JPH07244015A - Measuring method for contact potential difference of polymer powder - Google Patents

Measuring method for contact potential difference of polymer powder

Info

Publication number
JPH07244015A
JPH07244015A JP6036915A JP3691594A JPH07244015A JP H07244015 A JPH07244015 A JP H07244015A JP 6036915 A JP6036915 A JP 6036915A JP 3691594 A JP3691594 A JP 3691594A JP H07244015 A JPH07244015 A JP H07244015A
Authority
JP
Japan
Prior art keywords
powder
potential difference
contact potential
measurement
polymer powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6036915A
Other languages
Japanese (ja)
Inventor
Takayuki Itakura
隆行 板倉
Takashi Tejima
孝 手嶋
Shigeki Yamada
茂樹 山田
Hiroaki Masuda
弘昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP6036915A priority Critical patent/JPH07244015A/en
Publication of JPH07244015A publication Critical patent/JPH07244015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To efficiently measure contact potential difference of a polymer powder within a short time by heat treating the powder at a temperature near the glass transition temperature of the polymer to remove the static charge, disposing the powder between vibration electrodes by cooling or without cooling after the removing the charge, and measuring the potential difference of the powder. CONSTITUTION:Before the measurement of contact potential difference of a polymer powder, the power is heat-treated at a temperature near its glass transition temperature of the powder (a heat treating time of 10-30min), thereby lowering the potential of the powder to zero or the vicinity of the zero within a short time, and hence a true contact potential difference of the powder can be obtained within a short time. A time required for measuring the difference is several minutes, and a time for a preparatory operation necessary for removing the static charge may also be about 30-40min. Further, since an operation for the removing static charge may be a simple sheet treatment, the measurement of a true contact potential difference of the powder can be efficiently executed within a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子粉体の接触電位
差の測定方法に関するもので、より詳細には、従来測定
に長時間を必要としていた高分子粉体の接触電位差を短
時間の内に能率よく測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a contact potential difference of a polymer powder, and more specifically, it can reduce a contact potential difference of a polymer powder which has been conventionally required to be measured for a short time. It relates to a method for measuring efficiently.

【0002】[0002]

【従来の技術】粉体と金属とが接触すると、その境界面
に電位差が発生し、この電位差は粉体の種類及び金属表
面の状態によって相違し、粉体の接触電位差と呼ばれて
いる。この接触電位差Vcは、金属表面の仕事関数をφ
A 、粉体表面の仕事関数をφBとすると、式
2. Description of the Related Art When a powder and a metal come into contact with each other, a potential difference is generated at the interface between the powder and the metal. This potential difference varies depending on the type of powder and the state of the metal surface, and is called the contact potential difference of the powder. This contact potential difference Vc represents the work function of the metal surface by φ.
Let A be the work function of the powder surface and φ B be the formula

【数1】VC =−(φA −φB )/e 式中、eは電気素量(1.6×10-19 C)である、で
表わされる。
## EQU1 ## V C = − (φ A −φ B ) / e In the equation, e is the elementary charge (1.6 × 10 −19 C).

【0003】粉体の製造及び各種処理工程においては、
粉体の帯電が起り、これが各種トラブルの原因になる場
合が多く、また電子写真用トナーや各種粉体塗料や粉体
コーティングのように、粉体の帯電を利用する分野にお
いては、帯電特性の定量的評価や特性制御が重要な課題
となりつつある。粉体−金属間の接触電位差は、粉体粒
子の帯電符号及びその程度を評価する上での基本的特性
の一つであり、精度及び再現性に優れた測定法が望まれ
ている。
In the production of powder and various processing steps,
In many cases, powder electrification causes various troubles, and in the field of using electrification of powder such as electrophotographic toner and various powder paints and powder coating, charging characteristics Quantitative evaluation and characteristic control are becoming important issues. The contact potential difference between powder and metal is one of the basic characteristics in evaluating the charge code of powder particles and the degree thereof, and a measurement method excellent in accuracy and reproducibility is desired.

【0004】金属−粉体の接触電位差の測定法として
は、ケルビン法(Kelvin,L.:Phil.Ma
g.,46 82(1898)を利用したものとして、
特開平2−270885号公報に、粉体試料を支持する
下部電極に対向する上部電極を電極間距離が変化するよ
うに振動させ、両極間に電圧を印加して電流を測定し、
検出電流値がゼロのときの電圧を粉体の接触電位差とし
て求める方法が記載されている。
The metal-powder contact potential difference is measured by the Kelvin method (Kelvin, L .: Phil. Ma).
g. , 46 82 (1898) is used,
In JP-A-2-270885, an upper electrode facing a lower electrode supporting a powder sample is vibrated so that the distance between the electrodes changes, and a voltage is applied between both electrodes to measure a current,
A method for obtaining the voltage when the detected current value is zero as the contact potential difference of the powder is described.

【0005】また、本発明者等の提案にかかる特願平5
−267645号明細書には、粉体試料を支持する下部
電極と、下部電極に対向する上部電極と、上部電極を電
極間距離が変化するように振動させる振動機構と、両極
間に電圧を印加するための可変圧デジタル電源と、両極
間に流れる電流を検出するためのデジタル電流計と、測
定印加電圧及びそのステップと測定点数とを設定し、印
加電圧及び検出電流値を保存し、これらから絶対値とし
ての電力を積分により算出し、且つ印加電圧と電力とに
関して一次回帰を求め、電力ゼロの印加電圧を粉体の接
触電位差として算出するコンピュータと、コンピュータ
とデジタル電源及びデジタル電流計とを接続するインタ
ーフェースとから成ることを特徴とする粉体の接触電位
差の測定装置が記載されている。
[0005] Further, Japanese Patent Application No.
No. 267645 discloses a lower electrode that supports a powder sample, an upper electrode that faces the lower electrode, a vibration mechanism that vibrates the upper electrode so that the distance between the electrodes changes, and a voltage is applied between both electrodes. The variable voltage digital power supply to do so, the digital ammeter to detect the current flowing between both poles, the applied voltage and the step and the number of measurement points are set, and the applied voltage and the detected current value are saved. A computer that calculates electric power as an absolute value by integration, calculates linear regression with respect to applied voltage and electric power, and calculates an applied voltage of zero electric power as a contact potential difference of powder, a computer, a digital power supply, and a digital ammeter. An apparatus for measuring the contact potential difference of powder is described, which comprises a connecting interface.

【0006】[0006]

【発明が解決しようとする課題】上記提案は、金属−粉
体の接触電位差をかなり精度よく測定可能にしたものと
して重大な意義を有するが、後に詳述するとおり、実際
に測定される接触電位差(見掛けの接触電位差)は、真
の接触電位差に粉体層の電位が加わったものであるた
め、真の接触電位差を求めることが必ずしも容易でない
という問題がある。即ち、各種粉体の内でも、球状シリ
カ等の無機系粉体では、比較的短時間の内に粉体層の除
電(粉体層電位のゼロへの飽和)が行われるが、スチレ
ン−アクリル系樹脂のような高分子粉体では、粉体層電
位がゼロに飽和するのに5日程度の長時間を必要とす
る。このため、接触電位差の測定そのものを比較的短時
間の内に行い得たとしても、その準備段階に著しく長時
間を必要とするため、未だ実用性の点で十分満足し得る
ものではなかった。
The above-mentioned proposal is of great significance as it enables the metal-powder contact potential difference to be measured with considerable accuracy. However, as will be described in detail later, the contact potential difference actually measured is as follows. Since the (apparent contact potential difference) is the true contact potential difference plus the potential of the powder layer, there is a problem that it is not always easy to obtain the true contact potential difference. That is, among various powders, with inorganic powders such as spherical silica, the charge of the powder layer is removed (saturation of the powder layer potential to zero) within a relatively short time. In the case of polymer powder such as a system resin, it takes about 5 days for the powder layer potential to reach zero. Therefore, even if the contact potential difference itself can be measured within a relatively short period of time, the preparation step requires a remarkably long period of time, which is not yet satisfactory in terms of practicality.

【0007】従って、本発明の目的は、高分子粉体の接
触電位差の測定を短時間の内に能率的に測定できる方法
を提供するにある。本発明の他の目的は、高分子粉体の
接触電位差の測定に外乱を与えることなしに、高分子粉
体層の電位を速やかにゼロに飽和させることができ、こ
れにより真の接触電位差の測定が短時間の内に可能とな
る測定方法を提供するにある。
Therefore, it is an object of the present invention to provide a method capable of efficiently measuring the contact potential difference of polymer powder in a short time. Another object of the present invention is to quickly saturate the potential of the polymer powder layer to zero without disturbing the measurement of the contact potential difference of the polymer powder. An object of the present invention is to provide a measurement method that enables measurement in a short time.

【0008】[0008]

【課題を解決するための手段】本発明によれば、高分子
粉体を該高分子のガラス転移点近傍の温度で熱処理して
除電し、除電後該粉体を、冷却し或いは冷却することな
く、振動電極間に位置させて、高分子粉体の接触電位差
を測定することを特徴とする高分子粉体の接触電位差の
測定方法が提供される。
According to the present invention, a polymer powder is heat-treated at a temperature in the vicinity of the glass transition point of the polymer to remove the charge, and after the charge removal, the powder is cooled or cooled. There is also provided a method for measuring the contact potential difference of polymer powder, which is characterized in that it is positioned between the vibrating electrodes and the contact potential difference of polymer powder is measured.

【0009】接触電位差の測定に当っては、除電された
高分子粉体試料を支持する下部電極に対して、これに対
向する上部電極を電極間距離が変化するように振動さ
せ、両極間に電圧を印加して電流を測定し、検出電流値
がゼロのときの電圧を高分子粉体の接触電位差として求
める。
In measuring the contact potential difference, the lower electrode supporting the polymer powder sample from which the charge has been removed is vibrated so that the distance between the electrodes changes so as to change the distance between the electrodes. A voltage is applied and the current is measured, and the voltage when the detected current value is zero is determined as the contact potential difference of the polymer powder.

【0010】[0010]

【作用】接触電位差の測定原理を説明するための図1
(電気回路図)において、この装置は、粉体層試料1を
支持する下部電極2、下部電極に対向する上部電極3、
上部電極を電極間距離が変化するように振動させる振動
機構4、両極間に電圧を印加するための可変圧電源5、
両極間に流れる電流を検出するためのデジタル電流計
(エレクトロメーター)6から成っている。
[Operation] FIG. 1 for explaining the principle of measuring the contact potential difference.
In the (electrical circuit diagram), this device has a lower electrode 2 supporting a powder layer sample 1, an upper electrode 3 facing the lower electrode,
A vibrating mechanism 4 for vibrating the upper electrode so that the distance between the electrodes changes, a variable voltage power source 5 for applying a voltage between both electrodes,
It is composed of a digital ammeter (electrometer) 6 for detecting a current flowing between both electrodes.

【0011】図1において、粉体層1を下部電極2の面
上に形成すると、両者の界面で帯電が生じる。即ち、仕
事関数の小さい方から仕事関数の大きい方に電子が移動
し、仕事関数の小さい物質は正に、大きい物質は負に帯
電する。こうして生じた電位差VC は前式「数1」で表
わされる。図1の測定回路において、上部電極3の振動
によって発生する電流は、下記式
In FIG. 1, when the powder layer 1 is formed on the surface of the lower electrode 2, charging occurs at the interface between the two. That is, electrons move from the one having a small work function to the one having a large work function, and a substance having a small work function is positively charged and a substance having a large work function is negatively charged. The potential difference V C generated in this way is represented by the previous equation "Equation 1". In the measurement circuit of FIG. 1, the current generated by the vibration of the upper electrode 3 is expressed by the following formula.

【0012】[0012]

【数2】 [Equation 2]

【0013】で与えられる。ここで a :粉体層厚さ εa :粉体層の見掛けの誘
電率 b :電極間距離 ρb :体積電荷密度 V0 :印加電圧 α :上部電極の振幅 z0 :接触ギャップ σ :表面電荷密度 ε0 :空気の誘電率 である。尚、σはより詳しく説明すると、粉体層と下部
電極の接触によって生じる電気二重層の表面電荷密度で
ある。
Is given by Here, a: powder layer thickness ε a : apparent dielectric constant of powder layer b: interelectrode distance ρ b : volume charge density V 0 : applied voltage α: upper electrode amplitude z 0 : contact gap σ: surface Charge density ε 0 : It is the dielectric constant of air. Σ is the surface charge density of the electric double layer generated by the contact between the powder layer and the lower electrode.

【0014】発生電流i(t)は上部電極の振動に合わ
せて変動するが、印加電圧V0 を変えて発生電流の振幅
をゼロにすると、A=0が成立する印加電圧が存在す
る。即ち、この時の印加電圧V0 を見掛けの接触電位差
0 S とすると、「数2」の式(2)より、下記式
(4)
The generated current i (t) fluctuates according to the vibration of the upper electrode, but when the applied voltage V 0 is changed to make the amplitude of the generated current zero, there is an applied voltage for which A = 0 holds. That is, assuming that the applied voltage V 0 at this time is the apparent contact potential difference V 0 S , the following formula (4) is obtained from the formula (2) of “Equation 2”.

【0015】[0015]

【数3】 [Equation 3]

【0016】が得られる。式(4)の右辺第2項は無視
できる大きさであり、右辺第3項が接触電位差V C であ
るので、下記式(5)
Is obtained. Ignore the second term on the right side of equation (4)
The contact potential difference V is the third term on the right side. CAnd
Therefore, the following formula (5)

【0017】[0017]

【数4】 [Equation 4]

【0018】が得られる。式(5)における右辺第1項
は粉体層の電位を示すので、体積電荷密度ρb =0であ
れば、V0 S =VC として、直接的に接触電位差を求め
ることができる。
Is obtained. Since the first term on the right side of the equation (5) represents the potential of the powder layer, if the volume charge density ρ b = 0, the contact potential difference can be directly obtained by setting V 0 S = V C.

【0019】「図2」は、スチレン−アクリル系樹脂粉
体(詳細は実施例参照)について、見掛けの接触電位差
0 s と時間との関係をプロットしたグラフであり、見
掛けの接触電位差V0 s が減少して飽和したときの電位
差が真の接触電位差VC となる。この図2から、高分子
粉体の見掛けの接触電位差V0 s を減少させ飽和させる
には著しく長時間を必要とすることが了解されよう。
[0019] "Figure 2" is a styrene - the acrylic resin powder (see details in Example), a graph plotting the relationship between the apparent contact potential difference V 0 s and time, the apparent contact potential difference V 0 The potential difference when s decreases and becomes saturated becomes the true contact potential difference V C. From this FIG. 2, it will be understood that it takes a very long time to reduce and saturate the apparent contact potential difference V 0 s of the polymer powder.

【0020】本発明によれば、高分子粉体を該高分子の
ガラス転移点近傍の温度で熱処理することにより、高分
子粉体の電位を極めて短時間の内にゼロ或いはゼロ近く
迄低下させることができ、これにより高分子粉体の真の
接触電位差VC を短時間の内に求めることができる。
According to the present invention, the polymer powder is heat-treated at a temperature near the glass transition point of the polymer to reduce the potential of the polymer powder to zero or close to zero within an extremely short time. Therefore, the true contact potential difference V C of the polymer powder can be obtained within a short time.

【0021】「図3」はスチレン−アクリル系樹脂粉体
について、熱処理温度を変化させて、見掛けの接触電位
差V0 s と処理時間との関係をプロットしたものであ
る。この「図3」から、スチレン−アクリル系樹脂のガ
ラス転移点(Tg)近傍の温度で熱処理した場合に、短
時間(20分)の内に、見掛けの接触電位差V0 s が真
の接触電位差VC に飽和することがわかる。本明細書に
おいて、ガラス転移点(Tg)の近傍とは、一般にTg
を中心にして−5℃、特に−3℃の範囲をいい、ここで
ガラス転移点よりもあまり低いと前記飽和に長い時間を
必要とするようになり、一方ガラス転移点より高いと、
粉体粒子相互の凝集や凝結(融着)を生じて、粉体特性
が変化するためにあまり好ましくない。
FIG. 3 is a plot of the relationship between the apparent contact potential difference V 0 s and the treatment time for the styrene-acrylic resin powder while changing the heat treatment temperature. From this “FIG. 3”, when the heat treatment was performed at a temperature near the glass transition point (Tg) of the styrene-acrylic resin, the apparent contact potential difference V 0 s was within a short time (20 minutes). It can be seen that it saturates at V C. In the present specification, the vicinity of the glass transition point (Tg) generally means Tg.
Centered around −5 ° C., especially −3 ° C., where if it is much lower than the glass transition point, it takes a long time for the saturation, while if it is higher than the glass transition point,
It is not so preferable because the powder characteristics change due to aggregation or coagulation (fusion) of the powder particles.

【0022】高分子のガラス転移点(Tg)は、それ自
体公知の種々の方法で求められるが、示差熱分析曲線に
おける吸熱の肩状ピークとして簡便に求められる。この
ガラス転移点は、高分子の反復単位の種類、反復構造、
分子量および架橋構造の有無等によっても相違するが、
一例として電子写真用トナー等に用いるスチレン−アク
リル系樹脂の場合、60〜70℃、ポリエステル系樹脂
の場合50〜70℃の範囲にある。
The glass transition point (Tg) of a polymer can be determined by various methods known per se, but can be simply determined as a shoulder peak of endotherm in a differential thermal analysis curve. The glass transition point is the type of repeating unit of the polymer, the repeating structure,
Although it depends on the molecular weight and the presence or absence of a crosslinked structure,
As an example, the temperature is 60 to 70 ° C. in the case of styrene-acrylic resin used for toners for electrophotography, and 50 to 70 ° C. in the case of polyester resin.

【0023】本発明によれば、接触電位差の測定そのも
のに要する時間は数分であり、また除電のために必要な
準備操作のための時間も30乃至40分間程度でよく、
しかも除電のための操作も単純な熱処理でよいので、高
分子粉体の真の接触電位差の測定を短時間の内に能率的
に行うことができる。
According to the present invention, the time required for the measurement of the contact potential difference itself is several minutes, and the time required for the preparatory operation required for neutralization is about 30 to 40 minutes.
Moreover, since the operation for static elimination may be a simple heat treatment, the true contact potential difference of the polymer powder can be efficiently measured within a short time.

【0024】[0024]

【実施例】「図4」は、本実施例で測定に使用した測定
装置の概略配置図であり、「図1」に示した測定回路
に、測定制御用コンピュータ7、及びコンピュータと可
変圧デジタル電源及びデジタル電流計とを接続するイン
ターフェース(GP−IBインターフェース)8が付加
されている。
EXAMPLE FIG. 4 is a schematic layout of the measuring apparatus used for measurement in this example. The measuring circuit shown in FIG. 1 includes a measuring control computer 7, a computer and a variable pressure digital device. An interface (GP-IB interface) 8 for connecting a power supply and a digital ammeter is added.

【0025】測定制御用コンピュータ7は、(i)測定
印加電圧及びそのステップと測定点数とを設定し、(i
i)印加電圧及び検出電流値を保存し、(iii)これらか
ら絶対値としての電力を積分により算出し、(iv)印加
電圧と電力とに関して一次回帰を求め、電力ゼロの印加
電圧を粉体の接触電位差として算出するものである。こ
の装置では、コンピュータ7に、測定印加電圧及びその
ステップと、測定点数とを設定することにより、インタ
ーフェース8を通して、可変圧電源5による電極2,3
への印加電圧が自動的に切換えられ、上部電極3の振動
により変化する電流が、設定された測定点数だけ、電流
計6からインターフェース8を介してコンピュータ7に
取り込まれる。このため、多数の測定値を、ロスタイム
なしに、精度よくコンピュータに取り込むことができ
る。また、インターフェース8をとおして取込まれる印
加電圧及び検出電流値は、ファイルの形でコンピュータ
内に保存されるので、これは後で述べるデータ解析に利
用されるばかりではなく、必要なときにはこれを取り出
して、チェックや比較参照の目的にいつでも利用でき
る。
The measurement control computer 7 sets (i) the measurement applied voltage, its step and the number of measurement points, and
i) The applied voltage and the detected current value are stored, (iii) the electric power as an absolute value is calculated from these, and (iv) the linear regression is obtained with respect to the applied voltage and the electric power, and the applied voltage of zero electric power is powdered. It is calculated as the contact potential difference. In this device, by setting a measurement applied voltage and its step and the number of measurement points in the computer 7, the electrodes 2, 3 by the variable voltage power supply 5 are set through the interface 8.
The voltage applied to the computer 7 is automatically switched, and the current that changes due to the vibration of the upper electrode 3 is taken into the computer 7 from the ammeter 6 through the interface 8 by the set number of measurement points. Therefore, a large number of measurement values can be accurately captured in the computer without loss time. Further, since the applied voltage and the detected current value taken in through the interface 8 are stored in the computer in the form of a file, this is not only used for the data analysis described later, but also when necessary. It can be taken out and used at any time for checking and comparative reference purposes.

【0026】ところで、両電極間に流れる電流は、上部
電極の振動に合わせて変動する交流となるので、正から
負へ変動する値となる。また印加電圧も正と負との間で
変動する値となる。このため、サンプリングされた電圧
値及び電流値について絶対値をとり、これらを積分して
電力値を算出する。この算出は、演算プログラムにより
迅速に行われる。
By the way, the current flowing between both electrodes is an alternating current that fluctuates according to the vibration of the upper electrode, and therefore has a value that fluctuates from positive to negative. The applied voltage also has a value that fluctuates between positive and negative. Therefore, an absolute value is taken for the sampled voltage value and current value, and these are integrated to calculate a power value. This calculation is quickly performed by the calculation program.

【0027】次いで、印加電圧と電力とに関して一次回
帰を求め、電力ゼロの印加電圧を粉体の接触電位差とし
て算出する。これらの演算やデータ解析の結果も全てフ
ァイルに保存できる。測定に際して、印加電圧V0 を変
えたときの発生電流でi(t)を、GP−IB(gen
eral port interface bus)イ
ンターフェースを介して一定微小時間、例えば8mse
c毎に、一定印加電圧について多数点、例えば400
点、コンピュータに入力することにより解析的に振幅が
ゼロになる印加電圧を求める。
Next, a linear regression is obtained with respect to the applied voltage and the electric power, and the applied voltage with zero electric power is calculated as the contact potential difference of the powder. The results of these calculations and data analysis can all be saved in a file. At the time of measurement, i (t) is a current generated when the applied voltage V 0 is changed, and is expressed by GP-IB (gen
A fixed minute time, eg, 8 mse, via an interface port interface bus)
For each c, a large number of points for a constant applied voltage, for example, 400
By applying the points to the computer, the applied voltage at which the amplitude becomes zero is analytically obtained.

【0028】図5は、測定開始印加電圧−10V、測定
終了印加電圧+10V、ステップ1Vで、試料としてア
クリル樹脂微粉末を用いたときのコンピュータによる印
加電圧−電流値の出力結果であり、図中のワンドットが
一つの測定点に対応する。
FIG. 5 shows the output results of the applied voltage-current value by the computer when the fine acrylic resin powder was used as a sample at the measurement start applied voltage of -10 V, the measurement end applied voltage of +10 V, and step 1 V. One dot of corresponds to one measurement point.

【0029】図6は、図5の測定値から絶対値としての
電力を積分により算出し、印加電圧と電力とに関して一
次回帰を行った結果についてのコンピュータによる出力
を示す。この結果によると、電圧の上昇に伴って電力が
減少する負の勾配の直線部分と、電圧の上昇に伴って電
力が増大する正の勾配の直線部分とがあるが、正の勾配
の直線部分を電力がゼロの線を基準として折り返すと、
これら両直線部分は完全な一直線となり、別の言い方を
すると、負の勾配の直線部分と正の勾配の直線部分との
折り返し点は電力がゼロの座標軸上に必ず位置する。こ
の一次回帰の相関係数は、例えば1.00と非常に高い
ものである。
FIG. 6 shows the output by the computer regarding the result of the first-order regression of the applied voltage and the power calculated by integrating the power as an absolute value from the measured values of FIG. According to this result, there is a linear portion with a negative slope in which the power decreases as the voltage rises and a linear portion with a positive slope in which the power increases as the voltage rises. If you fold back with respect to the line of zero power,
Both of these straight line portions become a complete straight line, in other words, the turning point between the straight line portion of the negative slope and the straight line portion of the positive slope is always located on the coordinate axis where the power is zero. The correlation coefficient of this linear regression is as high as 1.00, for example.

【0030】かくして、電力ゼロの印加電圧として、接
触電位差VC 、図において1.124Vが自動的に求め
られることになる。接触電位差VC は図6における負の
勾配の直線部分からも、また正の勾配の直線部分からも
求めることができるが、両方の直線部分から、特に一方
の勾配部分を電力ゼロの軸に対して対称に折り曲げて、
電力ゼロの印加電圧を求めるようにすると極めて精度の
高い接触電位差VC を求めることができる。この測定に
おいて、試料1個について必要な測定時間(設定時間や
データ解析に要する時間を除く)は、印加電圧のステッ
プ数や測定点数によっても相違するが、一般に180乃
至300秒程度であり、極めて短時間の内に接触電位差
0 s の測定を行い得る。
Thus, as the applied voltage of zero power,
Tactile potential difference VC, In the figure 1.124V is automatically calculated
Will be done. Contact potential difference VCIs the negative in FIG.
From the straight part of the slope and from the straight part of the positive slope
Can be found, but from both straight lines, especially one
Bend the gradient part of symmetrically about the axis of zero power,
It is extremely accurate to obtain the applied voltage with zero power.
High contact potential difference VCCan be asked. For this measurement
In addition, the measurement time (setting time and
(Excluding the time required for data analysis)
Depending on the number of points and the number of measurement points, it is generally 180
It is about 300 seconds, and the contact potential difference is within a very short time.
V0 sCan be measured.

【0031】図4の測定装置において、測定セル10内
に下部電極2及び上部電極3が収納されており、この測
定セル10は外部ノイズから測定セル10を遮断するた
めのシールド11内に収納されている。更に、このシー
ルド11は、測定を一定条件、即ち恒温恒室条件下で行
うための恒温恒室槽12内に収納されている。
In the measuring device of FIG. 4, the lower electrode 2 and the upper electrode 3 are housed in the measuring cell 10, and the measuring cell 10 is housed in the shield 11 for shielding the measuring cell 10 from external noise. ing. Further, the shield 11 is housed in a constant temperature chamber 12 for performing measurement under constant conditions, that is, constant temperature and constant chamber conditions.

【0032】下部電極2は、電極支持部材13上に着脱
自在且つ位置決めされた状態で電気的に接続されるよう
に設けられており、電極支持部材13は、測定セル10
に絶縁部材14を介して固定されている。下部電極2
は、一定の深さだけ上面から凹んだ粉体層充填セル15
を有し、この中に一定充填率の試料粉体層1が充填され
ている。電極の測定面の径は、一般に25乃至30mm
の範囲にあるのがよい。尚、本実施例では、径30mm
で、深さが3mmの充填セルを備えたニッケルメッキの
ものを使用し、深さの調節は厚さ0.5mmの同機質の
円板を数枚用意し、セル内にこの円板を設置することで
深さの調節ができるようにした。測定セル10及びシー
ルド11は共に接地されており、電極支持部材13はケ
ーブル16を介してデジタル電流計(エレクトロメータ
ー)6に接続されている。接続ケーブル16は通常の2
軸ケーブルでもよいが二重シールドを設けた3線の同軸
ケーブルを用いると、外部ノイズが入ることなく、精度
の高い測定が可能となる。
The lower electrode 2 is provided on the electrode supporting member 13 so as to be detachably and positioned so as to be electrically connected, and the electrode supporting member 13 is connected to the measuring cell 10.
It is being fixed to via the insulating member 14. Lower electrode 2
Is a powder layer filling cell 15 which is recessed from the upper surface by a certain depth.
The sample powder layer 1 having a constant filling rate is filled therein. The diameter of the measurement surface of the electrode is generally 25 to 30 mm
It should be in the range of. In this embodiment, the diameter is 30 mm
Then, use a nickel-plated one with a filled cell with a depth of 3 mm, and adjust the depth by preparing several disks of the same quality with a thickness of 0.5 mm and installing this disk in the cell. By doing so, the depth can be adjusted. The measuring cell 10 and the shield 11 are both grounded, and the electrode supporting member 13 is connected to a digital ammeter (electrometer) 6 via a cable 16. Connection cable 16 is normal 2
A shaft cable may be used, but if a three-wire coaxial cable provided with a double shield is used, accurate measurement can be performed without external noise.

【0033】上部電極3には、その作用面を除いて、エ
ッジ効果を防止するように、これを覆うガード電極17
を一体に設け、ガード電極17はこれを接地する。上部
電極3及びガード電極17は中空の支持軸18に支持さ
れており、支持軸18は、特定時にカム等のそれ自体公
知の駆動機構4により駆動される。支持軸18を通っ
て、接続ケーブル19が延びており、上部電極3と可変
圧電源5とを電気的に接続している。上部電極3は、好
適には金メッキ板等で構成されている。上部電極3の振
動数及び振幅は、適宜設定できるが、変動数は一般に6
0乃至120rpm(回/分)の範囲に、また振幅は
2.0乃至3.0mmの範囲にあるのがよい。本実施例
では振動数を72rpm、振幅を2.5mmとした。こ
の装置において、可変圧電源5の制御及びデジタル電流
計6からの電流値の取り込みは、GP−IBインターフ
ェース8を経て、測定制御用コンピュータにより行う。
The upper electrode 3 is covered with a guard electrode 17 which covers the upper surface of the upper electrode 3 so as to prevent the edge effect, except for the working surface.
Are integrally provided, and the guard electrode 17 is grounded. The upper electrode 3 and the guard electrode 17 are supported by a hollow support shaft 18, and the support shaft 18 is driven by a drive mechanism 4 known per se such as a cam at a specific time. A connection cable 19 extends through the support shaft 18 and electrically connects the upper electrode 3 and the variable voltage power supply 5. The upper electrode 3 is preferably composed of a gold-plated plate or the like. The frequency and amplitude of the upper electrode 3 can be set as appropriate, but the number of fluctuations is generally 6
The amplitude is preferably in the range of 0 to 120 rpm (times / minute) and the amplitude is in the range of 2.0 to 3.0 mm. In this embodiment, the frequency is 72 rpm and the amplitude is 2.5 mm. In this device, control of the variable voltage power supply 5 and acquisition of the current value from the digital ammeter 6 are performed by the measurement control computer via the GP-IB interface 8.

【0034】測定は図7に示すフローチャートに従って
行う。先ず、測定項目として、接触電位、誘電率或いは
電気抵抗の何れかを選択する。接触電位測定の場合、測
定条件を設定する。先ず、測定点数、即ち一定電圧につ
いての測定点数を設定する。測定点数は一般に50乃至
500点が適当であり、本実施例では印加電圧の範囲等
を定める予備試験の場合50点、本試験の場合400点
を設定した。次いで、電圧計測定レンジ及び電流計測定
レンジを、試料の種類に応じて設定した後、測定開始印
加電圧、測定終了印加電圧及びステップ電圧(電圧のキ
ザミ幅)を設定し、最後に測定データを保存するファイ
ル名を入力する。
The measurement is performed according to the flow chart shown in FIG. First, as a measurement item, any one of contact potential, dielectric constant, and electric resistance is selected. For contact potential measurement, set the measurement conditions. First, the number of measurement points, that is, the number of measurement points for a constant voltage is set. Generally, 50 to 500 points are suitable for the number of measurement points. In this example, 50 points were set in the preliminary test for determining the range of the applied voltage, and 400 points were set in the main test. Next, after setting the voltmeter measurement range and the ammeter measurement range according to the type of sample, set the measurement start applied voltage, measurement end applied voltage, and step voltage (voltage gap), and finally set the measurement data. Enter the file name to save.

【0035】これにより測定がスタートし、前述したと
おり、電極の振動、電圧の印加及び電流の検出が、微小
時間毎に設定され点数だけコンピュータに取り込まれ、
この操作がステップの電圧ごとに測定終了電圧迄行われ
る。これらの測定データは、オープンされたファイルに
保存され、測定結果は図4に示すように、印加電圧と電
流値との関係のプロットとして、コンピュータのCRT
に表示される。
This starts the measurement, and as described above, the vibration of the electrode, the application of the voltage, and the detection of the current are set for each minute time, and the number of points is loaded into the computer.
This operation is performed for each step voltage up to the measurement end voltage. These measurement data are stored in an opened file, and the measurement results are shown in FIG. 4 as a plot of the relationship between the applied voltage and the current value, which is displayed on the CRT of the computer.
Is displayed in.

【0036】コンピュータ7は、プログラムに従い、デ
ータ解析を行い、各印加電圧について絶対値としての電
力を積分により算出し、次いで印加電圧と電力とに関し
て一次回帰を求め、電力がゼロの印加電圧を粉体の接触
電位差として算出し、測定結果を図6に示すように表示
する。
The computer 7 analyzes the data according to the program, calculates the electric power as an absolute value for each applied voltage by integration, then obtains a linear regression with respect to the applied voltage and the electric power, and calculates the applied voltage with zero electric power. It is calculated as the contact potential difference of the body, and the measurement result is displayed as shown in FIG.

【0037】本発明において、高分子粉体としては、熱
可塑性樹脂、熱硬化性樹脂、或いはこれらの複合体等か
ら成り、一般に粒径が0.001乃至100μm、特に
1乃至100μmのものが使用される。この粉体は、球
状、ペレット状、顆粒状、不定形等の任意の形態のもの
でよい。本発明は勿論Tgが室温よりも高いものに適用
する。
In the present invention, the polymer powder is made of a thermoplastic resin, a thermosetting resin, or a composite material thereof, and generally has a particle size of 0.001 to 100 μm, particularly 1 to 100 μm. To be done. This powder may be in any shape such as spherical, pellet, granular or amorphous. The present invention is of course applicable to those having Tg higher than room temperature.

【0038】熱可塑性樹脂としては、ポリエチレン(T
g:100℃)等の炭化水素系樹脂;ポリメチルメタク
リレート(Tg:72〜105℃)、ポリエチルメタク
リレート(Tg:47℃)等のアクリル系樹脂;ナイロ
ン6、ナイロン6,6、ナイロン6,10(Tg:45
℃)等のポリアミド樹脂;ポリエチレンテレフタレート
(PET)(Tg:67〜81℃)、ポリブチレンテレ
フタレート(PBT)等のポリエステル樹脂;ポリアセ
タール樹脂、ポリアリレート;ポリテトラフルオロエチ
レン等の含ハロゲン樹脂;ポリカーボネート;フェノキ
シ樹脂;等を挙げることができる。
As the thermoplastic resin, polyethylene (T
g: 100 ° C.) and other hydrocarbon resins; polymethyl methacrylate (Tg: 72-105 ° C.), polyethyl methacrylate (Tg: 47 ° C.) and other acrylic resins; nylon 6, nylon 6,6, nylon 6, 10 (Tg: 45
Polyamide resin such as polyethylene terephthalate (PET) (Tg: 67 to 81 ° C.) and polybutylene terephthalate (PBT); polyacetal resin, polyarylate; halogen-containing resin such as polytetrafluoroethylene; polycarbonate; Phenoxy resin; and the like.

【0039】熱硬化型樹脂としては、フェノール樹脂、
エポキシ樹脂、尿素樹脂、メラミン樹脂、等が挙げられ
る。これらの高分子粉体は、乳化重合、懸濁重合、微細
懸濁重合、シード重合、分散重合等で得られた球状のも
のでも、或いは粉砕法で得られた不定形のものでも、ま
たスプレー造粒法、熱気流造粒法により製造された定形
粒子であってもよい。
As the thermosetting resin, phenol resin,
An epoxy resin, a urea resin, a melamine resin, etc. are mentioned. These polymer powders may be spherical ones obtained by emulsion polymerization, suspension polymerization, fine suspension polymerization, seed polymerization, dispersion polymerization, etc., or amorphous ones obtained by a pulverization method, or sprayed. It may be a regular particle produced by a granulation method or a hot air granulation method.

【0040】本発明は、特に帯電特性が問題となる電子
写真用トナー、前記トナーの現像に使用する樹脂−磁性
粉型磁性キャリア、粉体塗料、流動浸漬用樹脂粉等の接
触電位差の測定に有用である。即ち、これらの粉体は、
帯電性能が大きく、しかも一度帯電すると電荷の減衰も
少ないが、本発明では、熱処理により粉体の電位を急速
に減少させることができる。
The present invention is particularly applicable to the measurement of the contact potential difference of electrophotographic toners in which charging characteristics are a problem, resin-magnetic powder type magnetic carriers used for developing the toners, powder coatings, resin powders for fluid immersion and the like. It is useful. That is, these powders
Although the charging performance is high and the charge is little attenuated once it is charged, the potential of the powder can be rapidly reduced by the heat treatment in the present invention.

【0041】電子写真用トナーは、定着用樹脂媒質中
に、着色剤、或いは更に電荷制御剤、離型剤等を分散さ
せて、粒度が5乃至15μmに造粒し、その表面に疎水
性シリカ等の流動性改良剤をまぶしたものであり、その
電荷量(絶対値)は10乃至50μC/gにも達する
が、このようなトナーからも、短時間の内に真の接触電
位差を求めることができる。
In the electrophotographic toner, a colorant, or a charge control agent, a release agent, etc. are dispersed in a fixing resin medium and granulated to have a particle size of 5 to 15 μm, and hydrophobic silica is formed on the surface thereof. The amount of electric charge (absolute value) reaches 10 to 50 μC / g, and the true contact potential difference should be obtained from such toner within a short time. You can

【0042】本発明において、高分子粉体を、接触電位
差の測定に先立って、ガラス転移点(Tg)近傍の温度
で熱処理する。熱処理時間は一般に10乃至30分間、
特に15乃至25分間の範囲で十分である。
In the present invention, the polymer powder is heat-treated at a temperature near the glass transition point (Tg) prior to measuring the contact potential difference. The heat treatment time is generally 10 to 30 minutes,
In particular, a range of 15 to 25 minutes is sufficient.

【0043】熱処理には、オーブン、熱風循環炉、赤外
線加熱等を用いることができる。熱処理を、下部電極
(セル)上に高分子粉体層を充填した状態で行う場合に
は、電極面に接する粉体層が加熱され過ぎないように注
意すべきである。一般に、下部電極(セル)に粉体層を
充填した状態で熱処理を行うことが好ましいが、下部電
極とは別個に試料粉体の熱処理を行い、熱処理後下部電
極(セル)に熱処理粉体を充填してもよい。熱処理中
は、粉体試料を接地することが好ましい。
For the heat treatment, an oven, a hot air circulating furnace, infrared heating or the like can be used. When the heat treatment is performed with the lower electrode (cell) filled with the polymer powder layer, care should be taken not to overheat the powder layer in contact with the electrode surface. Generally, it is preferable to perform the heat treatment in a state where the lower electrode (cell) is filled with the powder layer, but the heat treatment of the sample powder is performed separately from the lower electrode, and the heat treated powder is applied to the lower electrode (cell) after the heat treatment. It may be filled. It is preferable to ground the powder sample during the heat treatment.

【0044】本発明における熱処理は、測定装置外で実
施することもできるが、測定装置内でも実施することも
できる。この後者の場合には、前述した恒温恒室槽12
に、例えば熱風循環系20を取付け、この熱風と試料粉
体層1とを接触させて除電を行う。或いは試料粉体層1
の層厚が薄い場合には、装置内に赤外ランプを取付け、
赤外線照射により試料粉体層を所定の温度に加熱しても
よい。勿論、熱処理後の試料はそのまま測定を行っても
よいし、放冷後測定を行ってもよい。
The heat treatment in the present invention can be carried out not only in the measuring device but also in the measuring device. In the latter case, the constant temperature constant temperature chamber 12 described above is used.
For example, a hot air circulation system 20 is attached, and the hot air and the sample powder layer 1 are brought into contact with each other to remove electricity. Or sample powder layer 1
If the layer is thin, install an infrared lamp inside the device,
The sample powder layer may be heated to a predetermined temperature by infrared irradiation. Of course, the sample after the heat treatment may be directly measured, or may be cooled and then measured.

【0045】試料粉体層の厚みは、一般に粉体平均粒径
(体積基準×ジアン径)の1乃至1010倍の厚み、特に
1乃至105 倍の厚みとするのがよく、厚みが小さけれ
ばそれだけ除電のための処理が短時間でよい。
The thickness of the sample powder layer is generally 1 to 10 10 times, especially 1 to 10 5 times the average particle diameter of the powder (volume basis x dian diameter), and the thickness is small. In that case, the processing for static elimination can be completed in a short time.

【0046】[0046]

【発明の効果】本発明によれば、高分子粉体の接触電位
差の測定に先立って、高分子粉体をそのガラス転移点近
傍の温度で熱処理することにより、高分子粉体の電位を
短時間の内にゼロ或いはゼロ近く迄低下させることがで
き、これにより、高分子粉体の真の接触電位差を短時間
の内に求めることができる。
According to the present invention, prior to the measurement of the contact potential difference of the polymer powder, the polymer powder is heat-treated at a temperature in the vicinity of its glass transition point to reduce the potential of the polymer powder. It can be reduced to zero or close to zero within the time, whereby the true contact potential difference of the polymer powder can be determined within a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定に用いる装置の電気回路図であ
る。
FIG. 1 is an electric circuit diagram of an apparatus used for measurement of the present invention.

【図2】従来の測定における見掛けの接触電位と時間と
の関係をプロットしたグラフである。
FIG. 2 is a graph plotting the relationship between apparent contact potential and time in conventional measurement.

【図3】熱処理温度を変えたときの見掛の接触電位と時
間との関係をプロットしたグラフである。
FIG. 3 is a graph plotting the relationship between apparent contact potential and time when the heat treatment temperature is changed.

【図4】本発明の測定装置の概略配置図である。FIG. 4 is a schematic layout of the measuring device of the present invention.

【図5】印加電圧と電流値との関係についての出力を示
すグラフである。
FIG. 5 is a graph showing an output regarding a relationship between an applied voltage and a current value.

【図6】印加電圧と電力との関係についての出力を示す
グラフである。
FIG. 6 is a graph showing an output regarding a relationship between an applied voltage and electric power.

【図7】本発明における測定のフローチャートである。FIG. 7 is a flow chart of measurement in the present invention.

【符号の説明】[Explanation of symbols]

1は粉体層試料、2は下部電極、3は上部電極、4は振
動機構、5は可変圧電源、6はデジタル電流計(エレク
トロメーター)、7は測定制御用コンピュータ、8はイ
ンターフェース(GP−IBインターフェース)、10
は測定セル、11はシールド、12は恒温恒室槽、13
は電極支持部材、14は絶縁部材、15は粉体層充填セ
ル、16はケーブル、17はガード電極、18は支持
軸、19は接続ケーブル、20は蒸気循環系、21はヒ
ーターである。
1 is a powder layer sample, 2 is a lower electrode, 3 is an upper electrode, 4 is a vibration mechanism, 5 is a variable pressure power source, 6 is a digital ammeter (electrometer), 7 is a measurement control computer, 8 is an interface (GP). -IB interface), 10
Is a measuring cell, 11 is a shield, 12 is a constant temperature chamber, 13
Is an electrode supporting member, 14 is an insulating member, 15 is a powder layer filling cell, 16 is a cable, 17 is a guard electrode, 18 is a support shaft, 19 is a connecting cable, 20 is a vapor circulation system, and 21 is a heater.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03G 9/107 // C09D 5/03 PMZ (72)発明者 増田 弘昭 京都市東山区五条橋東6丁目538の14─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location G03G 9/107 // C09D 5/03 PMZ (72) Inventor Hiroaki Masuda 6 Gojobashi Higashi, Higashiyama-ku, Kyoto Chome 538-14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子粉体を該高分子のガラス転移点近
傍の温度で熱処理して除電し、除電後該粉体を、冷却し
或いは冷却することなく、振動電極間に位置させて、高
分子粉体の接触電位差を測定することを特徴とする高分
子粉体の接触電位差の測定方法。
1. A polymer powder is heat-treated at a temperature in the vicinity of the glass transition point of the polymer to eliminate static electricity, and after the static elimination, the powder is placed between the vibrating electrodes with or without cooling. A method for measuring a contact potential difference of a polymer powder, which comprises measuring a contact potential difference of the polymer powder.
【請求項2】 高分子粉体が0.001乃至100μm
の粒径を有するものである請求項1記載の測定方法。
2. The polymer powder is 0.001 to 100 μm.
The measuring method according to claim 1, which has a particle size of.
【請求項3】 高分子粉体が定着用樹脂と該樹脂中に分
散された着色剤とから成る電子写真用トナーである請求
項1記載の測定方法。
3. The measuring method according to claim 1, wherein the polymer powder is an electrophotographic toner comprising a fixing resin and a colorant dispersed in the resin.
【請求項4】 除電された高分子粉体試料を支持する下
部電極に対して、これに対向する上部電極を電極間距離
が変化するように振動させ、両極間に電圧を印加して電
流を測定し、検出電流値がゼロのときの電圧を高分子粉
体の接触電位差として求める請求項1記載の測定方法。
4. A lower electrode supporting a polymer powder sample from which electricity has been removed is vibrated so that the distance between the electrodes is changed so that the upper electrode facing the lower electrode is oscillated, and a voltage is applied between both electrodes to generate a current. The measuring method according to claim 1, wherein the voltage is measured and the voltage when the detected current value is zero is determined as the contact potential difference of the polymer powder.
JP6036915A 1994-03-08 1994-03-08 Measuring method for contact potential difference of polymer powder Pending JPH07244015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6036915A JPH07244015A (en) 1994-03-08 1994-03-08 Measuring method for contact potential difference of polymer powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6036915A JPH07244015A (en) 1994-03-08 1994-03-08 Measuring method for contact potential difference of polymer powder

Publications (1)

Publication Number Publication Date
JPH07244015A true JPH07244015A (en) 1995-09-19

Family

ID=12483074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6036915A Pending JPH07244015A (en) 1994-03-08 1994-03-08 Measuring method for contact potential difference of polymer powder

Country Status (1)

Country Link
JP (1) JPH07244015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181201A (en) * 2013-05-24 2014-12-03 深圳市海洋王照明工程有限公司 Measuring apparatus for electrification resistance of plastic cement material
CN111108372A (en) * 2017-09-21 2020-05-05 豪夫迈·罗氏有限公司 Use of a solid phase fraction sensor for assessing the solid phase fraction of a drug sample of interest and solid phase fraction sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181201A (en) * 2013-05-24 2014-12-03 深圳市海洋王照明工程有限公司 Measuring apparatus for electrification resistance of plastic cement material
CN111108372A (en) * 2017-09-21 2020-05-05 豪夫迈·罗氏有限公司 Use of a solid phase fraction sensor for assessing the solid phase fraction of a drug sample of interest and solid phase fraction sensor

Similar Documents

Publication Publication Date Title
US5767693A (en) Method and apparatus for measurement of mobile charges with a corona screen gun
CA1064335A (en) Process for developing electrographic images by causing electrical breakdown in the developer
US6008653A (en) Contactless system for detecting microdefects on electrostatographic members
Samarian et al. Sheath measurement in rf-discharge plasma with dust grains
US4928065A (en) Voltammetry in low-permitivity suspensions
Dijkshoorn et al. Characterizing the electrical properties of anisotropic, 3D-printed conductive sheets for sensor applications
GB2083619A (en) Charge spectrograph
JP5510629B2 (en) Charge transfer rate measuring device and method, surface resistance measuring device and method, and program for them
JPH11258209A (en) Device for measuring density of electric charge and mobility in liquid solution
JPH07244015A (en) Measuring method for contact potential difference of polymer powder
US3699335A (en) Apparatus for charging a recording element with an electrostatic charge of a desired amplitude
Chubb Instrumentation and standards for testing static control materials
JPH0862885A (en) Method and device for measuring electrification characteristics of electrophotographic toner
JP3353872B2 (en) Calculation method of charging characteristics of toner in two-component developer
JPH07244016A (en) Measuring method for contact potential difference of polymer powder
Yamaguchi et al. Measurement Technique for Electrostatic Charge on Single Toner Particles with Microelectromechanical-based Actuated Tweezers.
JP4128232B2 (en) Method and apparatus for measuring electrical properties of electrophotographic media
JPH07244017A (en) Measuring method for contact potential difference of powder
TW497369B (en) Method of measuring electron energy distribution in plasma region and apparatus for measuring the same
JP3644788B2 (en) Capacitance measuring device for electrophotographic photoreceptor
US2899331A (en) Process of developing electrostatic
Fowlkes et al. An off-the-shelf high-performance primary corona charger for use in an electrophotographic engine
JP3560400B2 (en) Charge amount measuring device
Feng et al. Steady-state corona charging behavior of a corotron over a moving dielectric substrate
JPH07120432A (en) Measuring device for contact potential difference of powder