JPH07244821A - Manufacture of resistance effect type head - Google Patents

Manufacture of resistance effect type head

Info

Publication number
JPH07244821A
JPH07244821A JP3391994A JP3391994A JPH07244821A JP H07244821 A JPH07244821 A JP H07244821A JP 3391994 A JP3391994 A JP 3391994A JP 3391994 A JP3391994 A JP 3391994A JP H07244821 A JPH07244821 A JP H07244821A
Authority
JP
Japan
Prior art keywords
element layer
effect element
magnetoresistive effect
magnetoresistive
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3391994A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
修二 田ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3391994A priority Critical patent/JPH07244821A/en
Publication of JPH07244821A publication Critical patent/JPH07244821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To effectively reduce the generation of Barkhausen noise caused by magnetic wall move by effectively setting the inside of a magnetic resistance effect element layer to a single magnetic domain state. CONSTITUTION:Two positions, namely both edge parts in the longitudinal direction, which are separated properly in the direction of axis of easy magnetization of a magnetic resistance effect element layer 1 formed on a substrate 4, are thinned by a specific amount, thus forming thinned parts 10, 10 where the oxide film on the surface of the magnetic resistance effect element layer 1 is eliminated. Antiferromagnetism body layers 5, 5 consisting of an antiferromagnetism body are laminated on the surface of thinned parts 10, 10 by a process which continues to the formation process and a single magnetic domain state is realized inside the magnetic resistance effect element layer 1 which is sandwiched by the thinned parts 10, 10 by the operation of a stable exchange coupling magnetic field generated in the interface between the thinned parts 10, 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク、磁気テ
ープ等の磁気記録媒体の記録情報を磁気抵抗効果を利用
して再生する磁気抵抗効果型ヘッドの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetoresistive head for reproducing recorded information on a magnetic recording medium such as a magnetic disk or a magnetic tape by utilizing the magnetoresistive effect.

【0002】[0002]

【従来の技術】コンピュータの補助記憶装置として広く
用いられている磁気ディスク装置においては、近年、小
型化及び高密度記録化に対する要求が強まっており、こ
の要求に応えるべく、記録媒体となる磁気ディスク側で
は、記録トラック幅及び線記録幅が益々狭小化する傾向
にある。これに伴って、磁気誘導起電力を利用する誘導
型ヘッドでは、記録情報の確実な再生が困難となりつつ
あり、誘導型に代わる有望な再生手段として、強磁性体
の電気抵抗が周辺磁場の強弱に応じて増減する性質、即
ち、磁気抵抗効果( magnetoresistive effect )を利
用する磁気抵抗効果型ヘッドが注目を浴びている。
2. Description of the Related Art In a magnetic disk device which is widely used as an auxiliary storage device for a computer, a demand for miniaturization and high density recording has been increasing in recent years, and in order to meet this demand, a magnetic disk used as a recording medium. On the side, the recording track width and the line recording width tend to become narrower. Along with this, it is becoming difficult to reliably reproduce recorded information with an induction type head that utilizes magnetic induction electromotive force, and as a promising reproducing means to replace the induction type, the electric resistance of a ferromagnetic material is strong and weak in the peripheral magnetic field. A magnetoresistive head that utilizes the property of increasing / decreasing in accordance with the above, that is, the magnetoresistive effect has attracted attention.

【0003】図7は、従来の磁気抵抗効果型ヘッドの斜
視図である。磁気抵抗効果型ヘッドは、矩形形状を有す
る磁気抵抗効果素子層1と、これの磁化容易軸の方向で
ある長手方向両側に、夫々の一部を接触させて一対の電
極層2,2とを備え、これらの両層を、全体を被包する
絶縁材料製の保護層3と共に基板4の端面上に積層形成
した構成となっている。
FIG. 7 is a perspective view of a conventional magnetoresistive head. The magnetoresistive head comprises a rectangular magnetoresistive element layer 1 and a pair of electrode layers 2 and 2 which are in contact with both sides of the magnetoresistive element layer 1 in the longitudinal direction which is the direction of the easy axis of magnetization. Both of these layers are laminated on the end face of the substrate 4 together with the protective layer 3 made of an insulating material and covering the whole.

【0004】前記基板4は、磁気記録媒体の記録面上に
わずかな隙間を有して浮上し、該記録面に対して所定方
向に相対移動するスライダを構成しており、磁気抵抗効
果素子層1の一方の長辺は、スライダとしての基板4の
相対移動方向後側において、前記記録面に臨ませて露出
させてある。なお、磁気抵抗効果素子層1及び導電層
2,2の厚さ方向両側には、外部からの磁気的ノイズを
遮蔽するための磁気シールド層が、電気的及び磁気的な
絶縁を確保するための各別の絶縁層を介して積層されて
いるが、図7には、これらの図示を省略している。
The substrate 4 constitutes a slider that floats above the recording surface of the magnetic recording medium with a slight gap and moves relative to the recording surface in a predetermined direction. One long side of No. 1 is exposed so as to face the recording surface on the rear side in the relative movement direction of the substrate 4 as the slider. A magnetic shield layer for shielding magnetic noise from the outside is provided on both sides of the magnetoresistive effect element layer 1 and the conductive layers 2 and 2 in the thickness direction to ensure electrical and magnetic insulation. Although they are laminated via the respective different insulating layers, they are not shown in FIG. 7.

【0005】而して、磁気抵抗効果素子層1において
は、前記記録面の各部における磁場の作用により、該記
録面の基板4に対する相対移動に応じて電気抵抗の変化
が生じ、この変化が電極層2,2間の出力として取り出
されて記録情報の再生が行われる。このとき、磁気抵抗
効果素子層1の電気抵抗の変化は、記録面上の磁場その
ものに感応して生じ、記録面の相対速度の高低に依存し
ないことから、磁気記録媒体の小型化に伴う周速の低下
に対応できる。一方、磁気抵抗効果素子層1の厚みを十
分に薄くし、本来の電気抵抗を大きく設定することによ
り再生感度の向上が図れ、また線記録幅の狭小化に対応
できる。このように磁気抵抗効果型ヘッドは、磁気記録
媒体の小型化及び高記録密度化に対応するための多くの
利点を有している。
Thus, in the magnetoresistive element layer 1, a change in electric resistance occurs due to the relative movement of the recording surface with respect to the substrate 4 due to the action of the magnetic field in each part of the recording surface, and this change occurs in the electrode. The recorded information is taken out as an output between the layers 2 and 2 to reproduce the recorded information. At this time, a change in the electric resistance of the magnetoresistive effect element layer 1 occurs in response to the magnetic field itself on the recording surface and does not depend on the relative speed of the recording surface. It can cope with the decrease in speed. On the other hand, the reproducing sensitivity can be improved and the line recording width can be narrowed by making the magnetoresistive effect element layer 1 thin enough and setting the original electric resistance large. As described above, the magnetoresistive head has many advantages for coping with miniaturization and high recording density of the magnetic recording medium.

【0006】[0006]

【発明が解決しようとする課題】ところが、以上の如き
磁気抵抗効果型ヘッドの主要部分である磁気抵抗効果素
子層1は、一般的に、成膜の不完全さに起因する不均一
性を有しており、磁気抵抗効果素子層1の内部には、記
録面上の磁場の作用により磁区を区切る磁壁の移動が生
じることから、磁気抵抗効果型ヘッドの再生信号中に、
前記磁壁の移動に伴う雑音、所謂、バルクハウゼンノイ
ズが混在する不都合があり、磁気抵抗効果型ヘッドの実
用化に際しては、このバルクハウゼンノイズを低減する
ことが重要な課題となっている。
However, the magnetoresistive effect element layer 1 which is the main part of the magnetoresistive effect type head as described above generally has non-uniformity due to incomplete film formation. Therefore, in the magnetoresistive effect element layer 1, since the domain wall that separates the magnetic domain is moved by the action of the magnetic field on the recording surface, during the reproduction signal of the magnetoresistive head,
There is an inconvenience that noise due to the movement of the domain wall, so-called Barkhausen noise, is mixed, and it is an important subject to reduce the Barkhausen noise when the magnetoresistive head is put to practical use.

【0007】バルクハウゼンノイズを低減するための有
効な方法として、C.Tsang等により「IEEE Transaction
s on Magnetics,Vol.25,No.5,1989,pp.3692-3694」
に提案された方法がある。これは、磁気抵抗効果素子層
1の内部磁極が生じる部分、即ち、磁化容易軸の方向
(長手方向)両端部に、例えば、FeMn等の反強磁性
体材料からなる反強磁性体層を積層形成する方法であ
る。このようにした場合、磁気抵抗効果素子層1と反強
磁性体層との界面に生じる交換結合磁界の作用により、
磁気抵抗効果素子層1の内部が単一磁区となり、磁壁の
移動を伴うバルクハウゼンノイズの発生を大幅に低減す
ることができる。
As an effective method for reducing Barkhausen noise, C. Tsang et al.
s on Magnetics, Vol.25, No.5, 1989, pp.3692-3694 "
There is a method proposed in. This is because an antiferromagnetic material layer made of an antiferromagnetic material such as FeMn is laminated on the portion where the internal magnetic pole of the magnetoresistive effect element layer 1 is generated, that is, both ends in the direction of the easy magnetization axis (longitudinal direction). It is a method of forming. In this case, due to the action of the exchange coupling magnetic field generated at the interface between the magnetoresistive effect element layer 1 and the antiferromagnetic material layer,
The inside of the magnetoresistive effect element layer 1 becomes a single magnetic domain, and the generation of Barkhausen noise accompanying the movement of the domain wall can be significantly reduced.

【0008】ところが、磁気抵抗効果素子層1に反強磁
性体層を積層形成する場合、この間に空気中に曝される
磁気抵抗効果素子層1の表面が酸化され、前記両層の界
面に酸化膜が介在することになり、このような界面にお
いては、交換結合磁界の発生が安定してなされず、バル
クハウゼンノイズの低減効果が十分に得られないという
問題がある。
However, when an antiferromagnetic material layer is laminated on the magnetoresistive effect element layer 1, the surface of the magnetoresistive effect element layer 1 exposed to the air during this time is oxidized and the interface between the two layers is oxidized. Since the film is interposed, the exchange coupling magnetic field is not stably generated at such an interface, and there is a problem that the effect of reducing Barkhausen noise cannot be sufficiently obtained.

【0009】そこで特開平5-54337号公報には、磁気抵
抗効果素子層1の形成後、該磁気抵抗効果素子層1の両
端部を除いてマスク材料により覆い、この状態で軟磁性
材料からなる軟磁性層と反強磁材料からなる反強磁性体
層とを連続成膜し、その後マスク材料を除去する方法が
提案されている。図8は、以上の方法により得られる磁
気抵抗効果型ヘッドの斜視図である。
Therefore, in Japanese Unexamined Patent Publication (Kokai) No. 5-54337, after the magnetoresistive effect element layer 1 is formed, the magnetoresistive effect element layer 1 is covered with a mask material except both ends thereof, and in this state, the magnetoresistive effect element layer 1 is made of a soft magnetic material. A method has been proposed in which a soft magnetic layer and an antiferromagnetic material layer made of an antiferromagnetic material are continuously formed, and then the mask material is removed. FIG. 8 is a perspective view of a magnetoresistive head obtained by the above method.

【0010】図示の如く、矩形形状をなす磁気抵抗効果
素子層1の長手方向両端部には、一対の電極層2,2の
接触位置の更に外側に、軟磁性層6及び反強磁性体層7
がこの順に積層形成してある。軟磁性層6と反強磁性体
層7とは、連続的な成膜により得られたものであるか
ら、両者の界面には酸化膜が存在せず、両層間に交換結
合磁界が発生することになり、特開平5-54337号公報に
おいては、この交換結合磁界が磁気抵抗効果素子層1に
も作用し、該磁気抵抗効果素子層1の内部が単一磁区化
されると記されている。
As shown in the drawing, the soft magnetic layer 6 and the antiferromagnetic material layer are provided outside the contact position of the pair of electrode layers 2 and 2 at both longitudinal ends of the magnetoresistive element layer 1 having a rectangular shape. 7
Are laminated in this order. Since the soft magnetic layer 6 and the antiferromagnetic layer 7 are obtained by continuous film formation, there is no oxide film at the interface between them and an exchange coupling magnetic field is generated between both layers. Therefore, in JP-A-5-54337, it is described that this exchange coupling magnetic field also acts on the magnetoresistive effect element layer 1 and the inside of the magnetoresistive effect element layer 1 is made into a single magnetic domain. .

【0011】ところが、軟磁性層6と反強磁性体層7と
の間に発生する交換結合磁界の磁気抵抗効果素子層1へ
の作用は、実際には極めて弱いものであり、磁気抵抗効
果素子層1の単一磁区化が十分に図られているとは言え
ず、バルクハウゼンノイズの低減効果は殆ど期待できな
いものとなっている。
However, the action of the exchange coupling magnetic field generated between the soft magnetic layer 6 and the antiferromagnetic material layer 7 on the magnetoresistive effect element layer 1 is actually extremely weak, and the magnetoresistive effect element is therefore weak. It cannot be said that the single magnetic domain of the layer 1 is sufficiently achieved, and the effect of reducing Barkhausen noise can hardly be expected.

【0012】本発明は斯かる事情に鑑みてなされたもの
であり、磁気抵抗効果素子層の内部を有効に単一磁区状
態とすることができ、磁壁移動に起因するバルクハウゼ
ンノイズの発生を効果的に低減し得る磁気抵抗効果型ヘ
ッドの製造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to effectively bring the inside of the magnetoresistive effect element layer into a single magnetic domain state, and to effectively generate Barkhausen noise due to domain wall motion. It is an object of the present invention to provide a method of manufacturing a magnetoresistive effect type head that can be effectively reduced.

【0013】[0013]

【課題を解決するための手段】本発明に係る磁気抵抗効
果型ヘッドの製造方法は、磁気記録媒体の記録情報を、
これの記録面に臨ませた磁気抵抗効果素子層の抵抗変化
を利用して再生する磁気抵抗効果型ヘッドの製造方法に
おいて、前記磁気抵抗効果素子層の形成後に相互に連続
して実施され、該磁気抵抗効果素子層の磁化容易軸の方
向に適長隔てた2か所を減厚する工程と、この減厚部分
を含む範囲に、反強磁性体層を積層形成する工程とを含
むことを特徴とする。
A method of manufacturing a magnetoresistive effect head according to the present invention stores information recorded on a magnetic recording medium,
In a method of manufacturing a magnetoresistive effect head which reproduces by utilizing the resistance change of the magnetoresistive effect element layer facing the recording surface, the magnetoresistive effect element layer is continuously formed after the magnetoresistive effect element layer is formed. A step of reducing the thickness of two portions of the magnetoresistive effect element layer, which are separated by an appropriate length in the direction of the easy axis of magnetization, and a step of laminating and forming an antiferromagnetic material layer in a range including this reduced thickness portion. Characterize.

【0014】[0014]

【作用】本発明においては、基板上に磁気抵抗効果素子
層を形成した後、この磁気抵抗効果素子層の磁化容易軸
の方向に適長隔てた2か所、一般的には、長手方向の両
端部を所定量だけ減厚することにより、表面に形成され
た酸化膜を除去すると共に更に下部の磁気抵抗効果素子
層を削り、この後に連続して、減厚部分を含む範囲、即
ち、酸化膜が除去された部分に反強磁性体層を積層形成
し、磁気抵抗効果素子層と反強磁性体層とを酸化膜を介
することなく直接的に接触させると共に磁気抵抗効果素
子層表面の結晶配向性を高め、反強磁性体層とのエピタ
キシーを向上させて、両層の界面に安定して生じる交換
結合磁界の作用により磁気抵抗効果素子層内部を単一磁
区状態となし、バルクハウゼンノイズの発生を低減す
る。また磁気抵抗効果素子層の減厚は、両端部に対して
のみ行い、トラック幅となる中央部は形成時の厚みを保
ったまま残し、磁気抵抗効果の弱化による出力の低下を
防止する。
In the present invention, after the magnetoresistive effect element layer is formed on the substrate, the magnetoresistive effect element layer is formed at two appropriate distances in the direction of the easy axis of magnetization, generally in the longitudinal direction. By reducing the thickness of both ends by a predetermined amount, the oxide film formed on the surface is removed and the magnetoresistive effect element layer underneath is further scraped off. An antiferromagnetic material layer is laminated and formed on the portion where the film is removed, and the magnetoresistive effect element layer and the antiferromagnetic material layer are brought into direct contact with each other without interposing an oxide film, and the crystal on the surface of the magnetoresistive effect element layer is formed. Barkhausen noise is enhanced by improving the orientation, improving the epitaxy with the antiferromagnetic layer, and making the magnetoresistive effect element layer a single magnetic domain state by the action of the exchange coupling magnetic field stably generated at the interface between both layers. Reduce the occurrence of. Further, the thickness of the magnetoresistive effect element layer is reduced only at both ends, and the center portion which is the track width is left as it is while maintaining the thickness at the time of formation, thereby preventing a decrease in output due to weakening of the magnetoresistive effect.

【0015】[0015]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図1は、本発明に係る磁気抵抗効果型ヘッ
ドの製造方法(以下本発明方法という)により得られる
磁気抵抗効果型ヘッドの斜視図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 1 is a perspective view of a magnetoresistive head obtained by a method of manufacturing a magnetoresistive head according to the present invention (hereinafter referred to as a method of the present invention).

【0016】この磁気抵抗効果型ヘッドは、従来の磁気
抵抗効果型ヘッドと同様、矩形形状を有する磁気抵抗効
果素子層1と、これの長手方向両側に夫々の一部を接触
させた一対の電極層2,2とを備える一方、電極層2,
2の接触位置の更に外側に延びる磁気抵抗効果素子層1
の両端に減厚部10,10を設け、これらの減厚部10,10の
夫々に積層された反強磁性体層5を備え、これらの各層
を、全体を被包する絶縁材料製の保護層3と共にスライ
ダを兼ねる基板4の端面に積層形成した構成となってい
る。なお、磁気抵抗効果素子層1及び電極層2,2の厚
さ方向両側には、外部からの磁気的ノイズを遮蔽するた
めの磁気シールド層が各別の絶縁層を介して積層されて
いるが、図1には、これらの図示を省略している。
This magnetoresistive head, like the conventional magnetoresistive head, has a rectangular magnetoresistive element layer 1 and a pair of electrodes, each of which is in contact with both sides in the longitudinal direction thereof. Layers 2, 2, while electrode layers 2,
The magnetoresistive element layer 1 extending further outside the contact position 2
Are provided with reduced thickness portions 10 and 10 at both ends thereof, and an antiferromagnetic material layer 5 is laminated on each of these reduced thickness portions 10 and 10. Each of these layers is protected by an insulating material that covers the whole. The layer 3 is laminated on the end surface of the substrate 4 which also serves as a slider. A magnetic shield layer for shielding magnetic noise from the outside is laminated on both sides in the thickness direction of the magnetoresistive effect element layer 1 and the electrode layers 2 and 2 via separate insulating layers. 1 are omitted in FIG.

【0017】図2〜図6は、本発明方法の実施手順の説
明図である。なお、これらの各図中の(a)は縦断面図
であり、(b)は平面図である。
2 to 6 are explanatory views of the procedure for carrying out the method of the present invention. In each of these figures, (a) is a vertical sectional view and (b) is a plan view.

【0018】基板4は、例えば、アルミナ(Al
2 3 )と炭化チタン(TiC)との焼結体であるアル
チック(Al2 3 −TiC)製であり、この基板4上
にまず、下部シールド層(図示省略)と絶縁層(図示省
略)とを積層形成し、その上に磁気抵抗効果素子層1を
形成する。磁気抵抗効果素子層1は、NiFe合金(パ
ーマロイ)、NiCo合金等の強磁性材料からなり、例
えば、RFスパッタ装置を用いたスパッタリングによ
り、図2(a)に示す如く、基板4の表面上に20nm
前後の所定の厚みを有して成膜されたものである。この
磁気抵抗効果素子層1はまた、図2(b)に示す如く、
50μm〜60μmの長さと、6μm前後の幅とを有す
る矩形の平面形状をなしており、前述した成膜に際し一
軸磁気異方性を誘起させることにより、長さ方向を磁化
容易軸としてある。
The substrate 4 is made of, for example, alumina (Al
2 O 3 ) and titanium carbide (TiC), which are made of AlTiC (Al 2 O 3 —TiC), and a lower shield layer (not shown) and an insulating layer (not shown) are first formed on the substrate 4. ) And are laminated, and the magnetoresistive effect element layer 1 is formed thereon. The magnetoresistive effect element layer 1 is made of a ferromagnetic material such as NiFe alloy (permalloy) or NiCo alloy, and is formed on the surface of the substrate 4 by, for example, sputtering using an RF sputtering device, as shown in FIG. 20 nm
The film is formed to have a predetermined thickness before and after. This magnetoresistive effect element layer 1 also has, as shown in FIG.
It has a rectangular planar shape having a length of 50 μm to 60 μm and a width of about 6 μm, and the uniaxial magnetic anisotropy is induced in the film formation described above, and the length direction is the easy magnetization axis.

【0019】その後、図3に示す如く、磁気抵抗効果素
子層1の長手方向両端部を夫々含む2か所を除き、基板
4及び磁気抵抗効果素子層1の上部を覆う態様にフォト
レジスト膜8を形成する。このフォトレジスト膜8の非
形成部分は、図3(b)に示す位置に限らず、磁化容易
軸の方向(長手方向)に適長隔てた2か所を夫々含んで
おればよい。但し、磁気抵抗効果素子層1の全体を有効
に使用するためには、図3に示す位置、即ち、磁気抵抗
効果素子層1の長手方向両端部を夫々含む2か所にフォ
トレジスト膜8の非形成部分を設定するのが望ましい。
After that, as shown in FIG. 3, the photoresist film 8 is formed so as to cover the substrate 4 and the upper portion of the magnetoresistive effect element layer 1 except for two locations including both ends in the longitudinal direction of the magnetoresistive effect element layer 1. To form. The non-formed portion of the photoresist film 8 is not limited to the position shown in FIG. 3B, but may include two portions each separated by an appropriate length in the direction of the easy axis of magnetization (longitudinal direction). However, in order to effectively use the entire magnetoresistive effect element layer 1, the photoresist film 8 is formed at the position shown in FIG. 3, that is, at two locations including both ends in the longitudinal direction of the magnetoresistive effect element layer 1. It is desirable to set the non-formed part.

【0020】フォトレジスト膜8の形成の後、この状態
のまま、例えば、デュアルイオンスパッタ装置等の成膜
装置に導入し、まずArミリングを実施する。これによ
り、フォトレジスト膜8により覆われていない磁気抵抗
効果素子層1の両端側の2か所は、Arイオンのスパッ
タにより除去され、図4に示す如く、所定の減厚が施さ
れた減厚部10,10となる。この減厚部10,10の厚さは、
ミリング時間の管理により自在に設定できるが、磁気抵
抗効果素子層1表面に形成される酸化膜の厚さが2.5
nm前後であり、これを完全に除去する必要があるこ
と、また2nm以下の厚さとした場合には、NiFeの
結晶配向性が弱まり、後に積層される反強磁性体層5の
エピタキシャル成長を阻害することになることを考慮に
入れ、磁気抵抗効果素子層1の表面からの減厚量が5n
m以上となり、また、除去後に得られる自身の厚さが2
nm以上となる範囲内にて設定するのが望ましい。この
望ましい範囲は、バルクハウゼンノイズの軽減効果を調
べるべく行った後述する試験の結果により得られたもの
である。
After the photoresist film 8 is formed, in this state, it is introduced into a film forming apparatus such as a dual ion sputtering apparatus, and Ar milling is first performed. As a result, the two portions on both ends of the magnetoresistive effect element layer 1 which are not covered with the photoresist film 8 are removed by the Ar ion sputtering, and as shown in FIG. Thick parts 10 and 10. The thickness of the reduced thickness parts 10 and 10 is
It can be set freely by controlling the milling time, but the thickness of the oxide film formed on the surface of the magnetoresistive effect element layer 1 is 2.5.
The thickness is about 1 nm, and it is necessary to completely remove it. If the thickness is 2 nm or less, the crystal orientation of NiFe is weakened and the epitaxial growth of the antiferromagnetic material layer 5 to be laminated later is hindered. Taking this into consideration, the thickness reduction from the surface of the magnetoresistive effect element layer 1 is 5n.
m or more, and the own thickness obtained after removal is 2
It is desirable to set within the range of not less than nm. This desirable range is obtained by the result of the test described later for examining the effect of reducing Barkhausen noise.

【0021】以上の如き減厚部10,10の形成工程の後、
これに連続してFeMn合金等の反強磁性材料のスパッ
タリングにより、図5に示す如く、所定厚さの反強磁性
体層5を形成する。この反強磁性体層5の厚みは、前記
磁気抵抗効果素子層1の減厚部10,10との間に安定した
交換結合磁界が形成されることを考慮した場合、15n
m以上、50nm以下とするのが望ましい。なお、この
ような反強磁性体層5の形成工程は、一方向の磁場中に
て行なう必要がある。
After the steps of forming the reduced thickness portions 10 and 10 as described above,
Subsequently, an antiferromagnetic material layer 5 having a predetermined thickness is formed by sputtering an antiferromagnetic material such as FeMn alloy as shown in FIG. Considering that a stable exchange coupling magnetic field is formed between the antiferromagnetic material layer 5 and the reduced thickness portions 10 of the magnetoresistive effect element layer 1, it is 15 n.
It is desirable that the thickness is not less than m and not more than 50 nm. The step of forming such an antiferromagnetic material layer 5 needs to be performed in a magnetic field in one direction.

【0022】以上の如き反強磁性体層5の形成工程を終
えた後、成膜装置から基板4を取り出し、有機溶剤中で
の洗浄によりフォトレジスト膜8を除去する。図6は、
フォトレジスト膜8を除去した状態を示している。前述
した形成工程において、反強磁性体層5は、図5に示す
如く、フォトレジスト膜8上にも形成されるが、この部
分は、フォトレジスト膜8の除去工程において同時に除
去される結果、図6に示す如く、磁気抵抗効果素子層1
両端の減厚部10,10を含む範囲にのみ反強磁性体層5,
5が残る。その後、これらの反強磁性体層5,5の内側
に磁気抵抗効果素子層1との接触部を夫々有して電極層
2,2を形成し、その上に絶縁層(図示省略)と上部シ
ールド層(図示省略)とを積層し、更にこれらの上部を
覆う態様にて絶縁材料製の保護層3を形成して、図1に
示す如き磁気抵抗効果型ヘッドが得られる。
After the steps of forming the antiferromagnetic material layer 5 as described above are completed, the substrate 4 is taken out from the film forming apparatus and the photoresist film 8 is removed by cleaning in an organic solvent. Figure 6
The state where the photoresist film 8 is removed is shown. In the forming process described above, the antiferromagnetic material layer 5 is also formed on the photoresist film 8 as shown in FIG. 5, but this part is removed at the same time in the removing process of the photoresist film 8, As shown in FIG. 6, the magnetoresistive effect element layer 1
The antiferromagnetic layer 5, 5 only in the range including the reduced thickness portions 10, 10 at both ends
5 remains. After that, the electrode layers 2 and 2 are formed inside the antiferromagnetic layers 5 and 5, respectively, each having a contact portion with the magnetoresistive effect element layer 1, and an insulating layer (not shown) and an upper portion are formed thereon. A shield layer (not shown) is laminated, and a protective layer 3 made of an insulating material is further formed so as to cover the upper portion of the shield layer, and the magnetoresistive head shown in FIG. 1 is obtained.

【0023】このように本発明方法により得られる磁気
抵抗効果型ヘッドは、磁気抵抗効果素子層1の両端部に
おいて、酸化膜が除去された減厚部10,10上に反強磁性
体層5,5が積層されており、両者の界面に安定した交
換結合磁界が発生する上、減厚部10,10が磁気抵抗効果
素子層1と一体であることから、磁気抵抗効果素子層1
の内部は、前記交換結合磁界の作用により全長に亘って
単一磁区状態となり、電極層2,2間に取り出される再
生出力中のバルクハウゼンノイズを大幅に軽減すること
ができる。
As described above, in the magnetoresistive head obtained by the method of the present invention, the antiferromagnetic material layer 5 is formed on the reduced thickness portions 10 and 10 from which the oxide film is removed at both ends of the magnetoresistive effect element layer 1. , 5 are laminated, a stable exchange coupling magnetic field is generated at the interface between the two, and the thinned portions 10, 10 are integrated with the magnetoresistive effect element layer 1. Therefore, the magnetoresistive effect element layer 1
Due to the action of the exchange-coupling magnetic field, the inside of the magnetic field is in a single magnetic domain state over the entire length, and Barkhausen noise in the reproduction output extracted between the electrode layers 2 and 2 can be significantly reduced.

【0024】最後に、本発明方法によるバルクハウゼン
ノイズの軽減効果を調べるために行った試験の結果につ
いて述べる。この試験は、ガラス板上にソフトバイアス
用のCoZrMo膜(厚さ20nm、)及び磁気分離用
のTi膜(厚さ10nm)を形成した基板4を用い、こ
れの表面上にNiFe製の磁気抵抗効果素子層1(厚さ
25nm)を、長さ60μm、幅6μmの矩形形状をな
して形成し、該磁気抵抗効果素子層1の両端から各25
μmの範囲においてArミリングを実施し、0,2,
4,5,7,10,15,21,23,24nmだけ除
去して減厚部10,10を夫々得た後、これらの夫々の上部
にFeMn製の反強磁性体層5(厚さ20nm)を積層
形成し、磁気抵抗効果素子層1の中央に10μmの作用
領域を残してCu製の電極層2,2を形成した磁気抵抗
効果型ヘッドの夫々に対し、6mAのセンス電流を流
し、50Hzの交番磁界中にて得られる出力波形を観察
して、バルクハウゼンノイズによる出力波形の乱れの有
無を調べたものである。この結果を表1に示す。
Finally, the results of tests conducted to investigate the effect of Barkhausen noise reduction by the method of the present invention will be described. This test uses a substrate 4 in which a CoZrMo film (20 nm thick) for soft bias and a Ti film (10 nm thick) for magnetic separation are formed on a glass plate, and a magnetic resistance made of NiFe is formed on the surface of the substrate 4. The effect element layer 1 (thickness: 25 nm) is formed in a rectangular shape having a length of 60 μm and a width of 6 μm, and the magnetoresistive effect element layer 1 is provided with 25 pieces from each end.
Ar milling was performed in the range of μm to obtain 0, 2,
After removing only 4, 5, 7, 10, 15, 21, 21, 23 and 24 nm to obtain the reduced thickness portions 10 and 10, respectively, the antiferromagnetic material layer 5 made of FeMn (thickness: 20 nm) is formed on the upper portion of each of them. ) Is formed in a laminated manner, and a sense current of 6 mA is applied to each of the magnetoresistive heads in which the Cu electrode layers 2 and 2 are formed with a 10 μm active region left in the center of the magnetoresistive element layer 1. The output waveform obtained in an alternating magnetic field of 50 Hz was observed, and the presence or absence of disturbance of the output waveform due to Barkhausen noise was examined. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示されているように、減厚部10,10
を得る際の除去量が0〜4nmである各例、及び除去量
が24nmである例においては、夫々出力波形の乱れが
観測される。これらの内、前者は、磁気抵抗効果素子層
1表面の酸化膜の除去が不十分であること、及び該磁気
抵抗効果素子層1の表面における結晶配向性が十分でな
いことに起因するものであり、また後者は、除去後の減
厚部10,10の厚さ不足により、反強磁性体層5のエピタ
キシャル成長が阻害されることに起因するものである。
これらに対し、前記除去量が5〜23nmである場合に
は、バルクハウゼンノイズによる出力信号の乱れは観察
されず、本発明方法は、減厚部10,10を得る際の除去量
を適正に設定することにより、即ち、磁気抵抗効果素子
層1の表面からの減厚量が5nm以上となり、また、除
去部に得られる減厚部10,10自身の厚さが2nm以上と
なる範囲内に設定することにより、バルクハウゼンノイ
ズの軽減に有効であることが明らかとなった。
As shown in Table 1, the reduced thickness portions 10, 10
Distortion of the output waveform is observed in each example in which the removal amount is 0 to 4 nm and the removal amount is 24 nm when obtaining Of these, the former is due to insufficient removal of the oxide film on the surface of the magnetoresistive effect element layer 1 and insufficient crystal orientation on the surface of the magnetoresistive effect element layer 1. The latter is due to the fact that the epitaxial growth of the antiferromagnetic layer 5 is hindered by the insufficient thickness of the reduced thickness portions 10 and 10 after the removal.
On the other hand, when the amount of removal is 5 to 23 nm, the disturbance of the output signal due to Barkhausen noise is not observed, and the method of the present invention properly adjusts the amount of removal when the reduced thickness portions 10 and 10 are obtained. By setting, that is, within a range in which the thickness reduction amount from the surface of the magnetoresistive effect element layer 1 becomes 5 nm or more, and the thickness of the thickness reduction parts 10 and 10 obtained in the removed portion becomes 2 nm or more. By setting it, it became clear that it is effective in reducing Barkhausen noise.

【0027】[0027]

【発明の効果】以上詳述した如く本発明方法によれば、
磁気抵抗効果素子層の磁化容易軸の方向に適長隔てた2
か所を所定量だけ減厚して表面に形成された酸化膜を除
去し、この後に連続して、酸化膜が除去された減厚部分
に反強磁性体層を積層形成するから、磁気抵抗効果素子
層と反強磁性体層とが酸化膜を介することなく直接的に
接触し、両層の界面に安定して交換結合磁界が生じ、磁
気抵抗効果素子層内部を単一磁区状態とすることがで
き、磁壁の移動に起因するバルクハウゼンノイズを大幅
に軽減することが可能となる等、本発明は優れた効果を
奏する。
As described in detail above, according to the method of the present invention,
2 separated by an appropriate length in the direction of the easy axis of magnetization of the magnetoresistive element layer
The oxide film formed on the surface is removed by reducing the thickness by a predetermined amount, and after that, the antiferromagnetic material layer is formed continuously on the reduced portion where the oxide film has been removed. The effect element layer and the antiferromagnetic material layer are in direct contact with each other without interposing an oxide film, a stable exchange coupling magnetic field is generated at the interface between both layers, and the inside of the magnetoresistive effect element layer is brought into a single magnetic domain state. The present invention has an excellent effect such that Barkhausen noise caused by the movement of the domain wall can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法により得られる磁気抵抗効果型ヘッ
ドの斜視図である。
FIG. 1 is a perspective view of a magnetoresistive head obtained by the method of the present invention.

【図2】本発明方法の実施手順の説明図である。FIG. 2 is an explanatory diagram of an implementation procedure of the method of the present invention.

【図3】本発明方法の実施手順の説明図である。FIG. 3 is an explanatory diagram of an implementation procedure of the method of the present invention.

【図4】本発明方法の実施手順の説明図である。FIG. 4 is an explanatory diagram of an implementation procedure of the method of the present invention.

【図5】本発明方法の実施手順の説明図である。FIG. 5 is an explanatory diagram of an implementation procedure of the method of the present invention.

【図6】本発明方法の実施手順の説明図である。FIG. 6 is an explanatory diagram of an implementation procedure of the method of the present invention.

【図7】一般的な磁気抵抗効果型ヘッドの斜視図であ
る。
FIG. 7 is a perspective view of a general magnetoresistive head.

【図8】バルクハウゼンノイズの低減を図った従来の磁
気抵抗効果型ヘッドの斜視図である。
FIG. 8 is a perspective view of a conventional magnetoresistive head in which Barkhausen noise is reduced.

【符号の説明】[Explanation of symbols]

1 磁気抵抗効果素子層 2 電極層 3 保護層 4 基板 5 反強磁性体層 8 フォトレジスト膜 10 減厚部 1 Magnetoresistive Element Layer 2 Electrode Layer 3 Protective Layer 4 Substrate 5 Antiferromagnetic Layer 8 Photoresist Film 10 Reduced Thickness Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁気記録媒体の記録情報を、これの記録
面に臨ませた磁気抵抗効果素子層の抵抗変化を利用して
再生する磁気抵抗効果型ヘッドの製造方法において、前
記磁気抵抗効果素子層の形成後に相互に連続して行わ
れ、該磁気抵抗効果素子層の磁化容易軸の方向に適長隔
てた2か所を減厚する工程と、この減厚部分を含む範囲
に、反強磁性体層を積層形成する工程とを含むことを特
徴とする磁気抵抗効果型ヘッドの製造方法。
1. A method of manufacturing a magnetoresistive head in which recorded information of a magnetic recording medium is reproduced by utilizing a resistance change of a magnetoresistive element layer facing a recording surface of the magnetoresistive element. A step of successively reducing the thickness of the magnetoresistive effect element layer at two positions separated by an appropriate length in the direction of the easy axis of magnetization, and a range including this reduced thickness portion, and anti-strengthening A method of manufacturing a magnetoresistive head, comprising the step of stacking magnetic layers.
JP3391994A 1994-03-03 1994-03-03 Manufacture of resistance effect type head Pending JPH07244821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3391994A JPH07244821A (en) 1994-03-03 1994-03-03 Manufacture of resistance effect type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3391994A JPH07244821A (en) 1994-03-03 1994-03-03 Manufacture of resistance effect type head

Publications (1)

Publication Number Publication Date
JPH07244821A true JPH07244821A (en) 1995-09-19

Family

ID=12399934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3391994A Pending JPH07244821A (en) 1994-03-03 1994-03-03 Manufacture of resistance effect type head

Country Status (1)

Country Link
JP (1) JPH07244821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344955B1 (en) 1998-07-08 2002-02-05 Tdk Corporation System and methods for providing a magnetoresistive element having an improved longitudinal bias magnetic field
US6452385B1 (en) 1999-02-08 2002-09-17 Tdk Corporation Magnetoresistive effect sensor with double-layered film protection layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344955B1 (en) 1998-07-08 2002-02-05 Tdk Corporation System and methods for providing a magnetoresistive element having an improved longitudinal bias magnetic field
US6452385B1 (en) 1999-02-08 2002-09-17 Tdk Corporation Magnetoresistive effect sensor with double-layered film protection layer

Similar Documents

Publication Publication Date Title
EP0911810B1 (en) Magnetic tunnel junction devices
US5532892A (en) Soft adjacent layer biased magnetoresistive device incorporating a natural flux closure design utilizing coplanar permanent magnet thin film stabilization
US5809636A (en) Method of making a magnetoresistive thin film magnetic head with specific shapes of leads
JP2001176028A (en) Thin film magnetic head and method of producing the same
US5573809A (en) Process for forming a magnetoresistive device
JP3583649B2 (en) Thin film magnetic head, method of manufacturing the same, and magnetoresistive device
GB2390217A (en) Magnetic head and a method of manufacturing the magnetic head
US20040214353A1 (en) Manufacturing method of CPP type magnetic sensor having current-squeezing path
JP4005356B2 (en) Magnetoresistive head, magnetoresistive head manufacturing method, and information reproducing apparatus
US5896251A (en) Magnetoresistance effect head with conductor film pair and magnetic field proving film pair disposed between substrate and magnetoresistance effect film
JPH10149513A (en) Magneto-resistive composite head
JPH07244821A (en) Manufacture of resistance effect type head
JPH08235542A (en) Magnetic reluctance effect element
JP3639529B2 (en) Thin film magnetic head and method of manufacturing thin film magnetic head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JPH103617A (en) Magneto-resistive effect type magnetic head and its manufacture
JP2897725B2 (en) Magnetoresistive head
JPH04245011A (en) Magnetic resistance effect type head
JPH0916916A (en) Thin-film magnetic head and its manufacture
JP3164050B2 (en) Manufacturing method of magnetoresistive composite head
JPH0836715A (en) Magnetoresistance effect-type magnetic head
JPH0918069A (en) Magnetic reluctance device and its formation process
JPH10289423A (en) Manufacture of combined type head for vertical magnetic recording
JPH05314432A (en) Thin-film magnetic head and manufacture thereof
JPH11296818A (en) Magnetoresistance head, magnetic head and magnetic recording and reproducing device