JPH07245584A - Wavelength dispersion compensating device - Google Patents

Wavelength dispersion compensating device

Info

Publication number
JPH07245584A
JPH07245584A JP6034626A JP3462694A JPH07245584A JP H07245584 A JPH07245584 A JP H07245584A JP 6034626 A JP6034626 A JP 6034626A JP 3462694 A JP3462694 A JP 3462694A JP H07245584 A JPH07245584 A JP H07245584A
Authority
JP
Japan
Prior art keywords
chromatic dispersion
wavelength
terminal
fiber
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6034626A
Other languages
Japanese (ja)
Inventor
Masayuki Nishimura
正幸 西村
Koji Nakazato
浩二 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6034626A priority Critical patent/JPH07245584A/en
Publication of JPH07245584A publication Critical patent/JPH07245584A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29374Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide
    • G02B6/29376Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29364Cascading by a light guide path between filters or filtering operations, e.g. fibre interconnected single filter modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To compensate wavelength dispersion in a signal light having plural wavelengths by the use of the device applied to an existing transmission installation by providing an optical circulator, a wavelength dispersion compensating fiber as a wavelength dispersion compensating means and a wavelength selective reflector to the compensating device. CONSTITUTION:The device is provided with an optical circulator having at least three terminals to output a light received by a 1st terminal 1a from a transmission optical fiber 4a from a 2nd terminal 1b and to output the light received by a 2nd terminal 1b to a transmission optical fiber 4b via a 3rd terminal 1c. Furthermore, a wavelength dispersion compensation means whose one terminal connects to the 2nd terminal 1b is provided. The wavelength dispersion compensation means is made up of wavelength dispersion compensation fibers 2a-2e to compensate wavelength dispersion as to a prescribed wavelength and up of wavelength selective reflectors 3a-3d arranged in the path at each prescribed interval and substantially fully reflecting the light of the wavelength whose dispersion is compensated to the 2nd terminal 1b by reciprocating the propagated light through the distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】伝送用光ファイバにおける波長分
散をキャンセルする波長分散補償器に関し、特に、該伝
送用光ファイバを用いた波長多重伝送における各信号光
の波長分散を略同時に補償する波長分散補償器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromatic dispersion compensator for canceling chromatic dispersion in a transmission optical fiber, and more particularly to a chromatic dispersion for compensating chromatic dispersion of each signal light in wavelength division multiplexing transmission using the transmission optical fiber at substantially the same time. It concerns a compensator.

【0002】[0002]

【従来の技術】従来から、1.3μm帯のシングルモー
ド光ファイバ(以下、伝送用光ファイバという)を用い
た1.55μm帯域光伝送が広く行なわれているが、伝
送する光信号のビットレートを高くしたり伝送距離を長
くした場合、該伝送用光ファイバにおける波長分散によ
り伝送される信号光に歪が発生するため、このような光
伝送に限界が生じていた。
2. Description of the Related Art Conventionally, a 1.55 μm band optical transmission using a 1.3 μm band single mode optical fiber (hereinafter referred to as a transmission optical fiber) has been widely performed. When the value is increased or the transmission distance is increased, distortion occurs in the signal light to be transmitted due to wavelength dispersion in the transmission optical fiber, so that such optical transmission has a limit.

【0003】このような問題を解決するため、第1の従
来例として、例えばE.F.Murphy,etc"All-Optical,Fiber
-Based 1550 nm Dispersion Experiment over 1310nm O
ptimized Fiber",OFC'92 Paper PD-14に示されるよう
に、伝送用光ファイバにおける波長分散特性と逆の極性
(例えば伝送用光ファイバの波長分散特性が正の場合は
負の波長分散特性)の波長分散特性を持った光ファイバ
(以下、波長分散補償用ファイバという)を直列に接続
することにより、上記伝送用光ファイバの波長分散をキ
ャンセルする方法が有力な手段である。
In order to solve such a problem, as a first conventional example, for example, EFMurphy, etc. "All-Optical, Fiber"
-Based 1550 nm Dispersion Experiment over 1310nm O
As shown in ptimized Fiber ", OFC'92 Paper PD-14, the polarity is opposite to the chromatic dispersion characteristic of the transmission optical fiber (for example, negative chromatic dispersion characteristic when the transmission optical fiber has a positive chromatic dispersion characteristic). An effective means is to cancel the chromatic dispersion of the transmission optical fiber by connecting in series optical fibers having the chromatic dispersion characteristic (hereinafter, referred to as chromatic dispersion compensating fiber).

【0004】図2は、複数波長の信号光を伝搬させる伝
送媒体である伝送用光ファイバと、この伝送用光ファイ
バにおける波長分散を補償するための波長分散補償用フ
ァイバのそれぞれについて、所定波長帯域における波長
分散特性を示す図である。なお、図中、横軸は波長(n
m)を示し、縦軸は単位距離(km)あたりの波長分散
(ps/km/nm)を示す。また、この図において記
号A〜Cで示す曲線は以下の通りである。すなわち、 曲線A:上記伝送用光ファイバの所定波長帯域における
波長分散特性 曲線B:上記波長分散補償用ファイバの所定波長帯域に
おける波長分散特性 曲線C:これら伝送用光ファイバと波長分散補償用ファ
イバとを直列に接続した構成において、波長λ0 の信号
光について伝送用光ファイバにおける波長分散をキャン
セル(波長λ0 の信号光について伝送用光ファイバにお
ける波長分散を0にすること)するよう波長分散補償用
ファイバの長さを調節したときの、該構造の波長分散特
性(波長帯域は上述の曲線A、Bと同じ) 通常、この図からも分かるように、第1の従来例では伝
送すべき信号光の波長について波長分散補償用ファイバ
における波長分散の傾きは、伝送用光ファイバにおける
波長分散と同じ特徴をもっている(この図において、い
ずれの光ファイバも右上がりの特性を持っている)。
FIG. 2 shows a predetermined wavelength band for each of a transmission optical fiber which is a transmission medium for propagating signal light of a plurality of wavelengths and a chromatic dispersion compensating fiber for compensating chromatic dispersion in the transmission optical fiber. 6 is a diagram showing wavelength dispersion characteristics in FIG. In the figure, the horizontal axis represents wavelength (n
m) and the vertical axis represents chromatic dispersion (ps / km / nm) per unit distance (km). Further, the curves indicated by symbols A to C in this figure are as follows. That is, curve A: chromatic dispersion characteristic in a predetermined wavelength band of the transmission optical fiber curve B: chromatic dispersion characteristic in a predetermined wavelength band of the chromatic dispersion compensation fiber curve C: these transmission optical fiber and chromatic dispersion compensation fiber the in construction connected in series, (that the chromatic dispersion to zero in the transmission optical fiber for signal light having a wavelength lambda 0) cancels the wavelength dispersion in the transmission optical fiber for signal light having a wavelength lambda 0 to as chromatic dispersion compensation Dispersion characteristics of the structure when the length of the optical fiber is adjusted (wavelength band is the same as the above curves A and B) Normally, as can be seen from this figure, the signal to be transmitted in the first conventional example Regarding the wavelength of light The slope of chromatic dispersion in a chromatic dispersion compensating fiber has the same characteristics as chromatic dispersion in a transmission optical fiber (see this figure). Oite, also it has the characteristics of the upward-sloping one of the optical fiber).

【0005】さらに、第2の従来例では、例えばA.V.Be
lov, etc. "Single-mode dispersion compensator for
1.31/1.55-μm long-haul communication lines", OFC/
IOOC'93 Technical Digest, Thj2, p.203に示すよう
に、所定波長帯域における波長分散補償用ファイバの波
長分散特性の傾き(例えば図2に示す各曲線の傾きに相
当)が、所定波長帯域における伝送用ファイバの波長分
散特性と逆になるように(例えば伝送用光ファイバの波
長分散特性が右上がりの傾きである場合、右下がりの傾
きとなる波長分散特性)、波長分散補償用ファイバの屈
折率分布を特殊な構造にする。そして、伝送用光ファイ
バとこの波長分散補償用ファイバとを直列に接続し、広
い波長範囲にわたって該伝送用光ファイバの波長分散を
キャンセルすることが提案されている。
Further, in the second conventional example, for example, AVBe
lov, etc. "Single-mode dispersion compensator for
1.31 / 1.55-μm long-haul communication lines ", OFC /
As shown in IOOC'93 Technical Digest, Thj2, p.203, the slope of the chromatic dispersion characteristic of the chromatic dispersion compensating fiber in the predetermined wavelength band (eg, the slope of each curve shown in FIG. 2) is in the predetermined wavelength band. Refraction of the chromatic dispersion compensating fiber so that it is opposite to the chromatic dispersion characteristic of the transmission fiber (for example, when the chromatic dispersion characteristic of the transmission optical fiber has an upward-sloping slope, it becomes a downward-sloping slope). The rate distribution has a special structure. It has been proposed that the transmission optical fiber and the wavelength dispersion compensating fiber be connected in series to cancel the wavelength dispersion of the transmission optical fiber over a wide wavelength range.

【0006】[0006]

【発明が解決しようとする課題】以上のように構成され
る従来の波長分散補償器(第1及び第2の従来例とも分
散補償用ファイバのみで構成)は、例えば第1の従来例
の場合、波長分散補償用ファイバの長さを調節して特定
の波長(λ0 )の信号光について伝送用光ファイバにお
ける波長分散がキャンセル(0になる)されるように設
計しても、該伝送用光ファイバを伝搬する信号光の波長
が調節された波長(λ0 )からずれると、この伝送用光
ファイバにおける波長分散を完全にキャンセルすること
ができないという課題があった。また、1つの伝送用光
ファイバを用いて波長多重伝送(異なる波長の信号光を
複数用いた多重通信方式)を行う場合、伝送される各信
号光(波長が異なる)に対する該伝送用光ファイバにお
ける波長分散をすべてキャンセルすることができないと
いう課題があった。
The conventional chromatic dispersion compensator configured as described above (both the first and second conventional examples are composed of only dispersion compensating fiber) is, for example, the case of the first conventional example. Even if the length of the chromatic dispersion compensating fiber is adjusted so that the chromatic dispersion in the transmission optical fiber for the signal light of a specific wavelength (λ 0 ) is canceled (becomes 0), If the wavelength of the signal light propagating through the optical fiber deviates from the adjusted wavelength (λ 0 ), there is a problem that the chromatic dispersion in the transmission optical fiber cannot be canceled completely. When performing wavelength-division multiplex transmission (multiplex communication system using a plurality of signal lights of different wavelengths) using one transmission optical fiber, the transmission optical fiber for each signal light (wavelength is different) to be transmitted There is a problem that it is not possible to cancel all chromatic dispersion.

【0007】一方、第2の従来例は、上述した第1の従
来例が持っている課題を解決するためのものであるが、
波長分散補償用ファイバの屈折率分布を特殊な構造にす
るため、この波長分散補償用ファイバの製造を難しくす
るばかりか、製造された波長分散補償用ファイバもその
伝送損失は上述した波長分散補償用ファイバ(第1の従
来例)の伝送損失と比較しても大きくなってしまうとい
う課題があった。
On the other hand, the second conventional example is for solving the problem of the first conventional example described above.
Since the refractive index distribution of the chromatic dispersion compensating fiber has a special structure, not only this chromatic dispersion compensating fiber is difficult to manufacture, but also the manufactured chromatic dispersion compensating fiber has its transmission loss as described above. There is a problem that the transmission loss becomes larger than the transmission loss of the fiber (first conventional example).

【0008】この発明は以上のような課題を解決するた
めになされたもので、既存の伝送設備にも適用可能で、
複数波長の信号光について伝送用光ファイバにおける波
長分散を略同時に補償し得る波長分散補償器を得ること
を目的とする。
The present invention has been made to solve the above problems and is applicable to existing transmission equipment.
An object of the present invention is to obtain a chromatic dispersion compensator capable of compensating chromatic dispersion in a transmission optical fiber substantially simultaneously for signal lights having a plurality of wavelengths.

【0009】[0009]

【課題を解決するための手段】この発明に係る波長分散
補償器は、第1の端子に入力した光を第2の端子から出
力し(入力手段)、この第2の端子に入力した光を第3
の端子から出力すべく(出力手段)、少なくとも3端子
をもつ光サーキュレータと、波長分散補償手段として、
この光サーキュレータの第2の端子にその一端が接続さ
れ、かつ伝送用光ファイバ中を伝搬している光の波長分
散を補償するための波長分散補償用ファイバ(伝送用光
ファイバの波長分散特性と逆の極性の波長分散特性を有
する)、及び波長分散補償用ファイバの経路中に上記第
2の端子から所定距離に配設され、かつ波長分散補償用
ファイバ中を伝搬する光のうち該距離を往復することに
より波長分散補償可能な波長の光を、第2の端子側へ実
質的に全反射させる波長選択性反射器を備えてたことを
特徴としている。
The chromatic dispersion compensator according to the present invention outputs the light input to the first terminal from the second terminal (input means) and outputs the light input to the second terminal. Third
In order to output from the terminal (output means), an optical circulator having at least three terminals, and a chromatic dispersion compensating means,
One end of the optical circulator is connected to the second terminal, and a chromatic dispersion compensating fiber for compensating the chromatic dispersion of light propagating in the transmission optical fiber (the chromatic dispersion characteristic of the transmission optical fiber and Of the light having a chromatic dispersion characteristic of opposite polarity), and that is disposed at a predetermined distance from the second terminal in the path of the chromatic dispersion compensating fiber and that propagates through the chromatic dispersion compensating fiber. It is characterized in that it is provided with a wavelength selective reflector that substantially totally reflects light having a wavelength capable of chromatic dispersion compensation by reciprocating to the second terminal side.

【0010】なお、この明細書において全反射とは、反
射率90%以上の状態をいい、必ずしも反射率100%
を意味するものではない。
In this specification, total reflection means a state where the reflectance is 90% or more, and the reflectance is always 100%.
Does not mean.

【0011】特に、上記波長分散補償手段における波長
選択性反射器は、上記波長分散補償用ファイバの所定部
位のコア領域に回折格子を形成することにより構成して
もよく、別途そのコア領域に回折格子が形成された光フ
ァイバを用いて、この光ファイバを各波長分散補償用フ
ァイバ間にそれぞれ直列に接続するよう構成してもよ
い。
In particular, the wavelength selective reflector in the chromatic dispersion compensating means may be constructed by forming a diffraction grating in a core region of a predetermined portion of the chromatic dispersion compensating fiber, and separately diffracting light in the core region. An optical fiber in which a grating is formed may be used, and the optical fiber may be connected in series between the wavelength dispersion compensation fibers.

【0012】また、上記波長選択性反射器として回折格
子が作り込まれる光ファイバ(波長分散補償用ファイバ
あるいは別途用意される光ファイバ)は、そのコア領域
にGeを添加しておき、かつこのコア領域とクラッド領
域との比屈折率差が1%以上としたものを利用する。
The optical fiber (wavelength dispersion compensating fiber or an optical fiber separately prepared) in which a diffraction grating is formed as the wavelength selective reflector has Ge added to its core region, and A region having a relative refractive index difference of 1% or more between the region and the cladding region is used.

【0013】さらに、上記波長選択性反射器としては、
上述のファイバ型回折格子を利用したもののほか、誘電
体多層膜フィルタを利用してもよい。
Further, as the wavelength selective reflector,
In addition to the above-mentioned fiber type diffraction grating, a dielectric multilayer filter may be used.

【0014】なお、上記各波長選択性反射器は、波長λ
においてDT (λ)の波長分散特性を有し、かつ長さが
T の伝送用光ファイバを、この波長λにおいてD
C (λ)の波長分散特性を有する波長分散補償用ファイ
バで分散補償する場合、波長分散補償用ファイバの経路
中であって、上記光サーキュレータにおける第2の端子
からの距離LC が、 DT (λ)・LT =−2・DC (λ)・L なる条件を満たす位置にそれぞれ配設する。
The wavelength selective reflectors have wavelengths λ
D has a wavelength dispersion characteristics of D T (lambda), and a transmission optical fiber of length L T, in this wavelength lambda in
When dispersion compensation is performed with a chromatic dispersion compensating fiber having a chromatic dispersion characteristic of C (λ), the distance L C from the second terminal of the optical circulator in the path of the chromatic dispersion compensating fiber is D T (Λ) · L T = −2 · D C (λ) · L C , respectively.

【0015】[0015]

【作用】この発明における波長分散補償器は、少なくと
も3端子を有する光サーキュレータを備え、この光サー
キュレータにより伝送路(伝送用光ファイバ)から当該
波長分散補償器内部への信号光(1又は2以上)の取り
込み、あるいは当該波長分散補償器内部から伝送路への
該信号光の再送出を可能にしている。したがって、当該
波長分散補償器は、該伝送路の一端(伝送用光ファイバ
における信号光の入射端側あるいは出射端側)、また既
存設備のように伝送路が複数の伝送用光ファイバで構成
されているような場合には任意の中継部位(接続箇所)
に設置することができる。
The chromatic dispersion compensator according to the present invention is provided with an optical circulator having at least three terminals, and the optical circulator allows signal light (1 or 2 or more) from the transmission line (optical fiber for transmission) to enter the chromatic dispersion compensator. ), Or retransmitting the signal light from the inside of the chromatic dispersion compensator to the transmission line. Therefore, in the chromatic dispersion compensator, one end of the transmission line (the input end side or the output end side of the signal light in the transmission optical fiber), or the transmission line is composed of a plurality of transmission optical fibers like existing equipment. If there is such a relay site (optional)
Can be installed in

【0016】また、当該波長分散補償器は、その一端が
上記光サーキュレータの1つの端子と接続された波長分
散補償手段を備え、この波長分散手段を伝送路である上
記伝送用光ファイバにおける波長分散を補償するための
分散補償用ファイバ(該伝送用光ファイバの波長分散特
性と逆極性の波長分散特性を有する)と、この波長分散
補償用ファイバを伝搬してきた光(例えば、該伝送用光
ファイバにより伝送される1又は2以上の信号光)のう
ち、所定波長の光を実質的に全反射し、他の波長の信号
光は透過する波長選択性反射器とからなる。したがっ
て、この波長分散補償用ファイバに入射された信号光は
光サーキュレータと波長選択性反射器との間に位置する
波長分散補償用ファイバ内を往復するため、伝送用光フ
ァイバにおける波長分散を補償するために必要なファイ
バ長は、当該波長分散補償器では半分の長さでよく、よ
り小型化が可能となる。
The chromatic dispersion compensator is provided with chromatic dispersion compensating means, one end of which is connected to one terminal of the optical circulator, and the chromatic dispersion compensating means is the chromatic dispersion in the transmission optical fiber which is a transmission line. Dispersion compensation fiber (having a chromatic dispersion characteristic having a polarity opposite to that of the transmission optical fiber) for compensating for the above, and light propagated through the chromatic dispersion compensation fiber (for example, the transmission optical fiber Of one or two or more of the signal lights transmitted by the above), the light having a predetermined wavelength is substantially totally reflected, and the signal lights of other wavelengths are transmitted. Therefore, the signal light incident on the chromatic dispersion compensating fiber reciprocates in the chromatic dispersion compensating fiber located between the optical circulator and the wavelength selective reflector, so that the chromatic dispersion in the transmission optical fiber is compensated. Therefore, the fiber length required for the wavelength dispersion compensator may be half the length, which enables further miniaturization.

【0017】すなわち、分散波長特性が所定の波長λに
おいてD(λ)であり、その長さがLT である伝送
用光ファイバについて、波長分散を補償するための波長
分散補償用ファイバの波長分散特性が所定の波長λにお
いてDC (λ)(この波長分散特性の符号が逆)の場
合、上記伝送用光ファイバにおける波長分散をキャンセ
ルするために必要な波長分散補償用ファイバの長さLCC
は、 DT (λ)・LT +DC (λ)・LCC=0 を満たすように決定される。
That is, for a transmission optical fiber whose dispersion wavelength characteristic is D T (λ) at a predetermined wavelength λ and whose length is L T , the wavelength of the chromatic dispersion compensating fiber for compensating the chromatic dispersion. When the dispersion characteristic is D C (λ) (the sign of the chromatic dispersion characteristic is opposite) at a predetermined wavelength λ, the length L of the chromatic dispersion compensating fiber required to cancel the chromatic dispersion in the transmission optical fiber. CC
Is determined so as to satisfy D T (λ) · L T + D C (λ) · L CC = 0.

【0018】これに対して、当該波長分散補償器は波長
分散補償手段における波長分散補償用ファイバ内におい
て、信号光が上記光サーキュレータと波長選択性反射器
との間を往復するので、実際に必要な波長分散補償用フ
ァイバの長さLC は、 LC =LCC/2 である。よって、波長選択性反射器を、上記光サーキュ
レータから DT (λ)・LT =−2・DC (λ)・LC を満たす位置(上記光サーキュレータと波長分散補償用
ファイバとの接続面から当該反射器における反射面まで
の距離がLC (λ)となる位置)に配置することによ
り、波長分散補償に必要なファイバ長を確保できる。
On the other hand, the chromatic dispersion compensator is actually necessary because the signal light reciprocates between the optical circulator and the wavelength selective reflector in the chromatic dispersion compensating fiber in the chromatic dispersion compensating means. The length L C of the chromatic dispersion compensating fiber is L C = L CC / 2. Therefore, the wavelength-selective reflector is located at a position satisfying D T (λ) · L T = −2 · D C (λ) · L C from the optical circulator (the connecting surface between the optical circulator and the chromatic dispersion compensating fiber). To a reflection surface of the reflector at a position where L C (λ) is provided, the fiber length required for wavelength dispersion compensation can be secured.

【0019】[0019]

【実施例】以下、この発明に係る波長分散補償器の一実
施例を図1を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the chromatic dispersion compensator according to the present invention will be described below with reference to FIG.

【0020】図1は、この発明に係る波長分散補償器の
一実施例の構成を示す図であり、図において、1は入力
手段として、伝送用光ファイバ4aから第1の端子1a
に入力した光を第2の端子1bから出力し、出力手段と
して、この第2の端子1bに入力した光を第3の端子1
cから伝送用光ファイバ4bへ出力すべく、少なくとも
3端子をもつ光サーキュレータである。なお、この実施
例では第1の端子1aを第1の伝送用光ファイバ4aの
出射端に接続し、第3の端子1cを第2の伝送用光ファ
イバ4bの入射端に接続することにより、伝送路の経路
中に設置する場合を示したが、この実施例のほか、第1
の端子1aを信号光の出射手段(図示せず)に接続し、
第3の端子1cを伝送用光ファイバに接続する構成とし
てもよく、また、第1の端子1aを伝送用光ファイバの
出射端に接続し、第3の端子1cを受光手段(図示せ
ず)に接続する構成としてもよい。
FIG. 1 is a diagram showing a configuration of an embodiment of a chromatic dispersion compensator according to the present invention. In the figure, reference numeral 1 denotes an input means from a transmission optical fiber 4a to a first terminal 1a.
The light input to the second terminal 1b is output from the second terminal 1b, and the light input to the second terminal 1b is used as an output unit.
It is an optical circulator having at least three terminals for outputting from c to the optical fiber 4b for transmission. In this embodiment, by connecting the first terminal 1a to the emission end of the first transmission optical fiber 4a and connecting the third terminal 1c to the incidence end of the second transmission optical fiber 4b, Although the case where it is installed in the transmission path is shown, in addition to this embodiment, the first
Connect the terminal 1a of No. 1 to a signal light emitting means (not shown),
The third terminal 1c may be connected to the transmission optical fiber, or the first terminal 1a may be connected to the emission end of the transmission optical fiber and the third terminal 1c may be a light receiving means (not shown). It may be configured to be connected to.

【0021】さらに、当該波長分散補償器は上記第2の
端子1bにその一端が接続された波長分散補償手段を備
えており、この波長分散補償手段はその一端が光サーキ
ュレータ1の第2の端子1bに接続され、かつ所定波長
について波長分散を補償するための波長分散補償用ファ
イバ2a〜2e、及びこれら波長分散補償用ファイバ2
a〜2eの経路中に上記第2の端子1bから所定距離ご
とに配設され、かつ各波長分散補償用ファイバ2a〜2
e中を伝搬する光のうち該距離を往復することにより波
長分散補償可能な波長の光を、上記第2の端子1b側へ
実質的に全反射(反射率90%以上)させる波長選択性
反射器3a〜3d(図中、#1〜#i、#jで示す)と
から構成されている。
Further, the chromatic dispersion compensator is provided with chromatic dispersion compensating means, one end of which is connected to the second terminal 1b. One end of the chromatic dispersion compensating means is the second terminal of the optical circulator 1. 1b and chromatic dispersion compensating fibers 2a to 2e for compensating chromatic dispersion for a predetermined wavelength, and these chromatic dispersion compensating fibers 2
The chromatic dispersion compensating fibers 2a to 2e are disposed at predetermined distances from the second terminal 1b in the paths a to 2e.
Wavelength selective reflection that substantially totally reflects (reflectance of 90% or more) to the second terminal 1b side the light having a wavelength capable of wavelength dispersion compensation by reciprocating the distance among the light propagating in e. 3a to 3d (indicated by # 1 to #i and #j in the figure).

【0022】特に、上記波長選択性反射器3a〜3d
は、上記波長分散補償用ファイバ2a〜2eのコア領域
中に回折格子を形成することにより実現してもよい。ま
た、そのコア領域中に回折格子が形成された光ファイバ
として実現し、これら光ファイバを上記各波長分散補償
用ファイバ2a〜2eのそれぞれに直列に接続してもよ
い。
In particular, the wavelength selective reflectors 3a to 3d.
May be realized by forming a diffraction grating in the core region of the chromatic dispersion compensating fibers 2a to 2e. Further, it may be realized as an optical fiber in which a diffraction grating is formed in the core region, and these optical fibers may be connected in series to each of the wavelength dispersion compensation fibers 2a to 2e.

【0023】なお、上記波長分散補償用ファイバ2a〜
2eあるいは上記光ファイバのコア領域に直接回折格子
を作り込むため、これらファイバのコア領域にはゲルマ
ニウム(Ge)が添加され、かつ該コア領域とクラッド
領域との比屈折率差が1%以上にする。上述のようにG
eをコア領域に添加したシリカガラスは紫外光(UV
光)が照射されると、その照射領域の屈折率が該UV光
の照射量に応じて高くなる。このような光学的効果を利
用して、例えば1993年電子情報通信学会春季大会予
稿集、C−243に示されるように、コア領域内の屈折
率を上記UV光を干渉させてこの干渉縞に対応した屈折
率分布に変化させることにより回折格子を作り込む。
The chromatic dispersion compensating fibers 2a to
2e or germanium (Ge) is added to the core regions of these fibers to directly form a diffraction grating in the core regions of the optical fibers, and the relative refractive index difference between the core region and the cladding region is 1% or more. To do. G as above
Silica glass in which e is added to the core region is ultraviolet light (UV
(Light), the refractive index of the irradiation area increases according to the irradiation amount of the UV light. Utilizing such an optical effect, the refractive index in the core region is made to interfere with the above UV light to form the interference fringes as shown in C-243 of the 1993 IEICE Spring Conference Proceedings. A diffraction grating is built by changing the corresponding refractive index distribution.

【0024】さらに、各波長選択性反射器が配置される
位置は、反射させるべき信号光の波長によりそれぞれ異
なる。例えば、図1に示すように、各波長選択性反射器
3a〜3d(#1、…、#i、#j)が、それぞれ波長
λi(i=1、…、i、j)の信号光を実質的に全反射
(反射率90%以上)させる場合、該波長λiについて
波長分散特性がDT (λi)、その長さがである伝送用
光ファイバ(4a及び/又は4b)に対し、波長λiに
ついて波長分散特性がDC (λi)である波長分散補償
用ファイバとして必要な長さLC は、以下の数式1より
得られる。
Further, the position where each wavelength selective reflector is arranged differs depending on the wavelength of the signal light to be reflected. For example, as shown in FIG. 1, each of the wavelength selective reflectors 3a to 3d (# 1, ..., #i, #j) outputs a signal light of wavelength λi (i = 1, ..., i, j). In the case of substantially total reflection (reflectance of 90% or more), the wavelength dispersion characteristic of the wavelength λi is D T (λi), and the length is a wavelength of the transmission optical fiber (4a and / or 4b). The length L C required for a chromatic dispersion compensating fiber having a wavelength dispersion characteristic of D C (λi) with respect to λi is obtained by the following mathematical formula 1.

【0025】 DT (λi)・LT =−2・DC (λi)・LC … (1) この波長分散補償用ファイバとして必要な長さLC は、
実質的に各波長選択性反射器3a〜3dの各反射面から
上記光サーキュレータ1(第2の端子1b)と波長分散
補償用ファイバ2aとの接続面までの距離である。
D T (λi) · L T = −2 · D C (λi) · L C (1) The length L C required for this chromatic dispersion compensation fiber is
It is substantially the distance from each reflecting surface of each wavelength selective reflector 3a to 3d to the connecting surface between the optical circulator 1 (second terminal 1b) and the chromatic dispersion compensating fiber 2a.

【0026】このように、波長分散補償すべき波長の信
号光に応じて、光サーキュレータ1から所定距離であっ
て、波長分散補償用ファイバの経路中に上記各波長選択
性反射器3a〜3dを配置することにより、所定波長の
信号光について伝送用光ファイバによって生じる波長分
散を、当該波長分散補償器により補償することができ
る。
As described above, the wavelength selective reflectors 3a to 3d are provided in the path of the chromatic dispersion compensating fiber at a predetermined distance from the optical circulator 1 according to the signal light of the wavelength to be chromatic dispersion compensated. By arranging, the chromatic dispersion caused by the transmission optical fiber for the signal light of the predetermined wavelength can be compensated by the chromatic dispersion compensator.

【0027】次に、当該波長分散補償器の構成を具体的
な数値を用いて説明する。
Next, the configuration of the chromatic dispersion compensator will be described using specific numerical values.

【0028】光サーキュレータは3端子タイプの光サー
キュレータで、偏波無依存型のものを用いる。また、波
長分散補償用ファイバは、以下の表1に示す光ファイバ
であって、そのコア領域にGeが添加されているものを
用いる。
The optical circulator is a three-terminal type optical circulator, and a polarization independent type is used. As the chromatic dispersion compensating fiber, the optical fiber shown in Table 1 below, in which Ge is added to the core region, is used.

【0029】[0029]

【表1】 [Table 1]

【0030】また、各波長(nm)の信号光について、
上記波長分散補償用ファイバの波長分散特性(ps/k
m/nm)は、以下の表2に示すような値である。
For the signal light of each wavelength (nm),
Chromatic dispersion characteristics (ps / k of the chromatic dispersion compensating fiber)
m / nm) is a value as shown in Table 2 below.

【0031】[0031]

【表2】 [Table 2]

【0032】なお、波長選択性反射器としては、上述し
た1993年電子情報通信学会春季大会予稿集、C−2
43に示されたホログラフィック・グレーティング法を
用い、上記各波長分散補償用ファイバのコア領域に直接
回折格子を書き込むことにより実現する(この場合、各
波長分散補償用ファイバは、そのコア領域中に高濃度に
Geを含んでいる)。
As the wavelength selective reflector, the above-mentioned Proceedings of the 1993 Spring Conference of the Institute of Electronics, Information and Communication Engineers, C-2.
This is realized by directly writing a diffraction grating in the core region of each chromatic dispersion compensating fiber using the holographic grating method shown in 43 (in this case, each chromatic dispersion compensating fiber is Ge is contained in high concentration).

【0033】一方、伝送用光ファイバは、1.3μm帯
用シングルモード光ファイバであって、その長さは80
kmとする。各波長の信号光についてこの伝送用光ファ
イバにおける波長分散は、以下の表3に示す通りであ
る。
On the other hand, the transmission optical fiber is a 1.3 μm band single mode optical fiber, and its length is 80
It is set to km. The chromatic dispersion in the transmission optical fiber for the signal light of each wavelength is as shown in Table 3 below.

【0034】[0034]

【表3】 [Table 3]

【0035】また、上述の波長分散補償用ファイバに書
き込む回折格子の位置は、反射させるべき信号光の波長
(nm)に応じて、上述した数式1から以下の表4に示
す通りである。なお、表4中の距離は、光サーキュレー
タと波長分散補償用ファイバとの接続面から波長選択性
反射器における反射面までの距離であり、これにより表
4に示したような波長の各信号光について実質的に波長
分散を補償するために必要な波長分散補償用ファイバ長
がそれぞれ確保される。
Further, the positions of the diffraction gratings written in the above-mentioned chromatic dispersion compensating fiber are as shown in Table 4 below from the above-mentioned formula 1 according to the wavelength (nm) of the signal light to be reflected. The distance in Table 4 is the distance from the connection surface between the optical circulator and the chromatic dispersion compensating fiber to the reflection surface of the wavelength-selective reflector, whereby the signal light of each wavelength as shown in Table 4 is obtained. In this case, the chromatic dispersion compensating fiber length required to substantially compensate the chromatic dispersion is secured.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】以上のようにこの発明によれば、波長分
散補償用ファイバ長は従来のものと比較して半分でよく
(小型化が可能)、複数の波長帯域について伝送媒体で
ある伝送用光ファイバにおける波長分散をほぼ完全に補
償することができるから、伝送すべき信号光の波長を任
意に変更した場合であっても、当該波長分散補償器の主
要な構成を変更することなく使用できるとともに、既存
の伝送設備にも容易に適用することができるという効果
がある。
As described above, according to the present invention, the length of the chromatic dispersion compensating fiber is half that of the conventional fiber (it can be downsized), and the transmission medium is a transmission medium for a plurality of wavelength bands. Since chromatic dispersion in an optical fiber can be almost completely compensated, even if the wavelength of signal light to be transmitted is arbitrarily changed, it can be used without changing the main configuration of the chromatic dispersion compensator. At the same time, there is an effect that it can be easily applied to existing transmission equipment.

【0038】特に、波長多重伝送においては、複数波長
の信号光について、伝送媒体である伝送用光ファイバに
おける波長分散を略同時にかつ略完全に補償することが
できるという効果がある。
Particularly, in the wavelength division multiplex transmission, it is possible to substantially simultaneously and almost completely compensate the chromatic dispersion in the transmission optical fiber as the transmission medium for the signal light of a plurality of wavelengths.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る波長分散補償器の一実施例によ
る構成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a chromatic dispersion compensator according to the present invention.

【図2】伝送用光ファイバと波長分散補償用ファイバの
それぞれについて、所定波長帯域における波長分散特性
を示す図である。
FIG. 2 is a diagram showing chromatic dispersion characteristics in a predetermined wavelength band for each of the transmission optical fiber and the chromatic dispersion compensation fiber.

【符号の説明】[Explanation of symbols]

1…光サーキュレータ(3端子)、2a〜2e…波長分
散補償用ファイバ、3a〜3d…波長選択性反射器、4
a、4b…伝送用光ファイバ。
DESCRIPTION OF SYMBOLS 1 ... Optical circulator (3 terminals), 2a-2e ... Fiber for wavelength dispersion compensation, 3a-3d ... Wavelength selective reflector, 4
a, 4b ... Optical fiber for transmission.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 5/30 H04J 14/00 14/02 // G02B 27/28 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G02B 5/30 H04J 14/00 14/02 // G02B 27/28 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 入力手段として、第1の端子に入力した
光を第2の端子から出力し、出力手段として、該第2の
端子に入力した光を第3の端子から出力すべく、少なく
とも3端子をもつ光サーキュレータと、 前記光サーキュレータの第2の端子にその一端が接続さ
れ、かつ伝送用光ファイバ中を伝搬する光の波長分散を
補償するための波長分散補償用ファイバ、及び該波長分
散補償用ファイバの経路中に該第2の端子から所定距離
に配設され、かつ該波長分散補償用ファイバ中を伝搬す
る光のうち該距離を往復することにより波長分散補償可
能な波長の光を、該第2の端子側へ実質的に全反射させ
る波長選択性反射器からなる波長分散補償手段と、を備
えた波長分散補償器。
1. At least light for inputting to a first terminal is output from a second terminal as input means, and light for inputting to the second terminal is output as a output terminal from a third terminal. An optical circulator having three terminals, one end of which is connected to a second terminal of the optical circulator, and a chromatic dispersion compensating fiber for compensating for chromatic dispersion of light propagating in a transmission optical fiber, and the wavelength. Light having a wavelength which is disposed at a predetermined distance from the second terminal in the path of the dispersion compensating fiber and which can be chromatic dispersion compensated by reciprocating the distance among the light propagating in the chromatic dispersion compensating fiber. A chromatic dispersion compensator comprising: a chromatic dispersion compensating means that is a wavelength selective reflector that substantially totally reflects the light to the second terminal side.
【請求項2】 前記波長分散補償手段における波長選択
性反射器は、前記波長分散補償用ファイバのコア領域中
に形成された回折格子であることを特徴とする請求項1
の波長分散補償器。
2. The wavelength selective reflector in the chromatic dispersion compensating means is a diffraction grating formed in a core region of the chromatic dispersion compensating fiber.
Chromatic dispersion compensator.
【請求項3】 前記波長分散補償手段における波長分散
補償用ファイバは、そのコア領域にGeが添加され、か
つ該コア領域とクラッド領域との比屈折率差が1%以上
であることを特徴とする請求項2の波長分散補償器。
3. The chromatic dispersion compensating fiber in the chromatic dispersion compensating means is characterized in that Ge is added to its core region and the relative refractive index difference between the core region and the cladding region is 1% or more. The chromatic dispersion compensator according to claim 2.
【請求項4】 前記波長分散補償手段における波長選択
性反射器は、そのコア領域中に回折格子が形成された光
ファイバであることを特徴とする請求項1の波長分散補
償器。
4. The chromatic dispersion compensator according to claim 1, wherein the wavelength selective reflector in the chromatic dispersion compensating means is an optical fiber having a diffraction grating formed in its core region.
【請求項5】 前記波長選択性反射器である光ファイバ
は、そのコア領域にGeが添加され、かつ該コア領域と
クラッド領域との比屈折率差が1%以上であることを特
徴とする請求項4の波長分散補償器。
5. The optical fiber, which is the wavelength selective reflector, is characterized in that Ge is added to its core region and the relative refractive index difference between the core region and the cladding region is 1% or more. The chromatic dispersion compensator according to claim 4.
【請求項6】 前記波長分散補償手段における波長選択
性反射器は、誘電体多層膜フィルタであることを特徴と
する請求項1の波長分散補償器。
6. The chromatic dispersion compensator according to claim 1, wherein the wavelength selective reflector in the chromatic dispersion compensating means is a dielectric multilayer filter.
【請求項7】 前記波長分散補償手段における各波長選
択性反射器は、波長λにおいてDT (λ)の波長分散特
性を有し、かつ長さがLT の伝送用光ファイバを、該波
長λにおいてDC (λ)の波長分散特性を有する波長分
散補償用ファイバで分散補償する場合、該波長分散補償
用ファイバの経路中であって、前記光サーキュレータに
おける第2の端子からの距離LC が、 DT (λ)・LT =−2・DC (λ)・LC なる条件を満たす位置に配設されることを特徴とする請
求項1〜6のいずれか一項記載の波長分散補償器。
7. Each wavelength-selective reflector in the wavelength-dispersion compensating means has a transmission optical fiber having a wavelength dispersion characteristic of D T (λ) at a wavelength λ and a length of L T. When dispersion compensation is performed with a wavelength dispersion compensation fiber having a wavelength dispersion characteristic of D C (λ) at λ, the distance L C from the second terminal in the optical circulator in the path of the wavelength dispersion compensation fiber. Is disposed at a position satisfying a condition of D T (λ) · L T = −2 · D C (λ) · L C. 7. The wavelength according to claim 1, wherein Dispersion compensator.
JP6034626A 1994-03-04 1994-03-04 Wavelength dispersion compensating device Pending JPH07245584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6034626A JPH07245584A (en) 1994-03-04 1994-03-04 Wavelength dispersion compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6034626A JPH07245584A (en) 1994-03-04 1994-03-04 Wavelength dispersion compensating device

Publications (1)

Publication Number Publication Date
JPH07245584A true JPH07245584A (en) 1995-09-19

Family

ID=12419609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6034626A Pending JPH07245584A (en) 1994-03-04 1994-03-04 Wavelength dispersion compensating device

Country Status (1)

Country Link
JP (1) JPH07245584A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795973A1 (en) * 1996-03-11 1997-09-17 PIRELLI CAVI S.p.A. A method of selectively compensating for the chromatic dispersion of optical signals
FR2779295A1 (en) * 1998-05-29 1999-12-03 Kokusai Denshin Denwa Co Ltd Double ended chromatic dispersion device using a chirped grating for use in multi-wavelength light transmission systems
US6055082A (en) * 1996-11-25 2000-04-25 Nec Corporation Optical transmission system
WO2001086328A1 (en) * 2000-05-10 2001-11-15 Oyokoden Lab Co., Ltd. Optical component and dispersion compensating method
WO2002035271A1 (en) * 2000-10-24 2002-05-02 Marconi Communications Limited Dispersion compensator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795973A1 (en) * 1996-03-11 1997-09-17 PIRELLI CAVI S.p.A. A method of selectively compensating for the chromatic dispersion of optical signals
US6055082A (en) * 1996-11-25 2000-04-25 Nec Corporation Optical transmission system
FR2779295A1 (en) * 1998-05-29 1999-12-03 Kokusai Denshin Denwa Co Ltd Double ended chromatic dispersion device using a chirped grating for use in multi-wavelength light transmission systems
WO2001086328A1 (en) * 2000-05-10 2001-11-15 Oyokoden Lab Co., Ltd. Optical component and dispersion compensating method
US6943951B2 (en) 2000-05-10 2005-09-13 Oyokoden Lab Co., Ltd. Optical component and dispersion compensation method
WO2002035271A1 (en) * 2000-10-24 2002-05-02 Marconi Communications Limited Dispersion compensator

Similar Documents

Publication Publication Date Title
Kashyap et al. Laser-trimmed four-port bandpass filter fabricated in single-mode photosensitive Ge-doped planar waveguide
JP4247950B2 (en) Dispersion compensating optical fiber and wavelength division multiplexing optical transmission line using the dispersion compensating optical fiber
US5457758A (en) Add-drop device for a wavelength division multiple, fiber optic transmission system
JP3377729B2 (en) Optical waveguide system
JP3912009B2 (en) Dispersion compensating fiber
CA2301052A1 (en) Wavelength tailored dispersion compensation apparatus
US6999659B1 (en) Fiber transmission element for generating a chromatic dispersion
CA2313051A1 (en) Dispersion compensation module
JPH07245584A (en) Wavelength dispersion compensating device
Mahlein Fiber-optic communication in the wavelength-division multiplex mode
US6952509B2 (en) Wavelength dispersion compensator and optical transmission line
Riant et al. Gain equalization with optimized slanted Bragg grating on adapted fibre for multichannel long-haul submarine transmission
JP2001174653A (en) Array waveguide grating
JP2716669B2 (en) Repeater for soliton transmission system using sliding frequency guiding filter
US7215884B2 (en) Optical demultiplexer having bragg diffration grating and optical communication module using the optical demultiplexer
JP2001053680A (en) Dispersion compensator
JP3348431B2 (en) Dispersion compensating optical circuit
JP3478237B2 (en) Dispersion compensator
US7403682B1 (en) Dispersion compensation apparatus
JPH07128524A (en) Wavelength dispersion generator and its production and wavelength dispersion compensator
JP4565442B2 (en) Optical transmission line and optical transmission system using the same
US6853766B2 (en) Dispersion-compensating module
Hida et al. Silica-based 1 x 32 splitter integrated with 32 WDM couplers using multilayered dielectric filters for fiber line testing at 1.65 μm
US20030169967A1 (en) Chromatic dispersion compensation in a broadband optical transmission system
EP1335219A1 (en) Optical waveguide diffraction grating device, method for fabricating optical waveguide diffraction grating device, multiplexing/demultiplexing module, and optical transmission system