対応について、以下に具体的に説明する。 (1) 腹波形状のとき;鋼板幅方向温度分布は中央部が両
端部よりも高い図4(a)のパターンと、全体的に平坦な
図4(b) のパターンの繰り返しとなった。このとき、鋼
板幅方向の中央部での温度の経時変化は20℃以上の振れ
がある図3(b) のパターンのように、また左右の各端部
での温度の経時変化は振れがほとんどない図3(a) のパ
ターンのようになった。 (2) 両耳波のとき;鋼板幅方向温度分布は全体的に平滑
な図4(b) のパターンと、両端部が中央部よりも高い図
4(c) のパターンの繰り返しとなった。このとき、中央
部での温度の経時変化は幅方向中央部で図3(a) のパタ
ーンのように、また左右の各端部では図3(b) のパター
ンのようになった。 (3) 片耳波(左端)の場合;幅方向温度分布は全体的に
平滑な図4(b) のパターンと、左端部が中央部や右端部
よりも高い図4(d) のパターンの繰り返しで、中央部お
よび右端部での温度の経時変化は図3(a) 、左端部での
温度の経時変化は図3(b) のパターンとなった。 (4) 片耳波(右端)の場合;幅方向温度分布は全体的に
平滑な図4(b) のパターンと、右端部が中央部や左端部
よりも高い図4(e) のパターンの繰り返しで、中央部お
よび左端部での温度の経時変化は図3(a) 、右端部での
温度の経時変化は図3(b) のパターンとなった。
Next, a specific temperature pattern of the one determined to have a defective shape will be described. Figures 3 (a) and 3 (b) show the measurement patterns of the time variation of the steel plate temperature.
FIGS. 4A to 4E show measurement patterns of the temperature distribution in the width direction, and the correspondence between the measurement patterns of FIGS. 3 and 4 and the steel plate shape will be specifically described below. (1) In the case of an abdominal wave shape: The temperature distribution in the width direction of the steel sheet was the pattern of FIG. 4 (a) in which the central part was higher than both ends and the pattern of FIG. 4 (b) which was flat as a whole. At this time, the temperature change at the central portion in the width direction of the steel plate has a fluctuation of 20 ° C or more, as shown in the pattern in Fig. 3 (b). It looks like the pattern in Figure 3 (a), which is not. (2) When both ears are present; the temperature distribution in the width direction of the steel sheet is the pattern shown in Fig. 4 (b), which is generally smooth, and the pattern shown in Fig. 4 (c), in which both ends are higher than the center, is repeated. At this time, the change with time of the temperature at the central portion was as shown in the pattern of FIG. 3 (a) at the central portion in the width direction and at the respective left and right ends as shown in FIG. 3 (b). (3) In case of one ear wave (left end); the pattern of Fig. 4 (b) in which the temperature distribution in the width direction is generally smooth, and the pattern of Fig. 4 (d) in which the left end is higher than the center and the right end are repeated. The time-dependent change in temperature at the central portion and the right end is shown in FIG. 3 (a), and the change in temperature at the left end is shown in FIG. 3 (b). (4) In case of one ear wave (right end); the pattern of Fig. 4 (b) in which the temperature distribution in the width direction is generally smooth, and the pattern of Fig. 4 (e) in which the right end is higher than the center and the left end are repeated. The time-dependent change in temperature at the center and the left end is shown in FIG. 3 (a), and the change in temperature at the right end is shown in FIG. 3 (b).

【0025】これらの結果を表2にまとめて示した。The results are summarized in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】このように測定した結果は、その検出精度
は従来の複数のレーザ距離計を用いた形状測定装置の精
度とほぼ同等であり、満足し得るものであった。これに
より、従来行われていた目視による形状の監視作業の必
要がなくなるから、オペレータの形状監視負荷を軽減す
ることが可能となった。さらに、巻き取り時の形状に関
するコイル管理が自動で行えるようになり、これらの得
られたデータを学習することによって、幅方向で均一な
冷却を行う操業条件を確立し得るから、冷却の不均一が
起因となって発生する形状不良を著しく低減することが
できる。
As a result of the above measurement, the detection accuracy was almost the same as the accuracy of the conventional shape measuring apparatus using a plurality of laser distance meters, which was satisfactory. As a result, it is possible to reduce the operator's load of shape monitoring because it is not necessary to perform visual shape monitoring work that has been conventionally performed. In addition, coil management related to the shape at the time of winding can be automatically performed, and by learning these acquired data, operating conditions for uniform cooling in the width direction can be established. It is possible to significantly reduce the defective shape caused by the above.

【0028】なお、上記実施例では鋼板幅方向の3点の
温度分布を放射温度計を用いて測定するとして説明した
が、本発明はこれに限るものではなく、たとえば従来用
いられている巻き取り温度計のような特定の領域(たと
えば鋼板中央位置のみとか)の温度が測定可能な温度計
を幅方向に複数台設置して温度測定を行ってもよいし、
あるいは鋼板中央部と両端部の中間位置などを含む多点
での温度測定を行い、クォータ波なども判別するように
してもよい。
In the above embodiment, the temperature distribution at three points in the width direction of the steel sheet was described as being measured using a radiation thermometer. However, the present invention is not limited to this, and for example, conventionally used winding You may measure the temperature by installing multiple thermometers that can measure the temperature of a specific area (such as only the central position of the steel plate) like the thermometer in the width direction,
Alternatively, the temperature may be measured at multiple points including the center position of the steel plate and the intermediate position between both ends, and the quarter wave may be determined.

【0029】また、本実施例では、幅方向温度分布が測
定できる温度計を冷却設備の出側に設置するとして説明
したが、この温度計は冷却設備の中間位置に配置しても
よい。この場合は、温度計の設置箇所よりも搬送方向上
流で冷却された鋼板の形状測定が可能となる。
In this embodiment, the thermometer capable of measuring the temperature distribution in the width direction is installed on the outlet side of the cooling equipment. However, this thermometer may be arranged at an intermediate position of the cooling equipment. In this case, the shape of the cooled steel sheet can be measured upstream of the installation location of the thermometer in the transport direction.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
熱間圧延後に水冷された鋼板の温度を幅方向に3点以上
連続的に測定することによって、鋼板の形状を判定する
ことができるから、従来行われていた目視による形状の
監視作業の必要がなく、オペレータの負荷を軽減するこ
とが可能となるとともに、さらには冷却設備へのフィー
ドバック制御などを採用することにより、冷却の不均一
が起因となって発生する形状不良を低減することができ
る。
As described above, according to the present invention,
Since the shape of the steel sheet can be determined by continuously measuring the temperature of the water-cooled steel sheet after hot rolling at three or more points in the width direction, it is necessary to perform a visual shape monitoring operation that has been conventionally performed. In addition, it is possible to reduce the load on the operator, and further, by adopting feedback control to the cooling equipment or the like, it is possible to reduce shape defects caused by uneven cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による形状測定の手順を示す流れ図であ
る。
FIG. 1 is a flow chart showing a procedure of shape measurement according to the present invention.

【図2】本発明の形状測定装置を熱間圧延ラインの冷却
設備出側に適用した例を示す概要図である。
FIG. 2 is a schematic diagram showing an example in which the shape measuring device of the present invention is applied to the cooling equipment outlet side of a hot rolling line.

【図3】(a) ,(b) は鋼板温度の時間変化の測定パター
ンを示す特性図である。
3 (a) and 3 (b) are characteristic diagrams showing measurement patterns of changes over time in steel sheet temperature.

【図4】(a) 〜(e) は幅方向温度分布の測定パターンを
示す特性図である。
4 (a) to 4 (e) are characteristic diagrams showing a measurement pattern of a temperature distribution in the width direction.

【図5】鋼板の凹凸形状を示す斜視図である。FIG. 5 is a perspective view showing an uneven shape of a steel plate.

【符号の説明】[Explanation of symbols]

1 鋼板 2 冷却水 3 熱間仕上圧延機 4 冷却設備 5 コイラ 6 X線板厚計 7 形状測定装置 8 入側放射温度計 9 出側放射温度計 10 演算装置 1 Steel Plate 2 Cooling Water 3 Hot Finishing Rolling Machine 4 Cooling Equipment 5 Coiler 6 X-Ray Plate Thickness Gauge 7 Shape Measuring Device 8 Inlet Radiation Thermometer 9 Outlet Radiation Thermometer 10 Computing Device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑子 浩 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 石橋 徳春 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 金本 規生 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kuwako 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Tokuharu Ishibashi, Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Works Co., Ltd. Chiba Steel Works (72) Inventor Norio Kanemoto 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works Chiba Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱延鋼板の冷却後の形状を測定する方
法であって、熱間圧延後に水冷した鋼板の幅方向の表面
温度を、その中央部と両端部の少なくとも3個所につい
て連続的に測定する工程と、前記各測定点について基準
測定時間Δt内での平均温度を時々刻々算出する工程
と、これら算出された各平均温度値の中から最も高い値
を示す測定位置を選択する工程と、選択された測定位置
における測定温度の最大値と最小値との温度差δを求め
る工程と、この温度差δがあらかじめ与えられた基準温
度差δS に比較して等しいかあるいは大きい場合は形状
不良ありと判定し、温度差δが基準温度差δS よりも小
さい場合は形状良好と判定する工程と、からなることを
特徴とする熱延鋼板の形状測定方法。
1. A method for measuring the shape of a hot-rolled steel sheet after cooling, wherein the surface temperature in the width direction of a water-cooled steel sheet after hot rolling is continuously measured at least at three points in the center and both ends. A step of measuring, a step of momentarily calculating an average temperature within the reference measurement time Δt for each of the measurement points, and a step of selecting a measurement position showing the highest value from the calculated average temperature values. , The step of obtaining the temperature difference δ between the maximum value and the minimum value of the measured temperature at the selected measurement position, and the shape if the temperature difference δ is equal to or larger than the reference temperature difference δ S given in advance. A method for measuring the shape of a hot-rolled steel sheet, comprising the step of determining that there is a defect and determining that the shape is good when the temperature difference δ is smaller than the reference temperature difference δ S.
【請求項2】 前記形状不良ありと判定する工程に続
けて、中央部の平均温度値が両端部の各平均温度値より
大きい場合は腹波と判定し、小さい場合は耳伸びと判定
する工程と、前記耳伸びと判定する工程の後に、両端部
とも平均温度が中央部よりも大きい場合に両耳波と判定
し、端部の片方が中央部よりも小さい場合は片耳波と判
定する工程と、を付加してなることを特徴とする請求項
1記載の熱延鋼板の形状測定方法。
2. Following the step of determining that there is a defect in shape, a step of determining an abdominal wave if the average temperature value of the central portion is higher than the average temperature value of both ends, and determining an ear extension if it is smaller. Then, after the step of determining the ear extension, it is determined as both ear waves when the average temperature at both ends is larger than the center portion, and when one of the end portions is smaller than the center portion, it is determined as one ear wave. The method for measuring the shape of a hot-rolled steel sheet according to claim 1, further comprising:
JP4021994A 1994-03-11 1994-03-11 Method for measuring shape of hot-rolled steel plate Pending JPH07248222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4021994A JPH07248222A (en) 1994-03-11 1994-03-11 Method for measuring shape of hot-rolled steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4021994A JPH07248222A (en) 1994-03-11 1994-03-11 Method for measuring shape of hot-rolled steel plate

Publications (1)

Publication Number Publication Date
JPH07248222A true JPH07248222A (en) 1995-09-26

Family

ID=12574665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021994A Pending JPH07248222A (en) 1994-03-11 1994-03-11 Method for measuring shape of hot-rolled steel plate

Country Status (1)

Country Link
JP (1) JPH07248222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112511A (en) * 1997-03-11 1999-01-06 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh Flatness measuring system for metal strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112511A (en) * 1997-03-11 1999-01-06 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh Flatness measuring system for metal strip

Similar Documents

Publication Publication Date Title
JP4666272B1 (en) Method for measuring flatness of plate material and method for producing steel plate using the same
TW401328B (en) Rolling roll profile control equipment
JP4602489B2 (en) Method for rolling strips
JP2010105027A (en) Apparatus and method for manufacturing hot-rolled steel plate
CA1239789A (en) Cooling apparatus for strip metal
KR101734748B1 (en) Method for measuring flatness of plate material, device for measuring flatness of plate material, and production method for steel plate
KR101767783B1 (en) Apparatus and method for maintaining flatness of rolling material
JP4709628B2 (en) Cold rolled steel sheet manufacturing method
JPH07248222A (en) Method for measuring shape of hot-rolled steel plate
JPH105868A (en) Method for controlling shape of control-cooled steel plate
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JPH09314215A (en) Method and device for rolling hot rolling steel strip
KR101054383B1 (en) Hot Rolling Process Equipment and Hot Rolling Method for Shape Correction of Hot Rolled Steel Sheets
JP3460755B2 (en) Controlled cooling method and apparatus for hot rolled steel sheet
JPH06304626A (en) Method for deciding arrangement of cooling nozzles
JP7222415B2 (en) Device for measuring meandering amount of hot-rolled steel strip and method for measuring meandering amount of hot-rolled steel strip
TWI769727B (en) Shape control method and shape control device of calender
JPS629711A (en) Controlling method for sheet width on hot rolling line of sheet
JPH09262612A (en) Plane shape controlling method and device therefor
JP7314921B2 (en) Method for controlling meandering of hot-rolled steel strip, meandering control device, and hot rolling equipment
JP5928721B2 (en) Prediction method and prediction device for shape defects due to runout cooling strain
JPH0957315A (en) Method and device for estimating width of hot rolled steel strip
KR19990050913A (en) Prediction Method and Prediction Method for Width Characteristics of Hot Rolled Steel Sheet
JPH05269527A (en) Method for controlling flat shape of metallic strip
JP3935116B2 (en) Thickness control device for rolling mill