JPH07247906A - Propulsion device for missile - Google Patents

Propulsion device for missile

Info

Publication number
JPH07247906A
JPH07247906A JP3571894A JP3571894A JPH07247906A JP H07247906 A JPH07247906 A JP H07247906A JP 3571894 A JP3571894 A JP 3571894A JP 3571894 A JP3571894 A JP 3571894A JP H07247906 A JPH07247906 A JP H07247906A
Authority
JP
Japan
Prior art keywords
combustion chamber
air intake
shock wave
combustion
propulsion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3571894A
Other languages
Japanese (ja)
Inventor
Mika Shingou
美可 新郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3571894A priority Critical patent/JPH07247906A/en
Publication of JPH07247906A publication Critical patent/JPH07247906A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of a propulsion device which generates main combustion by compressing a gaseous mixture by using a shock wave generated in a detonation tube in a combustion chamber, by separating an air intake hole just behind a missile from the combustion chamber so that the combustion chamber can make turning motion. CONSTITUTION:A combustion chamber 3 which is freely rotated around the center shaft of a missile 1 is provided behind an air intake hole 2, in the missile 1, and a nozzle 5 is linked to this combustion chamber 3 together with an actuator 6. A shock wave generator 4 having a detonation tube is provided to the inside back end of the combustion chamber 3, and a combustion jetting hole 7 and an ignition plug 8 are provided inside the air intake hole 2. A mixture gas is compressed by a shock wave generated by the shock wave generator 4 so that driving force is obtained by igniting and detonating the compressed mixture gaseous however, propulsion effiiciency is improved by rotating the combustion chamber 3 during this expansion process so as to close the air intake hole 2 so that a gas leakage from the combustion chamber 3 to the air intake hole 2 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は飛しょう体に使用される
推進装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a propulsion device used for a flying vehicle.

【0002】[0002]

【従来の技術】従来のPDWE(Pulsed Detonation Wa
ve Engine )は燃焼室内のデトネーション・チューブで
発生した衝撃波を用いて混合気体を圧縮した後、主燃焼
を起こし、推進力を得るようになっている。このような
従来の飛しょう体に使用されている推進装置の例を図7
に示す。飛しょう体11と燃焼室13の間に空気取入口
12が設けられており、燃焼室13の末端はノズル15
に直結している。燃焼室13は飛しょう体11に固定さ
れており、ノズル15をアクチュエータ16で動かした
時も飛しょう体11と燃焼室13とが相対運動すること
はない。燃焼室13の内部後端には衝撃波発生装置14
があり、燃焼室13の前方には燃料噴射口17及び点火
せん18が設けられている。燃焼室13の後方にはノズ
ル15がつながれており、アクチュエータ16により推
力を偏向させて飛しょう体11の姿勢を制御する。
2. Description of the Related Art Conventional PDWE (Pulsed Detonation Wafer)
ve Engine) uses a shock wave generated in the detonation tube in the combustion chamber to compress the mixed gas, then causes main combustion to obtain propulsion. An example of a propulsion device used for such a conventional flying body is shown in FIG.
Shown in. An air intake 12 is provided between the flying body 11 and the combustion chamber 13, and the end of the combustion chamber 13 is a nozzle 15
Directly connected to. The combustion chamber 13 is fixed to the flying body 11, and even when the nozzle 15 is moved by the actuator 16, the flying body 11 and the combustion chamber 13 do not move relative to each other. A shock wave generator 14 is provided at the inner rear end of the combustion chamber 13.
There is a fuel injection port 17 and an ignition pin 18 in front of the combustion chamber 13. A nozzle 15 is connected to the rear of the combustion chamber 13, and the actuator 16 deflects the thrust to control the attitude of the flying body 11.

【0003】前述の従来の飛しょう体用推進装置は次の
ように作動する。空気取入口12から流入した空気と燃
料噴射口17から噴射された燃料が混合されて燃焼室1
3の内部に混合気が生成されたところで、衝撃波発生装
置14で衝撃波を発生させる。衝撃波が前進するにつれ
て混合気が圧縮される。十分に圧縮が行われたところで
点火せん18により混合気が点火され、燃焼が起きる。
燃焼によって膨張した気体がノズルから排出され、推力
が得られる。
The above-described conventional propulsion device for a flying vehicle operates as follows. The air injected from the air intake 12 and the fuel injected from the fuel injection port 17 are mixed and the combustion chamber 1
When the air-fuel mixture is generated inside 3, the shock wave generator 14 generates a shock wave. The air-fuel mixture is compressed as the shock wave advances. When the compression has been sufficiently performed, the ignition mixture 18 ignites the air-fuel mixture, and combustion occurs.
The gas expanded by combustion is discharged from the nozzle, and thrust is obtained.

【0004】この作動を図8により更に詳しく説明す
る。 (a)図において、燃焼室13の排気口近くには衝撃波
発生装置14があり、複数のデトネーション・チューブ
19で構成されている。このチューブ19で爆発を起こ
し、衝撃波20を発生させる。この直後に、燃焼室13
内に燃料噴射口17より燃料を噴射して混合気をつく
る。
This operation will be described in more detail with reference to FIG. In FIG. 1A, a shock wave generator 14 is provided near the exhaust port of the combustion chamber 13 and is composed of a plurality of detonation tubes 19. The tube 19 causes an explosion to generate a shock wave 20. Immediately after this, the combustion chamber 13
Fuel is injected into the interior from the fuel injection port 17 to form an air-fuel mixture.

【0005】(b)図において、衝撃波21が燃焼室1
3内で飛しょう体11に向かって前進し、燃焼室13内
の混合気の圧縮が進む。
In FIG. 1B, the shock wave 21 indicates the combustion chamber 1.
The fuel-air mixture in the combustion chamber 13 is compressed in the combustion chamber 13 while advancing toward the flying body 11 in 3.

【0006】(c)図において、混合気が充分圧縮され
たところで、点火せん18により点火して主爆発22を
起こし、推進力23を得る。
In FIG. 6 (c), when the air-fuel mixture is sufficiently compressed, it is ignited by the ignition pin 18 to cause a main explosion 22 and a propulsion force 23 is obtained.

【0007】前述のプロセスにおいて衝撃波エネルギが
空気取入口12から一部逃げてしまうため効率が低下し
てしまう。
In the above process, the shock wave energy partially escapes from the air intake 12, resulting in a decrease in efficiency.

【0008】[0008]

【発明が解決しようとする課題】従来のこのような飛し
ょう体が有する欠点を図7,図9を参照して説明する。
従来の飛しょう体用推進装置は、吸気、圧縮、膨張、掃
気のすべての過程において空気取入口12は燃焼室13
につながったままになっている。このため、圧縮過程及
び膨張過程において燃焼室13内の高圧気体の一部が空
気取入口12から外へ流出する。このため図9の体積−
圧力線図で見ると理想オイラー・サイクルAに比べ、従
来の飛しょう体推進装置のサイクルBにおける圧縮時の
最小体積が増し、効率が低下する。
The drawbacks of the conventional flying body will be described with reference to FIGS. 7 and 9.
In the conventional propulsion device for a flying vehicle, the air intake 12 is located in the combustion chamber 13 during all processes of intake, compression, expansion, and scavenging.
Remains connected to. Therefore, a part of the high-pressure gas in the combustion chamber 13 flows out from the air intake 12 in the compression process and the expansion process. Therefore, the volume of FIG.
As seen from the pressure diagram, compared with the ideal Euler cycle A, the minimum volume at the time of compression in the cycle B of the conventional flying vehicle propulsion device increases and the efficiency decreases.

【0009】[0009]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、飛しょう体直後の空気取入口と燃焼室
を分割し、燃焼室を飛しょう体中心軸まわりに回転運動
可能とする。燃焼室直後のノズルには推力偏向機構があ
るので推進装置作動中、推力の偏向により燃焼室を飛し
ょう体中心軸まわりに回転させて空気取入口と燃焼室を
連通、又は閉塞可能な構成とする。
In order to solve the above-mentioned problems, the present invention divides the air intake port immediately after the flying body and the combustion chamber so that the combustion chamber can rotate about the central axis of the flying body. And Since the nozzle immediately after the combustion chamber has a thrust deflection mechanism, it is possible to rotate the combustion chamber around the center axis of the flying body by deflection of the thrust during operation of the propulsion device so that the air intake port and the combustion chamber can communicate or be closed. To do.

【0010】即ち、本発明は、飛しょう体に固定された
空気取入口、同空気取入口直後に連結した燃焼室、同燃
焼室内後端に設けられた衝撃波発生装置及び前記燃焼室
の直後に取りつけられ、推力偏向機構を有するノズルに
より構成される飛しょう体の推進装置において、前記空
気取入口は前記飛しょう体の中心軸まわりに放射状に複
数個配置されると共に、前記燃焼室は前記空気取入口に
それぞれ対応した位置で同中心軸まわりに回転可能に配
置され、その回転により前記空気取入口と連通又は閉塞
可能な複数個の管状室からなることを特徴とする飛しょ
う体の推進装置を提供する。
That is, according to the present invention, an air intake fixed to a flying object, a combustion chamber connected immediately after the air intake, a shock wave generator provided at the rear end of the combustion chamber, and immediately after the combustion chamber. In a propelling device for a flying object, which is mounted and comprises a nozzle having a thrust deflection mechanism, a plurality of air intakes are arranged radially around a central axis of the flying object, and the combustion chamber is provided with the air. A propulsion device for a flying vehicle, comprising a plurality of tubular chambers that are rotatably arranged around the same central axis at positions corresponding to the intake ports and that can rotate or communicate with the air intake ports. I will provide a.

【0011】[0011]

【作用】本発明の推進装置は、空気取入口と燃焼室が分
離されており、燃焼室は飛しょう体中心軸まわりに回転
可能であるので燃焼室の回転運動により空気取入口と燃
焼室とを一時的にふさぐことができる。推進装置作動過
程のうち、燃料を燃焼室内に噴射し、衝撃波発生装置で
衝撃波を発生させて混合気を圧縮する圧縮過程及び圧縮
した混合気を点火させて主爆発を起こす膨張過程の間、
燃焼室が回転して空気取入口と燃焼室が互いに位置がず
れて空気取入口をふさぐので従来の推進装置にみられた
燃焼室から空気取入口への気体のもれを防ぐことがで
き、推進装置の効率が向上する。
In the propulsion device of the present invention, the air intake and the combustion chamber are separated, and the combustion chamber is rotatable about the central axis of the flying body. Can be temporarily blocked. In the propulsion device operation process, during the compression process of injecting fuel into the combustion chamber and generating the shock wave by the shock wave generation device to compress the air-fuel mixture and the expansion process of igniting the compressed air-fuel mixture to cause the main explosion,
Since the combustion chamber rotates and the air intake and the combustion chamber are displaced from each other to block the air intake, it is possible to prevent gas leakage from the combustion chamber to the air intake, which is seen in the conventional propulsion device. The efficiency of the propulsion device is improved.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は本発明の第1実施例に係る飛しょ
う体の推進装置の縦断面図、図2はその斜視図である。
両図において、飛しょう体1には、複数個の空気取入口
2が設けられている。空気取入口2の後方には、飛しょ
う体1の中心軸まわりに回転自由度を有する燃焼室3が
あり、ノズル5はアクチュエータ6と共に燃焼室3につ
ながれている。燃焼室3の内部後端にはデトネーション
・チューブを有する衝撃波発生装置4があり、空気取入
口2の内部には燃料噴射口7及び点火せん8が設けられ
ている。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is a longitudinal sectional view of a propelling device for a flying vehicle according to a first embodiment of the present invention, and FIG. 2 is a perspective view thereof.
In both figures, the air vehicle 1 is provided with a plurality of air intakes 2. Behind the air intake 2, there is a combustion chamber 3 having a rotational degree of freedom around the central axis of the flying body 1, and a nozzle 5 is connected to the combustion chamber 3 together with an actuator 6. A shock wave generator 4 having a detonation tube is provided at the inner rear end of the combustion chamber 3, and a fuel injection port 7 and an ignition pin 8 are provided inside the air intake port 2.

【0013】本発明の推進装置は、以下のように作動す
る。空気取入口2から流入した空気と燃料噴射口7から
噴射された燃料が混合して燃焼室3の内部に混合気が生
成される。この間、燃焼室3は慣性で回転しており、図
3(a)の「吸気」に示すように、空気取入口2aと燃
焼室3aがつながっている。同様に2bと3b、2cと
3c、2dと3dも同じ状態であり、以下、代表して空
気取入口2aについてのみ説明する。
The propulsion device of the present invention operates as follows. The air that has flowed in from the air intake port 2 and the fuel that has been injected from the fuel injection port 7 are mixed, and an air-fuel mixture is generated inside the combustion chamber 3. During this period, the combustion chamber 3 is rotating by inertia, and the air intake port 2a and the combustion chamber 3a are connected as shown by "intake" in FIG. 3 (a). Similarly, 2b and 3b, 2c and 3c, 2d and 3d are also in the same state, and hereinafter, only the air intake port 2a will be described as a representative.

【0014】次に、(b)の「圧縮」に示すように燃焼
室3は慣性で回転して空気取入口2aと燃焼室3aは位
置が移動して接続がなくなり、衝撃波発生装置4でのデ
トネーション・チューブからの衝撃波が発生すると、前
進する衝撃波によって混合気の圧縮がすすむ。
Next, as shown in (b) "compression", the combustion chamber 3 is rotated by inertia, the positions of the air intake 2a and the combustion chamber 3a are moved, and the connection is lost. When a shock wave is generated from the detonation tube, the forward shock wave advances the compression of the air-fuel mixture.

【0015】次に、(c)の「膨張」に示すように、十
分に圧縮が行われたところで点火せん8によって混合気
に点火され、燃焼、膨張が起こる。この間、図示省略の
制御装置でノズル5の角度をアクチュエータ6によって
制御し、適切な回転力が得られるようにする。圧縮、燃
焼、膨張過程の間は、(a)の「圧縮」及び(b)の
「膨張」に示すよう空気取入口2aは静止しており、燃
焼室3aは回転によって除々に移動して位置がずれてき
ているが両者の接続は断たれているので燃焼室3a内の
気体が外にもれ出すことが防止される。同様に燃焼室3
b、3c、3dの気体も外にもれることはない。
Next, as shown in "expansion" in (c), the mixture is ignited by the igniter 8 when sufficient compression is performed, and combustion and expansion occur. During this time, the angle of the nozzle 5 is controlled by the actuator 6 by a controller (not shown) so that an appropriate rotational force can be obtained. During the compression, combustion, and expansion processes, the air intake 2a is stationary as shown in "compression" of (a) and "expansion" of (b), and the combustion chamber 3a is gradually moved by rotation and positioned. However, the gas in the combustion chamber 3a is prevented from leaking out because the connection between the two is broken. Similarly, combustion chamber 3
Gases b, 3c and 3d will not leak out.

【0016】膨張過程が終わると、燃焼室3aは慣性で
さらに回転を続け、(d)の「掃気」の状態になって、
燃焼室3aは次の空気取入口2bと接続し、空気取入口
2aは燃焼室3dと接続するようになる。同様に2cと
3b、2dと3cも接続し、すべての燃焼室と空気取入
口が再び導通し、空気取入口2から流入する空気で燃焼
室3内の掃気が行われる。そのまま慣性で燃焼室3の回
転が続き、再び(a)の吸気過程に戻る。
When the expansion process is completed, the combustion chamber 3a continues to rotate due to inertia and becomes the "scavenging" state of (d),
The combustion chamber 3a is connected to the next air intake port 2b, and the air intake port 2a is connected to the combustion chamber 3d. Similarly, 2c and 3b, 2d and 3c are also connected so that all the combustion chambers and the air intake are brought into conduction again, and the air flowing from the air intake 2 scavenges the inside of the combustion chamber 3. The combustion chamber 3 continues to rotate with inertia as it is, and the process returns to the intake process of (a) again.

【0017】この作動をわかりやすくするために図4に
空気取入口と燃焼室との関係を断面図で示している。
(a)は吸気、掃気時の状態を、(b)は圧縮、燃焼時
の状態を示し、(a)の吸気、掃気を行う時は空気取入
口2と燃焼室3とは導通しており、(b)の圧縮、燃焼
時には燃焼室3は閉塞されて混合気が空気取入口2から
もれるのを防ぎ、損失を小さくする。
In order to make this operation easy to understand, FIG. 4 is a sectional view showing the relationship between the air intake and the combustion chamber.
(A) shows a state at the time of intake and scavenging, (b) shows a state at the time of compression and combustion, and when performing the intake and scavenging of (a), the air intake 2 and the combustion chamber 3 are in conduction. , (B), the combustion chamber 3 is closed at the time of compression and combustion to prevent the air-fuel mixture from leaking from the air intake 2 and reduce the loss.

【0018】以上の過程の作動サイクルを体積−圧力線
図に示すと図5のようになる。図中点線で示されている
のが理想オットー・サイクルA、破線で示されているの
が従来の飛しょう体推進装置のサイクルB、実線で示さ
れているのが本発明のサイクルCである。本発明のサイ
クルCは圧縮、燃焼、膨張過程において燃焼室からの気
体のもれがないため、最大圧縮比、最大圧力とも従来推
進装置に比べて向上し、効率が改善される。
The operation cycle of the above process is shown in a volume-pressure diagram as shown in FIG. In the figure, the dotted line indicates the ideal Otto cycle A, the broken line indicates the cycle B of the conventional flying vehicle propulsion device, and the solid line indicates the cycle C of the present invention. . In cycle C of the present invention, no gas leaks from the combustion chamber during compression, combustion, and expansion processes, so both the maximum compression ratio and the maximum pressure are improved compared to conventional propulsion devices, and efficiency is improved.

【0019】図6は本発明の第2実施例を示す斜視図で
あり、燃焼室30を固定(静止)させて、空気取入口2
0を回転させる場合の例である。この場合も第1実施例
における回転部分を逆にしたものであり、空気取入口2
0と燃焼室30との相対的な移動を作る点は同じである
ので、その作用は第1実施例と同じであり、説明は省略
する。
FIG. 6 is a perspective view showing a second embodiment of the present invention, in which the combustion chamber 30 is fixed (stationary) and the air intake 2 is provided.
This is an example of rotating 0. Also in this case, the rotating portion in the first embodiment is reversed, and the air intake 2
Since the relative movement between 0 and the combustion chamber 30 is the same, its operation is the same as that of the first embodiment, and the description thereof is omitted.

【0020】又、上記に説明の第1,第2実施例におい
て燃焼室の点火、燃焼のタイミング及びアクチュエータ
6の角度を制御装置で適切に制御して、例えば、複数の
燃焼室を同時に燃焼させる場合、一つおきに交互に燃焼
させる場合、等のようにすれば飛しょう体推進装置の推
力レベルをコントロールすることができるものである。
Also, in the first and second embodiments described above, the controller appropriately controls the ignition of the combustion chamber, the timing of combustion, and the angle of the actuator 6 to, for example, simultaneously burn a plurality of combustion chambers. In this case, when the fuel is alternately burned alternately, the thrust level of the flying vehicle propulsion device can be controlled by the following procedure.

【0021】[0021]

【発明の効果】以上、具体的に説明したように、本発明
によれば、飛しょう体の空気取入口と燃焼室とを分離
し、燃焼室を回転可能な構成として気体の圧縮過程及び
膨張過程に空気取入口と燃焼室を閉塞するようにしたの
で、次のような著しい効果が得られるものである。
As described above in detail, according to the present invention, the air intake of the flying object and the combustion chamber are separated, and the combustion chamber is configured to be rotatable, so that the compression process and expansion of the gas are performed. Since the air intake and the combustion chamber are closed in the process, the following remarkable effects can be obtained.

【0022】推進装置作動過程における圧縮過程及び膨
張過程において、燃焼室内からの気体のもれが防止され
るため高い圧力が得られ、推進装置の効率が向上する。
During the compression process and the expansion process in the propulsion device operating process, leakage of gas from the combustion chamber is prevented, so that a high pressure is obtained and the efficiency of the propulsion device is improved.

【0023】同時に、気体のもれによって生じる熱的な
損失が抑制され、推進装置の効率が向上する。
At the same time, the thermal loss caused by gas leakage is suppressed and the efficiency of the propulsion device is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る飛しょう体の推進装
置の縦断面図である。
FIG. 1 is a longitudinal sectional view of a propulsion device for a flying vehicle according to a first embodiment of the present invention.

【図2】本発明の第1実施例に係る飛しょう体の推進装
置の斜視図である。
FIG. 2 is a perspective view of a propulsion device for a flying vehicle according to a first embodiment of the present invention.

【図3】本発明の第1実施例における燃焼室回転過程を
示す断面図で、(a)は吸気、(b)は圧縮、(c)は
膨張、(d)は掃気を示す。
FIG. 3 is a cross-sectional view showing a combustion chamber rotating process in the first embodiment of the present invention, wherein (a) shows intake air, (b) shows compression, (c) shows expansion, and (d) shows scavenging.

【図4】本発明の第1実施例における燃焼室の回転過程
を示す縦断面図で、(a)は吸気、掃気時の状態を、
(b)は圧縮、燃焼の状態をそれぞれ示す。
FIG. 4 is a vertical cross-sectional view showing the rotation process of the combustion chamber in the first embodiment of the present invention, in which (a) shows a state during intake and scavenging,
(B) shows the states of compression and combustion, respectively.

【図5】本発明の推進装置の効率利得を示すサイクル図
である。
FIG. 5 is a cycle diagram showing the efficiency gain of the propulsion device of the present invention.

【図6】本発明の第2実施例に係る飛しょう体推進装置
の斜視図である。
FIG. 6 is a perspective view of a flying vehicle propulsion apparatus according to a second embodiment of the present invention.

【図7】従来の飛しょう体推進装置の縦断面図である。FIG. 7 is a vertical cross-sectional view of a conventional flying vehicle propulsion device.

【図8】従来の飛しょう体推進装置の作動を示す説明図
で、(a)は燃料噴射と衝撃波発生の状況を、(b)は
衝撃波による圧縮の状況を、(c)は主爆発の状況をそ
れぞれ示す。
8A and 8B are explanatory views showing the operation of a conventional flying vehicle propulsion device. FIG. 8A is a situation of fuel injection and shock wave generation, FIG. 8B is a situation of compression by shock wave, and FIG. The situation is shown respectively.

【図9】従来の飛しょう体推進装置の推進効率損失を示
すサイクル図である。
FIG. 9 is a cycle diagram showing a propulsion efficiency loss of a conventional flying vehicle propulsion device.

【符号の説明】[Explanation of symbols]

1 飛しょう体 2 空気取入口 3 燃焼室 4 衝撃波発生装置 5 ノズル 6 アクチュエータ 7 燃料噴射口 8 点火せん 1 Flying Body 2 Air Intake 3 Combustion Chamber 4 Shock Wave Generator 5 Nozzle 6 Actuator 7 Fuel Injection Port 8 Ignition Tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 飛しょう体に固定された空気取入口、同
空気取入口直後に連結した燃焼室、同燃焼室内後端に設
けられた衝撃波発生装置及び前記燃焼室の直後に取つけ
られ、推力偏向機構を有するノズルにより構成される飛
しょう体の推進装置において、前記空気取入口は前記飛
しょう体の中心軸まわりに放射状に複数個配置されると
共に、前記燃焼室は前記空気取入口にそれぞれ対応した
位置で同中心軸まわりに回転可能に配置され、その回転
により前記空気取入口と連通又は閉塞可能な複数個の管
状室からなることを特徴とする飛しょう体の推進装置。
1. An air intake fixed to a flying object, a combustion chamber connected immediately after the air intake, a shock wave generator provided at the rear end of the combustion chamber, and a shock wave generator mounted immediately after the combustion chamber, In a propelling device for a flying vehicle composed of a nozzle having a thrust deflection mechanism, a plurality of the air intakes are arranged radially around a central axis of the flying body, and the combustion chamber is provided in the air intake. A propelling device for a flying vehicle, comprising a plurality of tubular chambers that are rotatably arranged at corresponding positions around the same central axis and can communicate with or close the air intake port by the rotation.
JP3571894A 1994-03-07 1994-03-07 Propulsion device for missile Withdrawn JPH07247906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3571894A JPH07247906A (en) 1994-03-07 1994-03-07 Propulsion device for missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3571894A JPH07247906A (en) 1994-03-07 1994-03-07 Propulsion device for missile

Publications (1)

Publication Number Publication Date
JPH07247906A true JPH07247906A (en) 1995-09-26

Family

ID=12449646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3571894A Withdrawn JPH07247906A (en) 1994-03-07 1994-03-07 Propulsion device for missile

Country Status (1)

Country Link
JP (1) JPH07247906A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089773A1 (en) * 2002-04-19 2003-10-30 Hokkaido Technology Licensing Office Co.,Ltd. Stationary detonation combustor, and stationary detonation wave generating method
US7784267B2 (en) 2004-06-29 2010-08-31 Mitsubishi Heavy Industries, Ltd. Detonation engine and flying object provided therewith
CN108488004A (en) * 2018-01-25 2018-09-04 南京航空航天大学 It is a kind of based on variable inclined wedge angle stay determine detonation engine
KR102566104B1 (en) * 2023-01-17 2023-08-11 국방과학연구소 Launch Tube For Projectile With Air-Breathing Propulsion And Payload Thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089773A1 (en) * 2002-04-19 2003-10-30 Hokkaido Technology Licensing Office Co.,Ltd. Stationary detonation combustor, and stationary detonation wave generating method
US7310951B2 (en) 2002-04-19 2007-12-25 Hokkaido Technology Licensing Office Co., Ltd. Steady-state detonation combustor and steady-state detonation wave generating method
US7784267B2 (en) 2004-06-29 2010-08-31 Mitsubishi Heavy Industries, Ltd. Detonation engine and flying object provided therewith
CN108488004A (en) * 2018-01-25 2018-09-04 南京航空航天大学 It is a kind of based on variable inclined wedge angle stay determine detonation engine
CN108488004B (en) * 2018-01-25 2021-02-26 南京航空航天大学 Stationary detonation engine based on variable wedge angle
KR102566104B1 (en) * 2023-01-17 2023-08-11 국방과학연구소 Launch Tube For Projectile With Air-Breathing Propulsion And Payload Thereof

Similar Documents

Publication Publication Date Title
US5937635A (en) Pulse detonation igniter for pulse detonation chambers
US7591129B2 (en) Rotary piston engine
JP6387388B2 (en) Rotary internal combustion engine
US3780707A (en) Stratified charge rotary combustion engine
JP3952202B2 (en) Pulse detonation engine
US7958862B2 (en) Rotary positive displacement combustor engine
US3957021A (en) Precombustion chamber rotary piston diesel engine
US7493885B2 (en) Asymmetric complete expansion rotary engine cycle
WO2015159956A1 (en) Engine jetting out combustion gas as driving force
US20080141974A1 (en) Rotary engine system
JPH07247906A (en) Propulsion device for missile
JPH08135408A (en) Intermittent jet type engine
JPH0610696A (en) Pressure wave machine
JP2771700B2 (en) Method for increasing torque of internal combustion engine and internal combustion engine
JPH04298641A (en) Fuel injection device for engine
US9175641B2 (en) Multi-cycle stratified internal combustion system
US3483849A (en) Rotary piston engine
CN110145409B (en) High-frequency igniter system of multi-tube pulse detonation engine
WO1996041935A1 (en) Rotary engine
JP4729041B2 (en) Rotary device and method of operating rotary device
JP3036327B2 (en) Ramjet
WO1994004793A1 (en) Axial vane rotary engine
JPS5849692B2 (en) ninenkikan
RU2142570C1 (en) Jet engine
JP2020063732A (en) Internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508