JPH07247827A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH07247827A
JPH07247827A JP6042232A JP4223294A JPH07247827A JP H07247827 A JPH07247827 A JP H07247827A JP 6042232 A JP6042232 A JP 6042232A JP 4223294 A JP4223294 A JP 4223294A JP H07247827 A JPH07247827 A JP H07247827A
Authority
JP
Japan
Prior art keywords
corona discharge
exhaust gas
internal combustion
combustion engine
discharge device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6042232A
Other languages
Japanese (ja)
Other versions
JP3262148B2 (en
Inventor
Norio Yamashita
徳郎 山下
Akira Mizuno
彰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP04223294A priority Critical patent/JP3262148B2/en
Publication of JPH07247827A publication Critical patent/JPH07247827A/en
Application granted granted Critical
Publication of JP3262148B2 publication Critical patent/JP3262148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To improve exhaust emission control performance of a diesel engine, particularly NOx emission control performance. CONSTITUTION:A diesel engine 10 has a corona discharge device 40 serially arranged on the way of an exhaust pipe 14 and a reduction catalyst device 80. The corona discharge device 40 is connected to a high voltage generation device 70. A nozzle 62 of a hydrocarbon supply device 60 is connected to the catalyst device 80. Data are input from an engine speed sensor 22, a load sensor 20, an exhaust temperature sensor 52, and an oxygen concentration sensor 54 to an ECU 30. When the exhaust temperature is low, the corona discharge device is operated for activating the exhaust gas by corona discharge, oxidizing NO to obtain NO2 which is fed to the catalyst. When the exhaust temperature is high, the corona discharge device is stopped. Reduction to N1 is conducted under addition of the hydrocarbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排ガスの浄化
装置に関し、特に窒素酸化物の浄化に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to purifying nitrogen oxides.

【0002】[0002]

【従来の技術】内燃機関、特にディーゼル機関から排出
される排ガス中のNOx(NO,NO2)を浄化する技
術としては、アルミナやゼオライト系の還元触媒を用い
てHC(還元剤)の共存下で還元除去しようとするもの
(例えば特開昭63−283727号公報)、排ガスを
コロナ放電処理することでNOxを分解除去しようとす
るもの(例えば特開平4−47110号公報)、あるい
は、NOxを含有する非処理ガスをコロナ放電処理した
後に三元触媒等に接触させることでガス中のNOxを除
去しようとするもの(特開昭63−242323号公
報)が公知である。
2. Description of the Related Art As a technique for purifying NOx (NO, NO 2 ) in exhaust gas discharged from an internal combustion engine, particularly a diesel engine, an alumina or zeolite-based reduction catalyst is used in the presence of HC (reducing agent). (For example, Japanese Unexamined Patent Publication No. 63-283727), NOx for decomposing and removing NOx by subjecting exhaust gas to corona discharge treatment (for example, Japanese Unexamined Patent Publication No. 4-47110), or NOx It is known that the contained non-treated gas is subjected to corona discharge treatment and then contacted with a three-way catalyst or the like to remove NOx in the gas (JP-A-63-242323).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記特
開昭63−283727号公報に記載の還元触媒による
NOxの還元除去は、排ガス温度が比較的低温となる運
転領域においては、触媒の活性が得られず、浄化率はい
まだ不十分であると共に、還元剤として用いられるHC
は、主に燃料である軽油を利用することが多く、機関全
体としては燃料消費が増大してしまう。
However, the reduction and removal of NOx by the reduction catalyst described in the above-mentioned Japanese Patent Laid-Open No. 63-283727 obtains catalyst activity in an operating region where exhaust gas temperature is relatively low. Not used, the purification rate is still insufficient and HC used as a reducing agent
In most cases, diesel fuel, which is the fuel, is used, and the fuel consumption increases as a whole engine.

【0004】また、前記特開平4−47110号公報に
記載のコロナ放電によるNOxの分解除去は、排ガス中
にコロナ放電を行うことでNOx分子が活性化されてN
とOとに解離し、より安定した分子であるN2とO2とに
再結合する性質を利用するものであるが、O2濃度の高
いディーゼル機関の排ガス中にコロナ放電を行うと、N
Ox分子と共にO2分子も活性化され、N2やNOと反応
して再びNOx(特にNO2)を生成してしまい、結果
としてほとんどNOx浄化の効果が得られない。
Further, in the decomposition and removal of NOx by corona discharge described in the above-mentioned Japanese Patent Application Laid-Open No. 4-47110, NOx molecules are activated by corona discharge in the exhaust gas and Nx molecules are activated.
It utilizes the property of dissociating into O and O and recombining with more stable molecules N 2 and O 2 , but when corona discharge is performed in the exhaust gas of a diesel engine with a high O 2 concentration, N
The O 2 molecule is also activated together with the Ox molecule and reacts with N 2 and NO to generate NOx (particularly NO 2 ) again, and as a result, almost no NOx purification effect can be obtained.

【0005】そしてまた、前記特開昭63−24232
3号公報に記載のNOx除去方法は、被処理ガスの温度
が室温程度の時には良好なNOx浄化率を示すものの、
未だ実験段階にあり、実際のディーゼル機関のように運
転状態によって排ガス温度が大きく変化する場合、全温
度領域において良好なNOx浄化率を得ることはできな
い。
Further, the above-mentioned JP-A-63-24232 is also used.
The NOx removal method described in Japanese Patent Publication No. 3 shows a good NOx purification rate when the temperature of the gas to be treated is about room temperature.
It is still in the experimental stage, and when the exhaust gas temperature greatly changes depending on the operating state like an actual diesel engine, it is not possible to obtain a good NOx purification rate in the entire temperature range.

【0006】ところで、NOx還元用の触媒としてはア
ルミナ系触媒やゼオライト系触媒が有力である。図9は
アルミナ系触媒の特性を示すグラフであって、NOに比
較してNO2に対してより還元性が高いことが本発明者
らの研究により明らかになってきた。また、図10はゼ
オライト系触媒の特性を示すもので、排ガス温度が35
0℃付近までの比較的低温領域においては、NOに比較
してNO2に対する選択還元性が高く、350℃を越え
る高温領域においては逆にNOに対する還元性が高くな
ることも、本発明者らの研究により明らかになってき
た。一方、先に述べたように、ディーゼル機関の排ガス
中にコロナ放電を行うと、NOx分子と共にO2分子も
活性化され、N2やNOと反応して再びNOxを生成す
るのであるが、再度生成されたNOx成分のうちの大部
分はNO2であることが確認されている(コロナ放電に
よるNOの酸化作用)。また、コロナ放電により排ガス
温度が100〜200℃程度上昇することも確認され
た。本発明は、以上の知見に基づいて、コロナ放電装置
と還元触媒を組合せた内燃機関の排ガス浄化装置を提供
するものである。
By the way, alumina-based catalysts and zeolite-based catalysts are effective as NOx reduction catalysts. FIG. 9 is a graph showing the characteristics of the alumina-based catalyst, and it has become clear from the study by the present inventors that the reducing property is higher for NO 2 than NO. In addition, FIG. 10 shows the characteristics of the zeolite-based catalyst.
The present inventors have also found that in a relatively low temperature range up to around 0 ° C., the selective reduction property for NO 2 is higher than that in NO, and in the high temperature region over 350 ° C., the reducing property for NO is also high. Research has revealed. On the other hand, as described above, when corona discharge is performed in the exhaust gas of a diesel engine, O 2 molecules are activated together with NOx molecules and react with N 2 and NO to generate NOx again. It has been confirmed that most of the produced NOx components are NO 2 (NO oxidation effect by corona discharge). It was also confirmed that the exhaust gas temperature rises by about 100 to 200 ° C. due to the corona discharge. The present invention provides an exhaust gas purifying apparatus for an internal combustion engine that combines a corona discharge device and a reduction catalyst based on the above findings.

【0007】[0007]

【課題を解決するための手段】本発明は、排ガスをコロ
ナ放電処理するコロナ放電処理部と、該コロナ放電処理
部の後流に設けられた還元触媒層と、排ガス温度検出手
段と、排ガス温度が所定値以下のときに、前記コロナ放
電処理部を作動させる制御装置を基本的な手段として備
える。
The present invention is directed to a corona discharge treatment section for treating exhaust gas with corona discharge, a reduction catalyst layer provided downstream of the corona discharge treatment section, an exhaust gas temperature detecting means, and an exhaust gas temperature. Is a predetermined value or less, a control device for operating the corona discharge processing unit is provided as a basic means.

【0008】[0008]

【作用】上記構成を有する本発明のNOx浄化装置は、
内燃機関の排ガス温度が所定値を下回る低温時には、コ
ロナ放電処理部を作動させて排ガス中のNOx成分の大
部分をNO2に変換して該コロナ放電処理部の後流に設
けられた還元触媒層に流す。この際、コロナ放電処理に
よってNOx中のNO2割合が増えるだけでなく、排ガ
ス温度そのものが上昇するため、前記還元触媒層におけ
る還元反応が良好に行われる。そして、内燃機関の排ガ
ス温度が所定値を上回る高温時には、コロナ放電処理部
を作動させずに排ガスをそのまま前記還元触媒層に流
す。この時には、排ガス温度は前記還元触媒層の活性が
充分に得られる温度に達しているため、NOxの還元反
応が良好に行われる。
The NOx purifying device of the present invention having the above structure is
When the temperature of the exhaust gas of the internal combustion engine is lower than a predetermined value, the corona discharge treatment unit is operated to convert most of NOx components in the exhaust gas into NO 2 and the reduction catalyst provided in the downstream of the corona discharge treatment unit. Pour into layers. At this time, the corona discharge treatment not only increases the proportion of NO 2 in NOx but also raises the exhaust gas temperature itself, so that the reduction reaction in the reduction catalyst layer is favorably performed. When the temperature of the exhaust gas of the internal combustion engine exceeds a predetermined value, the exhaust gas is allowed to flow through the reduction catalyst layer as it is without operating the corona discharge treatment section. At this time, the exhaust gas temperature has reached a temperature at which the activity of the reduction catalyst layer is sufficiently obtained, so that the NOx reduction reaction is favorably performed.

【0009】[0009]

【実施例】図1は本発明の装置の概要を示す説明図であ
る。エンジン10は、吸気管12、排気管14、ピスト
ン18等を有し、燃料噴射ポンプ16から燃料の供給を
受ける。エンジンには負荷センサ20、回転センサ22
が設けてあり、負荷データLe、回転データNeをエン
ジン制御装置(ECU)30へ送る。排気管14の後流
側には、コロナ放電装置40と触媒装置80が直列に配
設される。触媒装置80の入口部には酸素センサ54が
設けてあり、排ガス中の酸素濃度データOeをECU3
0へ送る。高電圧発生装置70は、ECU30からの指
令を受けてコロナ放電装置40の陽極側へ高周波電圧を
供給する。コロナ放電装置40の陰極側はアースされ
る。添加剤である炭化水素(HC)又は軽油の添加装置
60は触媒装置80の入口部に設けたノズル62に連結
され、ECU30の指令を受けると、所定の量の添加剤
を触媒装置の入口側の排ガス中に添加する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing the outline of the apparatus of the present invention. The engine 10 has an intake pipe 12, an exhaust pipe 14, a piston 18, and the like, and is supplied with fuel from a fuel injection pump 16. The engine has a load sensor 20 and a rotation sensor 22.
Is provided and sends the load data Le and the rotation data Ne to the engine control unit (ECU) 30. On the downstream side of the exhaust pipe 14, the corona discharge device 40 and the catalyst device 80 are arranged in series. An oxygen sensor 54 is provided at the inlet of the catalyst device 80, and the oxygen concentration data Oe in the exhaust gas is sent to the ECU 3
Send to 0. The high voltage generator 70 receives a command from the ECU 30 and supplies a high frequency voltage to the anode side of the corona discharge device 40. The cathode side of the corona discharge device 40 is grounded. A hydrocarbon (HC) or light oil addition device 60 as an additive is connected to a nozzle 62 provided at the inlet of the catalyst device 80, and when a command from the ECU 30 is received, a predetermined amount of the additive is added to the inlet side of the catalyst device. Added to the exhaust gas of.

【0010】図2はコロナ放電装置の構成を示す説明図
である。全体を符号40で示すコロナ放電装置は、略円
錐形の排ガスGが導入される入口側ケーシング420
と、出口側ケーシング430により挾まれた円筒形のケ
ーシング410を有し、ケーシング410の内部に断熱
材412を介して固定されたコロナ放電部を有する。該
コロナ放電部は、20本の石英ガラス製の反応管450
を、同じく石英ガラス製の固定板440,442の間に
所定の間隔をおいて各々が平行に配置されるようにその
両端部で固定すると共に、各反応管450の中央には前
記固定板440に取り付けられた分電板454より陽極
棒452を延出させて配設し、また各反応管450の外
周に陰極板456を巻きつけて形成されている。また、
前記分電板454及び陰極板452には各々リード線
(不図示)が接続され、各リード線は、前記ケーシング
420,430に開口されたリード線引き出し口42
2,432からコロナ放電処理装置の外部に引き出さ
れ、陽極側リード線は高電圧発生装置70に接続される
と共に陰極側リード線はアースされている。
FIG. 2 is an explanatory view showing the structure of the corona discharge device. A corona discharge device indicated by reference numeral 40 in its entirety has an inlet-side casing 420 into which a substantially conical exhaust gas G is introduced.
And a cylindrical casing 410 sandwiched by the outlet side casing 430, and a corona discharge part fixed inside the casing 410 via a heat insulating material 412. The corona discharge part includes 20 reaction tubes 450 made of quartz glass.
Are fixed at both ends so that they are arranged in parallel with each other between the fixing plates 440 and 442 also made of quartz glass, and the fixing plate 440 is provided at the center of each reaction tube 450. The anode rod 452 is arranged so as to extend from the distribution plate 454 attached to, and the cathode plate 456 is wound around the outer periphery of each reaction tube 450. Also,
Lead wires (not shown) are connected to the distribution plate 454 and the cathode plate 452, respectively, and each lead wire has a lead wire outlet port 42 opened in the casings 420 and 430.
2, 432 is drawn out of the corona discharge treatment device, the anode side lead wire is connected to the high voltage generator 70, and the cathode side lead wire is grounded.

【0011】なお、陽極側と陰極側を逆に構成すること
もできる。このコロナ放電部は、例えば18KV,20
KHz程度の高周波電圧、又は20〜25KV、200
〜300Hzの方形波パルス高電圧を印加する場合に、
陽極棒452の直径寸法は2〜3mm、反応管450の
内径寸法は14〜20mm程度に設定すると、コロナ放
電が安定して形成される。本発明の排ガス浄化装置は、
排気温度に応じてコロナ放電装置40と触媒装置80を
使い分けることによって、最適な浄化を達成するもので
ある。以下、装置の制御ステップを説明するが、ECU
30はその記憶装置に種々の制御マップを格納してあ
る。
The anode side and the cathode side can be reversed. This corona discharge unit is, for example, 18 KV, 20
High-frequency voltage of about KHz, or 20 to 25 KV, 200
When applying a square wave pulse high voltage of ~ 300Hz,
When the diameter of the anode rod 452 is set to 2 to 3 mm and the inner diameter of the reaction tube 450 is set to about 14 to 20 mm, stable corona discharge is formed. The exhaust gas purifying apparatus of the present invention is
Optimal purification is achieved by properly using the corona discharge device 40 and the catalyst device 80 depending on the exhaust gas temperature. The control steps of the apparatus will be described below, but the ECU
30 stores various control maps in its storage device.

【0012】図3は第1の制御マップM1を示す。この
マップは横軸にエンジン回転速度比Neを、たて軸にエ
ンジンの負荷率Leをとったときの排気温度の変化を示
すものである。このマップM1において、排気温度が3
00℃程度で領域をI,IIに分割し、コロナ放電装置
の作動と、炭化水素添加装置の作動を制御する。領域I
は、排気温度が高い領域で還元触媒によって、NOをH
Cの添加と合わせてN2に還元する領域である。領域I
Iは排気温度が低い領域で、コロナ放電によってNOを
NO2に一度酸化させ、その後に還元触媒でNO2をN2
に還元する領域である。
FIG. 3 shows the first control map M1. This map shows changes in exhaust temperature when the engine rotation speed ratio Ne is plotted on the horizontal axis and the engine load factor Le is plotted on the vertical axis. In this map M1, the exhaust temperature is 3
The region is divided into I and II at about 00 ° C. to control the operation of the corona discharge device and the operation of the hydrocarbon addition device. Region I
Is used to reduce NO to H
Together with the addition of C is a region reduced to N 2. Region I
I is a region where the exhaust temperature is low, and NO is once oxidized to NO 2 by corona discharge, and then NO 2 is reduced to N 2 by a reduction catalyst.
It is a region to be reduced to.

【0013】図4は第2の制御マップM2を示し、横軸
にエンジン回転速度比Neを、たて軸にNO濃度をと
り、負荷率Leの変化に対応するNO濃度を算出するマ
ップを提供する。図5は第3の制御マップM3を示し、
NO濃度に対するHCの添加量を排ガス中のO2濃度に
よりどの程度に設定すべきかを示す。第2の制御マップ
M2で得られたNO濃度と排ガス中のO2濃度から、必
要なHCの添加量を算出することができる。図6はHC
添加量とHC添加装置60に装備された軽油噴射ポンプ
に印加される電圧Voとの関係を示す第4の制御マップ
M4である。HC添加装置に装備されるポンプは、印加
される電圧の大きさに比例して吐出量が変化する構造の
ものである。したがって、HCの添加量が与えられる
と、その添加量を吐出するポンプの電圧を制御マップM
4から知ることができる。
FIG. 4 shows a second control map M2, which provides a map for calculating the NO concentration corresponding to the change in the load factor Le, with the horizontal axis representing the engine speed ratio Ne and the vertical axis representing the NO concentration. To do. FIG. 5 shows a third control map M3,
It shows how much the amount of HC added to the NO concentration should be set according to the O 2 concentration in the exhaust gas. From the NO concentration obtained in the second control map M2 and the O 2 concentration in the exhaust gas, the required amount of added HC can be calculated. Figure 6 shows HC
11 is a fourth control map M4 showing the relationship between the addition amount and the voltage Vo applied to the light oil injection pump equipped in the HC addition device 60. The pump provided in the HC addition device has a structure in which the discharge amount changes in proportion to the magnitude of the applied voltage. Therefore, when the addition amount of HC is given, the voltage of the pump that discharges the addition amount is set to the control map M.
You can know from 4.

【0014】図7は第5の制御マップM5を示す。この
制御マップM5は第2の制御マップM2で得られたNO
2濃度に応じてコロナ放電装置に印加する電圧を決定す
るものである。印加すべき放電電圧は排ガス中の酸素濃
度により変化する。ECU30は、エンジンと浄化装置
の各センサからの信号データに基づいて、最適の浄化条
件を演算し、各装置を制御する。制御フローの実施例と
しては、いくつかの手段がある。
FIG. 7 shows a fifth control map M5. This control map M5 is NO obtained in the second control map M2.
2 The voltage applied to the corona discharge device is determined according to the concentration. The discharge voltage to be applied changes depending on the oxygen concentration in the exhaust gas. The ECU 30 calculates optimum purification conditions based on signal data from the engine and each sensor of the purification device, and controls each device. There are several means of implementing the control flow.

【0015】第1の実施例 排気温度を第1の制御マップM1により判別し、低温領
域ではコロナ放電装置を作動させ、高温領域でHCを添
加するものである。図8は第1の実施例の制御フローを
示す。スタートからリターンまでの各ステップS1〜S
11までの処理は次のとおりである。
First Embodiment The exhaust temperature is determined by the first control map M1, the corona discharge device is operated in the low temperature region, and HC is added in the high temperature region. FIG. 8 shows a control flow of the first embodiment. Steps S1 to S from start to return
The processing up to 11 is as follows.

【0016】S1:回転数センサ,負荷センサ,O2
ンサの検出信号Ne,Le,Oe入力。 S2:検出信号Ne,Leに基づき、制御マップM1よ
り運転領域I又はIIを判別。 S3:S2において領域Iにあると判別されたときに
は、高電圧発生装置の作動を停止。 S4:検出信号Ne,Leに基づき、制御マップM2か
ら、排ガス中のNO濃度を読み込む。 S5:上記NO濃度と、S1にて検出されたO2濃度
(Oe)とから、制御マップM3より軽油(HC)添加
量を読み込む。 S6:上記軽油添加量に応じて、制御マップM4から軽
油ポンプの駆動電圧Voを決定。 S7:電圧Voを軽油ポンプに印加するよう、電圧調整
器に制御信号を送る。 S8:S2において領域IIにあると判別されたときに
は、軽油ポンプ作動を停止。 S9:検出信号Ne,Leに基づき、制御マップM2か
ら、排ガス中のNO濃度を読み込む。 S10:上記NO濃度と、S1にて検出されたO2濃度
(Oe)とから、制御マップM5によりコロナ放電部に
印加すべき電圧(放電電圧)Vhを読み込む。 S11:上記放電電圧Vhを発生するように、高電圧発
生装置に制御信号を送る。
S1: Input of detection signals Ne, Le and Oe of the rotation speed sensor, the load sensor and the O 2 sensor. S2: The operation area I or II is determined from the control map M1 based on the detection signals Ne and Le. S3: When it is determined in S2 that it is in the region I, the operation of the high voltage generator is stopped. S4: The NO concentration in the exhaust gas is read from the control map M2 based on the detection signals Ne and Le. S5: The amount of light oil (HC) added is read from the control map M3 from the NO concentration and the O 2 concentration (Oe) detected in S1. S6: The drive voltage Vo of the light oil pump is determined from the control map M4 according to the amount of light oil added. S7: Send a control signal to the voltage regulator to apply the voltage Vo to the light oil pump. S8: When it is determined in S2 that the region is in the region II, the operation of the light oil pump is stopped. S9: The NO concentration in the exhaust gas is read from the control map M2 based on the detection signals Ne and Le. S10: The voltage (discharge voltage) Vh to be applied to the corona discharge portion is read by the control map M5 from the NO concentration and the O 2 concentration (Oe) detected in S1. S11: Send a control signal to the high voltage generator so as to generate the discharge voltage Vh.

【0017】第2の実施例 図1においてコロナ放電装置40の入口部に温度センサ
52を設け、排ガス温度データTeをECU30へ送る
ことで排気温度を直接に検出し、低温領域ではコロナ放
電装置を作動させ、高温領域でHCを添加するものであ
る。図8において、ステップS21で排気温度センサ、
2センサの検出信号Te,Oe入力。以下、ステップ
S2へ進み、第1の実施例と同様の処理を行なう。
Second Embodiment In FIG. 1, a temperature sensor 52 is provided at the entrance of the corona discharge device 40, and the exhaust gas temperature data Te is sent to the ECU 30 to directly detect the exhaust gas temperature. It is operated and HC is added in a high temperature range. In FIG. 8, in step S21, an exhaust temperature sensor,
O 2 sensor detection signal Te, Oe input. Thereafter, the process proceeds to step S2, and the same processing as in the first embodiment is performed.

【0018】第3の実施例 排気温度が低温領域ではコロナ放電装置を作動させると
ともに、コロナ放電装置を通過した排ガス中にHCを添
加し、高温領域ではHCの添加のみを行なう。図8にお
いて、ステップS11の後にステップS4へ進み、以下
の処理を行なう。
Third Embodiment While the exhaust gas temperature is in the low temperature region, the corona discharge device is operated, HC is added to the exhaust gas passing through the corona discharge device, and only in the high temperature region, HC is added. In FIG. 8, after step S11, the process proceeds to step S4 and the following process is performed.

【0019】[0019]

【発明の効果】本発明の排ガスの浄化装置は以上のよう
にエンジンの排気系にコロナ放電装置と還元触媒装置を
直列に配設し、排ガス浄化装置を制御する制御装置を備
えたものである。制御装置は排気温度が低い領域では、
コロナ放電処理部を作動させて排ガス中のNOx成分の
大部分をNO2に変換して該コロナ放電処理部の後流に
設けられた還元触媒装置に流す。この際、コロナ放電処
理によってNOx中のNO2割合が増えるだけでなく、
排ガスの温度そのものが上昇するため、前記還元触媒装
置における還元反応が良好に行なわれる。そして、内燃
機関の排ガス温度が所定値を上回る高温時には、コロナ
放電処理部を作動させずに排ガスをそのまま前記還元触
媒装置に流す。この時には、排ガス温度は前記還元触媒
装置の活性が充分に得られる温度に達しているため、N
Oxの還元反応が良好に行なわれる。
As described above, the exhaust gas purifying apparatus of the present invention is provided with the control device for controlling the exhaust gas purifying apparatus by disposing the corona discharge device and the reduction catalyst device in series in the exhaust system of the engine. . The control device is
The corona discharge treatment section is operated to convert most of the NOx components in the exhaust gas into NO 2 and flow it to the reduction catalyst device provided downstream of the corona discharge treatment section. At this time, not only the proportion of NO 2 in NOx is increased by the corona discharge treatment,
Since the temperature of the exhaust gas itself rises, the reduction reaction in the reduction catalyst device is favorably performed. When the temperature of the exhaust gas of the internal combustion engine is higher than a predetermined value, the exhaust gas is allowed to flow through the reduction catalyst device as it is without operating the corona discharge treatment section. At this time, since the exhaust gas temperature has reached a temperature at which the activity of the reduction catalyst device is sufficiently obtained,
The reduction reaction of Ox is performed well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例装置の説明図。FIG. 1 is an explanatory diagram of an apparatus according to an embodiment of the present invention.

【図2】コロナ放電装置の構造図。FIG. 2 is a structural diagram of a corona discharge device.

【図3】制御装置が備える第1の制御マップ。FIG. 3 is a first control map included in the control device.

【図4】制御装置が備える第2の制御マップ。FIG. 4 is a second control map included in the control device.

【図5】制御装置が備える第3の制御マップ。FIG. 5 is a third control map included in the control device.

【図6】制御装置が備える第4の制御マップ。FIG. 6 is a fourth control map included in the control device.

【図7】制御装置が備える第5の制御マップ。FIG. 7 is a fifth control map included in the control device.

【図8】制御処理のフロー図。FIG. 8 is a flowchart of control processing.

【図9】還元触媒の特性を示すグラフ。FIG. 9 is a graph showing characteristics of a reduction catalyst.

【図10】還元触媒の特性を示すグラフ。FIG. 10 is a graph showing the characteristics of the reduction catalyst.

【符号の説明】[Explanation of symbols]

10 エンジン 14 排気管 20 負荷センサ 22 回転センサ 30 制御装置 40 コロナ放電装置 52 排気温度センサ 54 酸素濃度センサ 60 炭化水素供給装置 70 高電圧発生装置 80 還元触媒装置 10 Engine 14 Exhaust Pipe 20 Load Sensor 22 Rotation Sensor 30 Control Device 40 Corona Discharge Device 52 Exhaust Temperature Sensor 54 Oxygen Concentration Sensor 60 Hydrocarbon Supply Device 70 High Voltage Generation Device 80 Reduction Catalyst Device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/86 ZAB 53/94 B01D 53/36 101 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01D 53/86 ZAB 53/94 B01D 53/36 101 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気管の途中に配設されて排
ガスをコロナ放電処理するコロナ放電装置と、コロナ放
電装置に高電圧を供給する高電圧発生装置と、コロナ放
電装置の後流側に配設される還元触媒装置と、排ガスの
温度を判別する手段と、制御装置とを備え、制御装置
は、排ガス温度が所定の値以下のときには、高電圧発生
装置に指令を発してコロナ放電装置を作動させる内燃機
関の排ガス浄化装置。
1. A corona discharge device disposed in the middle of an exhaust pipe of an internal combustion engine for treating corona discharge of exhaust gas, a high voltage generator for supplying a high voltage to the corona discharge device, and a downstream side of the corona discharge device. Is provided with a reduction catalyst device, means for discriminating the temperature of exhaust gas, and a control device, and the control device issues a command to the high-voltage generation device to issue a corona discharge when the exhaust gas temperature is equal to or lower than a predetermined value. Exhaust gas purification device for internal combustion engine that operates the device.
【請求項2】 内燃機関の排気管の途中に配設されて排
ガスをコロナ放電処理するコロナ放電装置と、コロナ放
電装置に高電圧を供給する高電圧発生装置と、コロナ放
電装置の後流側に配設される還元触媒装置と、還元触媒
装置の入口側に還元剤としての炭化水素を供給する炭化
水素供給装置と、内燃機関の回転センサと、内燃機関の
負荷センサと、還元触媒装置の入口側に設けられる排ガ
ス中の酸素濃度を検出する酸素センサと、制御装置とを
備え、制御装置は、内燃機関の回転センサと負荷センサ
からのデータに基づいて排ガス温度を判別すると共に窒
素酸化物の濃度を判別する手段と、窒素酸化物の濃度と
酸素センサからのデータに基づいて添加すべき炭化水素
の量を判別する手段と、窒素酸化物の濃度と酸素センサ
からのデータに基づいてコロナ放電装置に供給する放電
電圧を制御する手段を備え、排ガス温度が所定の値以下
のときには、高電圧発生装置に指令を発してコロナ放電
装置を作動させる内燃機関の排ガス浄化装置。
2. A corona discharge device which is disposed in the middle of an exhaust pipe of an internal combustion engine and treats exhaust gas by corona discharge, a high voltage generator which supplies a high voltage to the corona discharge device, and a downstream side of the corona discharge device. Of the reduction catalyst device, a hydrocarbon supply device that supplies hydrocarbons as a reducing agent to the inlet side of the reduction catalyst device, a rotation sensor of the internal combustion engine, a load sensor of the internal combustion engine, and a reduction catalyst device of the reduction catalyst device. An oxygen sensor for detecting the oxygen concentration in the exhaust gas provided on the inlet side, and a control device are provided, and the control device determines the exhaust gas temperature based on the data from the rotation sensor and the load sensor of the internal combustion engine, and nitrogen oxides. Based on the data from the nitrogen oxide concentration and the oxygen sensor, the means to determine the amount of hydrocarbons to be added based on the nitrogen oxide concentration and the data from the oxygen sensor. An exhaust gas purifying apparatus for an internal combustion engine, comprising means for controlling a discharge voltage supplied to the corona discharge device, and issuing a command to the high voltage generator to operate the corona discharge device when the exhaust gas temperature is equal to or lower than a predetermined value.
JP04223294A 1994-03-14 1994-03-14 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3262148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04223294A JP3262148B2 (en) 1994-03-14 1994-03-14 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04223294A JP3262148B2 (en) 1994-03-14 1994-03-14 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07247827A true JPH07247827A (en) 1995-09-26
JP3262148B2 JP3262148B2 (en) 2002-03-04

Family

ID=12630294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04223294A Expired - Fee Related JP3262148B2 (en) 1994-03-14 1994-03-14 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3262148B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000630A1 (en) * 1996-07-01 1998-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for operating an internal combustion engine with less pollutant emissions
EP1136668A1 (en) * 2000-03-02 2001-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for purifying exhaust gas
JP2001525902A (en) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for removing oxidized harmful substances in exhaust gas containing oxygen and engine driven thereby
US6558637B2 (en) * 2000-04-12 2003-05-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission purifier
JP2003534498A (en) * 2000-06-02 2003-11-18 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Exhaust gas purification device and operation method
US6716398B2 (en) 1996-06-28 2004-04-06 Litex, Inc. Method and apparatus for using hydroxyl to reduce pollutants in the exhaust gases from the combustion of a fuel
JP2010025049A (en) * 2008-07-23 2010-02-04 Mitsui Eng & Shipbuild Co Ltd High voltage plasma generator
WO2011148461A1 (en) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716398B2 (en) 1996-06-28 2004-04-06 Litex, Inc. Method and apparatus for using hydroxyl to reduce pollutants in the exhaust gases from the combustion of a fuel
WO1998000630A1 (en) * 1996-07-01 1998-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for operating an internal combustion engine with less pollutant emissions
US6269631B1 (en) * 1996-07-01 2001-08-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Process and device for operating an internal combustion engine with less pollutant emission
JP2001525902A (en) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for removing oxidized harmful substances in exhaust gas containing oxygen and engine driven thereby
EP1136668A1 (en) * 2000-03-02 2001-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for purifying exhaust gas
US6558637B2 (en) * 2000-04-12 2003-05-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission purifier
JP2003534498A (en) * 2000-06-02 2003-11-18 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Exhaust gas purification device and operation method
JP2010025049A (en) * 2008-07-23 2010-02-04 Mitsui Eng & Shipbuild Co Ltd High voltage plasma generator
WO2011148461A1 (en) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 Control device for internal combustion engine
JP5382214B2 (en) * 2010-05-25 2014-01-08 トヨタ自動車株式会社 Control device for internal combustion engine
US9057297B2 (en) 2010-05-25 2015-06-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP3262148B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
EP0608619B1 (en) Exhaust gas purification
US6212883B1 (en) Method and apparatus for treating exhaust gas from vehicles
US6557340B1 (en) System and method for purifying exhaust gases
US6775972B2 (en) Purification of exhaust gases
KR100494189B1 (en) NOx-ADSORBER
JP3068040B2 (en) Corona discharge pollutant destruction equipment for treating nitrogen oxides
KR20090128537A (en) Device and method for regenerating exhaust purification catalyst
WO1998007500A1 (en) Automatic control system and method for corona discharge pollutant destruction apparatus
EP1425497B1 (en) Device and method for exhaust gas after-treatment
EP1135580A1 (en) PLASMA FUEL PROCESSING FOR NO x? CONTROL OF LEAN BURN ENGINES
US20030077212A1 (en) Method and device for exhaust gas purification
EP0825692B1 (en) Multi-stage gaseous pollutant destruction apparatus and method
US20080241006A1 (en) Exhaust gas purification apparatus
JPH07247827A (en) Exhaust emission control device for internal combustion engine
US6759020B2 (en) Spark-ignited internal combustion engine oxide gas absorbing arrangement and method
US6479023B1 (en) System for converting particulate matter in gasoline engine exhaust gases
EP1149231A2 (en) Process and reactor for plasma assisted gas processing
KR100996671B1 (en) Exhaust gas processing system
JPH07766A (en) Waste gas purifier
JP3147193B2 (en) Exhaust gas purification system for diesel engine
JP3398558B2 (en) Internal combustion engine exhaust gas purification device
JPH0559933A (en) Reducing agent reforming reactor and exhaust gas purifying device
JPH0559934A (en) Internal combustion engine and its discharge denitration device
JPH1089057A (en) Exhaust emission control device of engine
JP2007113459A (en) Exhaust emission control system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees