JPH07243852A - Water surface monitoring device using stereo image processing - Google Patents

Water surface monitoring device using stereo image processing

Info

Publication number
JPH07243852A
JPH07243852A JP6032562A JP3256294A JPH07243852A JP H07243852 A JPH07243852 A JP H07243852A JP 6032562 A JP6032562 A JP 6032562A JP 3256294 A JP3256294 A JP 3256294A JP H07243852 A JPH07243852 A JP H07243852A
Authority
JP
Japan
Prior art keywords
water surface
floating object
water
water level
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6032562A
Other languages
Japanese (ja)
Inventor
Katsumasa Onda
勝政 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6032562A priority Critical patent/JPH07243852A/en
Publication of JPH07243852A publication Critical patent/JPH07243852A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Emergency Alarm Devices (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

PURPOSE:To automatically and objectively measure the average water level of water surface, condition of wave, and transition of average water level with time by measuring the distance from an image pick-up device to a floating object based on the visual difference between two images obtained by two image pick-up devices. CONSTITUTION:In a water-surface monitoring device 200, a camera 202 and a floating object 203 are mounted to a post 201 which is installed so that the upper part is exposed on water surface. A floating object 203 floating on the water surface is gear- locked to the post 201 via an interlocking rod 206 which is inserted into the post 201 so that it can travel freely up and down, thus fixing the floating object 203 so that it cannot be flown away and at the same time it travels up and down on a water surface 205 to be measured and monitored. Then. a visual difference is obtained from coordinate values between two images picked up at a certain time and the distance to the floating object is obtained. The water level on the water surface at a measurement time is obtained from the obtained distance and an average water level, its change with time, the condition etc., of the wave of water surface can be automatically measured from a plurality of water-level data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダムや湖、あるいは海
などの水面の状態を監視する装置に関し、特にダムの水
位制御、波浪状況の自動計測などに利用可能な水面監視
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for monitoring the condition of the water surface of a dam, lake or sea, and more particularly to a water surface monitoring device that can be used for dam water level control, automatic wave condition measurement, and the like. is there.

【0002】[0002]

【従来の技術】従来、海岸沿いの道路などでは、高波が
発生して車両の通行が危険になると車両通行規制が行わ
れている。このとき高波の状態を判断し、車両の通行規
制を行うか否かは、観測者が現地に赴くか、ネットワー
クを介した監視映像にて現場の状況を把握することによ
って行われている。
2. Description of the Related Art Conventionally, on roads along the coast, vehicle traffic is regulated when high waves occur and the traffic of vehicles becomes dangerous. At this time, the condition of high waves is judged, and whether or not to restrict the traffic of the vehicle is determined by the observer visiting the site or by grasping the situation of the site by monitoring video through the network.

【0003】また、河川や湖などの波打った水面の水位
は、目盛りを記した支柱に接する水面の値を観測者が読
み取ることによって計測している。
Further, the water level on the water surface of a river such as a river or a lake is measured by an observer reading the value of the water surface in contact with a stanchion with a scale.

【0004】[0004]

【発明が解決しようとする課題】このように、従来にあ
っては、海や湖、河川、ダム等における波の状況などの
水面の監視はほとんど自動化されていなかった。すなわ
ち従来の水面監視方法では、実際に観測地に観測者が出
向く、あるいは水面の映像を監視カメラにて撮影し、こ
の映像を公衆網などの通信手段を用いて監視センターに
伝送して人がその状況を把握り、あるいは画像中の目盛
りを読み取って水位の計測を行うことで水面の監視を行
っていた。
As described above, in the past, the monitoring of the water surface such as the condition of waves in the sea, lakes, rivers, dams, etc. has hardly been automated. That is, in the conventional water surface monitoring method, an observer actually goes to the observing site, or an image of the water surface is taken by a surveillance camera, and this image is transmitted to the surveillance center by using a communication means such as a public network. The water surface was monitored by grasping the situation or reading the scale in the image and measuring the water level.

【0005】しかしながら、観測地に観測者が出向くの
では、時々刻々変化する水面の変化を常時監視すること
は困難である。また、伝送された監視映像を常時監視あ
るいは計測する方法では観測者の労力を要するのみなら
ず、波打つ水位の計測などでは観測者によってデータが
異なって観測されるなど、正確性に欠けるという問題が
あった。さらに、夜間の監視はさらに困難となるという
欠点もあった。
However, if an observer goes to the observation site, it is difficult to constantly monitor changes in the water surface that change from moment to moment. In addition, the method of constantly monitoring or measuring the transmitted surveillance image not only requires the labor of the observer, but also has the problem that the data is observed differently depending on the observer when measuring the rippling water level. there were. Moreover, there is a drawback that nighttime monitoring becomes more difficult.

【0006】本発明は、上記のような従来技術の問題点
を解決するため為されたもので、水面の平均水位、波の
状況、平均水位の時間的推移を客観的にしかも自動計測
する装置を提供することを目的とする。また、夜間でも
前記水面監視ができるような水面監視装置を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and is an apparatus for objectively and automatically measuring the average water level on the water surface, the condition of waves, and the temporal transition of the average water level. The purpose is to provide. Another object of the present invention is to provide a water surface monitoring device that can monitor the water surface even at night.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の水面監視装置は、監視すべき水面に浮遊物
体を浮遊させ、前記浮遊物体を2台の撮像装置にて撮像
し、前記2台の撮像装置にて得られる2画像間の視差に
基づいて、前記撮像装置から前記浮遊物体までの距離を
計測し、前記計測した距離に基づいて計測時刻における
前記水面の水位を計測する構成としたことを特徴とす
る。
In order to achieve the above object, the water surface monitoring apparatus of the present invention floats a floating object on the water surface to be monitored, and images the floating object with two image pickup devices. A configuration in which the distance from the imaging device to the floating object is measured based on the parallax between the two images obtained by the two imaging devices, and the water level of the water surface at the measurement time is measured based on the measured distance. It is characterized by

【0008】また、ある時間間隔にわたって計測した複
数の前記水面水位データから、水面の平均水位、あるい
は水面の波の状態、あるいは平均水位の時間的変化を計
測することを特徴とする。
Further, it is characterized in that the average water level of the water surface, the state of waves on the water surface, or the temporal change of the average water level is measured from the plurality of water surface water level data measured over a certain time interval.

【0009】さらに、本発明の水面監視装置は、前記に
おける浮遊物体として、発光する機能を備えた浮遊物体
を用いることを特徴とする。
Further, the water surface monitoring apparatus of the present invention is characterized in that a floating object having a function of emitting light is used as the floating object.

【0010】また、本発明のダム制御装置は、前記請求
項1あるいは請求項2にて得られた水面監視データのう
ち少なくとも一つのデータを用いて、ダムの制御を行う
ことを特徴とする。
Further, the dam control device of the present invention is characterized in that the dam is controlled by using at least one of the water surface monitoring data obtained in claim 1 or claim 2.

【0011】さらに、本発明の波浪状況監視装置は、前
記請求項1あるいは請求項2にて得られた水面監視デー
タのうち少なくとも一つのデータを用いて波の状態を監
視することを特徴とする。
Further, the wave condition monitoring device of the present invention is characterized in that the wave condition is monitored using at least one of the water surface monitoring data obtained in claim 1 or claim 2. .

【0012】[0012]

【作用】したがって、本発明の水面監視装置によれば、
監視すべき水面に浮遊させた浮遊物体を2台の撮像装置
にて撮像し、前記2台の撮像装置にて得られる2画像間
の視差に基づいて、撮像装置から浮遊物体までの距離を
計測し、得られた距離から計測時刻における水面の水位
を計測することによって、あるいは、前記水面水位を、
ある時間間隔にわたって計測した複数の水位データか
ら、水面の平均水位、あるいは水面の波の状態、あるい
は平均水位の時間的変化を客観的に計測することで、水
面の状況を自動計測する。さらに、前記浮遊物体に発光
機能を備えることによって夜間でも計測が可能となる。
この結果、昼夜を問わず、また計測者に依存することな
く、水面の状況を客観的かつ安定に自動計測する。
Therefore, according to the water surface monitoring apparatus of the present invention,
A floating object floating on the water surface to be monitored is imaged by two imaging devices, and the distance from the imaging device to the floating object is measured based on the parallax between the two images obtained by the two imaging devices. Then, by measuring the water level of the water surface at the measurement time from the obtained distance, or,
The state of the water surface is automatically measured by objectively measuring the average water level of the water surface, the state of the wave on the water surface, or the temporal change of the average water level from a plurality of water level data measured over a certain time interval. Furthermore, by providing the floating object with a light emitting function, it is possible to measure even at night.
As a result, the state of the water surface can be automatically measured objectively and stably regardless of day or night, and without depending on the operator.

【0013】[0013]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】まず、2台の撮像装置(以下カメラと記
す)を使用し三角測量の原理を利用して距離計測する方
法(以下、ステレオ距離計測と記す)の原理について図
1を用いて説明する。実空間を表わす座標としてx、
y、zを用い、画像面(カメラの撮像面)上の位置を表
わす座標としてX、Yを用いる。ただし、2台のカメラ
の画像面を区別するために、左カメラの画像面上の位置
を表す座標としてXL、YLを用い、右カメラの画像面
上の位置を表す座標としてXR、YRを用いる。x軸と
XL軸、x軸とXR軸、y軸とYL軸、y軸とYR軸は
各々互いに平行であり、z軸は2台のカメラの光軸にと
もに平行であるとする。
First, the principle of a method for measuring a distance (hereinafter, referred to as a stereo distance measurement) using the principle of triangulation using two image pickup devices (hereinafter, referred to as cameras) will be described with reference to FIG. . X as a coordinate representing the real space,
Y and z are used, and X and Y are used as coordinates that represent a position on the image plane (image pickup plane of the camera). However, in order to distinguish the image planes of the two cameras, XL and YL are used as coordinates indicating the position on the image plane of the left camera, and XR and YR are used as coordinates indicating the position on the image plane of the right camera. . The x-axis and the XL-axis, the x-axis and the XR-axis, the y-axis and the YL-axis, the y-axis and the YR-axis are parallel to each other, and the z-axis is parallel to the optical axes of the two cameras.

【0015】実空間座標系の原点であるOを、左右のカ
メラの投影中心FL、FRの中点にとり、原点をOとす
る実空間座標系(x、y、z)を、基準カメラ座標系2
と呼ぶことにする。また、FLとFRの間の距離を基線
長3と呼び、この距離を2aとすると、FL、FRの実
空間内での座標は、それぞれ(-a、0、0)、(a、
0、0)で表される。
The origin O of the real space coordinate system is taken as the midpoint of the projection centers FL and FR of the left and right cameras, and the real space coordinate system (x, y, z) with the origin O is defined as the reference camera coordinate system. Two
I will call it. If the distance between FL and FR is called the baseline length 3 and this distance is 2a, the coordinates of FL and FR in the real space are (-a, 0, 0), (a,
It is represented by 0, 0).

【0016】現実のカメラの画像面は、カメラの投影中
心に関して、計測対象と反対側にあるが、以下に述べる
幾何学的定量関係を見やすくするために、図1では画像
面を投影中心に関して、対象の位置に描いている。
The image plane of the actual camera is on the side opposite to the measurement target with respect to the projection center of the camera, but in order to make it easy to see the geometric quantitative relationship described below, in FIG. It is drawn at the target position.

【0017】投影中心FLと左画像面11との距離(焦
点距離)をfとし、また投影中心FRと右画像面21と
の距離(焦点距離)を同様にfとすると、左右画像面1
1、21における画像原点OL、ORの実空間座標はそ
れぞれ(-a、f、0)、(a、f、0)で表される。
以下、左、右の画像を示す添え字としてL、Rを用い、
原点Oを視点1と呼ぶ。
Assuming that the distance (focal length) between the projection center FL and the left image plane 11 is f, and the distance between the projection center FR and the right image plane 21 (focal length) is also f, the left and right image planes 1 are
The real space coordinates of the image origins OL and OR at 1 and 21 are represented by (-a, f, 0) and (a, f, 0), respectively.
Hereinafter, L and R are used as subscripts indicating the left and right images,
The origin O is called viewpoint 1.

【0018】いま、実空間内の点pが左画像面11上の
点PL(XL、YL)、右画像面21上の点PR(X
R、YR)にそれぞれ投影されたとする。ステレオ距離
計測では、画像面上においてPL、PRを決定し、三角
測量の原理に基づいて点pの実空間座標(x、y、z)
を求める。ここでは、2台のカメラの光軸が同一平面上
にあり、x軸とX軸とを平行にとっていることから、Y
LとYRとは同じ値をとる。FLとPLを結ぶ直線と、
FRとPRを結ぶ直線とが点pで交わるという幾何学的
条件から、画像面上の座標XL、YL、XR、YRと実
空間内の座標x、y、zとの関係は、
Now, a point p in the real space is a point PL (XL, YL) on the left image plane 11 and a point PR (X on the right image plane 21.
R, YR). In stereo distance measurement, PL and PR are determined on the image plane, and the real space coordinates (x, y, z) of the point p are determined based on the principle of triangulation.
Ask for. Here, since the optical axes of the two cameras are on the same plane and the x axis and the X axis are parallel, Y
L and YR have the same value. A straight line connecting FL and PL,
From the geometric condition that the straight line connecting FR and PR intersect at the point p, the relationship between the coordinates XL, YL, XR, YR on the image plane and the coordinates x, y, z in the real space is

【0019】[0019]

【数1】 [Equation 1]

【0020】あるいは、Alternatively,

【0021】[0021]

【数2】 [Equation 2]

【0022】と求められる。ここで、d= XL−XR
は視差を表している。したがって、2台のカメラにて得
られた2画像間の対応点、例えばPLとPRが求まれ
ば、数1によって点pの基準カメラ座標系での座標値が
決まることになる。左右画像間の対応点を求める方法の
具体例としては、例えば、〃三次元画像認識技術を用い
た運転支援システム〃、自動車技術会学術講演会前刷集
924、pp、169−172(1992−10)や、
〃ステレオ画像処理を用いた測距アルゴリズムの開発
〃、自動車技術会学術講演会前刷集924、pp、15
3−156(1992−10)がある。
Is required. Where d = XL-XR
Indicates parallax. Therefore, if the corresponding points between the two images obtained by the two cameras, for example, PL and PR are obtained, the coordinate value of the point p in the reference camera coordinate system is determined by the equation 1. Specific examples of the method of obtaining the corresponding points between the left and right images include, for example, “a driving support system using a three-dimensional image recognition technology”, a preprint of the Automotive Engineering Society Academic Lecture 924, pp, 169-172 (1992- 10),
〃 Development of ranging algorithm using stereo image processing 〃, Preprints 924, pp, 15
3-156 (1992-10).

【0023】図2は、上述の原理に基づいて水面の水位
を計測する、本発明の水面監視装置の第1実施例の構成
を示すものである。
FIG. 2 shows the construction of the first embodiment of the water surface monitoring apparatus of the present invention for measuring the water level on the water surface based on the above-mentioned principle.

【0024】同図において、水面監視装置200は、支
柱201を備える。支柱201はカメラ202および浮
遊物体203を取り付けるための支柱であり、その上部
を水面上に露出するよう、海底や川底、湖底に立設され
る。支柱201は中空状であり、その中空部を上下方向
に移動自在な連結棒206が嵌挿される。
In the figure, the water surface monitoring device 200 includes a column 201. The pillar 201 is a pillar for attaching the camera 202 and the floating object 203, and is erected on the seabed, riverbed, or lakebed so that the upper part thereof is exposed above the water surface. The column 201 has a hollow shape, and a connecting rod 206 that is vertically movable in the hollow portion is inserted therein.

【0025】203は水面に浮かせた浮遊物体で、支柱
201内を上下方向に移動自在に嵌挿された連結棒20
6を介して、支柱201に係留される。これによって浮
遊物体203は、流されないように固定されるととも
に、監視されるべき被測定水面205の上下に合わせて
移動するように構成される。すなわちこの構成によっ
て、浮遊物体203は常に水面205に追随して浮遊す
ることになる。
Reference numeral 203 denotes a floating object floating on the surface of the water, which is a connecting rod 20 inserted in the column 201 so as to be vertically movable.
It is moored to the support | pillar 201 via 6. As a result, the floating object 203 is fixed so as not to flow, and is configured so as to move in the vertical direction of the measured water surface 205 to be monitored. That is, with this configuration, the floating object 203 always floats following the water surface 205.

【0026】202、202は水面205に浮かせた浮
遊物体203までの距離を計測するための2台のカメラ
で、いずれも支柱201の上部に取付けられる。また、
204は夜間においても水面の監視が可能となるよう設
けた発光素子である。
Reference numerals 202 and 202 denote two cameras for measuring the distance to the floating object 203 floated on the water surface 205, both of which are attached to the upper part of the column 201. Also,
Reference numeral 204 is a light emitting element provided so that the water surface can be monitored even at night.

【0027】前記の構成によって、つねに浮遊物体20
3が水面205に浮遊し、しかも浮遊物体203が流さ
れることがないため、2台のカメラ202、202の画
角内のほぼ同じ位置で常に撮像が可能になる。
With the above arrangement, the floating object 20 is always
3 floats on the water surface 205, and the floating object 203 does not flow. Therefore, it is possible to always take images at substantially the same position within the angle of view of the two cameras 202, 202.

【0028】以下に、この水面監視装置200の動作を
説明する。まず、ある時刻tにおいて撮像された2画像
間で浮遊物体領域の対応点を探索し、対応点間の画像上
での座標値から視差d(t)を求め、浮遊物体までの距
離z(t)を数3にて求める。
The operation of the water surface monitoring device 200 will be described below. First, a corresponding point in a floating object region is searched between two images captured at a certain time t, a parallax d (t) is obtained from coordinate values on the image between the corresponding points, and a distance z (t ) Is calculated by the equation 3.

【0029】[0029]

【数3】 [Equation 3]

【0030】数3において、2aは2台のカメラ間の基
線長、fはカメラの焦点距離を表している。このとき時
刻tにおける水位h(t)は数4にて求めることができ
る。
In Equation 3, 2a represents the base length between two cameras, and f represents the focal length of the cameras. At this time, the water level h (t) at the time t can be calculated by Equation 4.

【0031】[0031]

【数4】 [Equation 4]

【0032】ただし、h(t)は水位の基準面207か
らの高さを表わし、Hは基準面207から基準カメラ座
標系の原点208までの距離を表わしている。
Here, h (t) represents the height of the water level from the reference plane 207, and H represents the distance from the reference plane 207 to the origin 208 of the reference camera coordinate system.

【0033】次に、平均水位の算出方法について説明す
る。ある時刻tnにおける平均水位μ(tn)は、時刻
tnよりも過去に計測された水位データh(tn−k)
(k=0、1、2、3、・・・m−1)から数5によっ
て算出される。
Next, a method of calculating the average water level will be described. The average water level μ (tn) at a certain time tn is the water level data h (tn-k) measured before the time tn.
(K = 0, 1, 2, 3, ... M-1) is calculated by Equation 5.

【0034】[0034]

【数5】 [Equation 5]

【0035】このようにして求められる平均水位μ(t
n)の時間変動を監視することよって、水位の上昇や、
下降を容易に推定することができる。
The average water level μ (t
By monitoring the time variation of n),
The fall can be easily estimated.

【0036】つぎに、 波の状態を表す指標σ(tn)
としては、
Next, an index σ (tn) representing the wave state
as,

【0037】[0037]

【数6】 [Equation 6]

【0038】や、And

【0039】[0039]

【数7】 [Equation 7]

【0040】などが考えられる。いずれの指標σ(t
n)も、波が高いときには大きな値となり、波が低いと
きには小さな値となる。
The following are conceivable. Which index σ (t
n) also has a large value when the wave is high, and has a small value when the wave is low.

【0041】以上、図2の実施例について説明したが、
他に図3や図4に示す実施例におけるような構成も可能
である。
The embodiment of FIG. 2 has been described above.
Besides, the configuration as in the embodiment shown in FIGS. 3 and 4 is also possible.

【0042】図3に示す第2実施例について説明する。
図2の第1実施例では夜間の監視を可能とするために、
浮遊物体自身に発光する機能を持たせたものであるが、
図3の構成では、浮遊物体303に反射板304を取り
付け、支柱301上部の、カメラ302、302間に配
設した照明309によって反射板304を照射すること
で、夜間の監視を可能とするものである。
A second embodiment shown in FIG. 3 will be described.
In the first embodiment of FIG. 2, in order to enable nighttime monitoring,
The floating object itself has the function of emitting light,
In the configuration shown in FIG. 3, a reflector 304 is attached to the floating object 303, and the reflector 304 is illuminated by the illumination 309 provided between the cameras 302 and 302 on the upper part of the pillar 301, thereby enabling nighttime monitoring. Is.

【0043】また図4は、第3実施例を示すもので、同
図において、浮遊物体403は支柱401に取り付ける
のではなく、別に設けた支柱406に取り付ける構成と
なっている。
FIG. 4 shows the third embodiment. In FIG. 4, the floating object 403 is not attached to the support column 401, but is attached to the support column 406 provided separately.

【0044】以上説明した本発明の水面監視装置を適用
して、ダムの水位や水面の状況を自動計測することがで
き、これによってダムにおける水の放流などを自動化す
る等のダム制御が可能な、ダム制御装置を実現すること
ができる。また同様に、海岸における波の状態を自動監
視する波浪状況監視装置を実現することができる。
By applying the water surface monitoring device of the present invention described above, the water level and the condition of the water surface of the dam can be automatically measured, thereby enabling dam control such as automating discharge of water in the dam. , A dam control device can be realized. Similarly, it is possible to realize a wave condition monitoring device that automatically monitors the state of waves on the coast.

【0045】[0045]

【発明の効果】以上のように、本発明の水面監視装置に
よれば、監視すべき水面に浮遊させた浮遊物体を2台の
撮像装置にて撮像し、得られる2画像間の視差に基づい
て、撮像装置から浮遊物体までの距離を計測し、得られ
た距離から計測時刻における水面の水位を計測すること
によって、あるいは所定の時間間隔にわたって計測した
複数の水位データから、水面の平均水位、あるいは水面
の波の状態、あるいは平均水位の時間的変化を客観的に
自動計測するものであるから、計測者に依存することな
く、水面の状況を客観的かつ安定に自動計測することが
できる。
As described above, according to the water surface monitoring apparatus of the present invention, a floating object floating on the water surface to be monitored is imaged by two imaging devices, and based on the parallax between the two images obtained. By measuring the distance from the imaging device to the floating object, by measuring the water level of the water surface at the measurement time from the obtained distance, or from a plurality of water level data measured over a predetermined time interval, the average water level of the water surface, Alternatively, since the state of the wave on the water surface or the temporal change of the average water level is objectively and automatically measured, the state of the water surface can be objectively and stably automatically measured without depending on the measurer.

【0046】さらに、浮遊物体に発光素子や反射板によ
る発光機能を備えることによって、夜間での計測を可能
にする。この結果、昼夜を問わず水面の状況を客観的か
つ安定に自動計測することが可能となる。
Further, the floating object is provided with a light emitting element or a light emitting function by a reflecting plate, which enables measurement at night. As a result, it becomes possible to objectively and stably automatically measure the state of the water surface day and night.

【図面の簡単な説明】[Brief description of drawings]

【図1】ステレオ距離計測の原理について説明するため
の説明図
FIG. 1 is an explanatory diagram for explaining the principle of stereo distance measurement.

【図2】本発明の水面監視装置の第1実施例についての
説明図
FIG. 2 is an explanatory view of a first embodiment of the water surface monitoring device of the present invention.

【図3】本発明の水面監視装置の第2実施例についての
説明図
FIG. 3 is an explanatory diagram of a second embodiment of the water surface monitoring device of the present invention.

【図4】本発明の水面監視装置の第3実施例についての
説明図
FIG. 4 is an explanatory view of a third embodiment of the water surface monitoring device of the present invention.

【符号の説明】[Explanation of symbols]

201 支柱 202 カメラ 203 浮遊物体 204 発光素子 205 被測定水面 206 連結棒 207 基準面 208 基準カメラ座標系の原点 h(t) 水位 H 距離 301 支柱 302 カメラ 303 浮遊物体 304 反射板 305 被測定水面 306 連結棒 307 基準面 308 基準カメラ座標系の原点 309 照明 401 支柱 402 カメラ 403 浮遊物体 404 発光素子 405 被測定水面 406 浮遊物体固定棒 407 基準面 408 基準カメラ座標系の原点 201 prop 202 camera 203 floating object 204 light emitting element 205 measured water surface 206 connecting rod 207 reference surface 208 origin of reference camera coordinate system h (t) water level H distance 301 prop 302 camera 303 floating object 304 reflector 305 measured water surface 306 connection Rod 307 Reference plane 308 Reference camera coordinate system origin 309 Lighting 401 Strut 402 Camera 403 Floating object 404 Light emitting element 405 Water surface to be measured 406 Floating object fixed rod 407 Reference plane 408 Origin of reference camera coordinate system

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04N 7/18 C Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area H04N 7/18 C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 監視すべき水面に浮遊物体を浮遊させ、
前記浮遊物体を2台の撮像装置にて撮像し、前記2台の
撮像装置にて得られる2画像間の視差に基づいて、前記
撮像装置から前記浮遊物体までの距離を計測し、前記計
測した距離に基づいて計測時刻における前記水面の水位
を計測する構成としたことを特徴とする水面監視装置。
1. A floating object is floated on the surface of water to be monitored,
The floating object is imaged by two imaging devices, the distance from the imaging device to the floating object is measured based on the parallax between two images obtained by the two imaging devices, and the measurement is performed. A water surface monitoring device, which is configured to measure the water level of the water surface at a measurement time based on a distance.
【請求項2】 ある時間間隔にわたって計測した複数の
前記水面水位データから、水面の平均水位、あるいは水
面の波の状態、あるいは平均水位の時間的変化を計測す
ることを特徴とする請求項 1記載の水面監視装置。
2. The average water level of the water surface, the state of waves on the water surface, or the temporal change of the average water level is measured from the plurality of water surface water level data measured over a certain time interval. Water surface monitoring device.
【請求項3】 前記における浮遊物体として、発光する
機能を備えた浮遊物体を用いることを特徴とする請求項
1記載の水面監視装置。
3. A floating object having a function of emitting light is used as the floating object.
The water surface monitoring device described in 1.
【請求項4】 前記請求項1あるいは請求項2にて得ら
れた水面監視データのうち少なくとも一つのデータを用
いて、ダムの制御を行うことを特徴とするダム制御装
置。
4. A dam control device for controlling a dam using at least one of the water surface monitoring data obtained in claim 1 or claim 2.
【請求項5】 前記請求項1あるいは請求項2にて得ら
れた水面監視データのうち少なくとも一つのデータを用
いて波の状態を監視することを特徴とする波浪状況監視
装置。
5. A wave condition monitoring device, characterized in that the wave condition is monitored using at least one of the water surface monitoring data obtained in claim 1 or claim 2.
JP6032562A 1994-03-02 1994-03-02 Water surface monitoring device using stereo image processing Pending JPH07243852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6032562A JPH07243852A (en) 1994-03-02 1994-03-02 Water surface monitoring device using stereo image processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6032562A JPH07243852A (en) 1994-03-02 1994-03-02 Water surface monitoring device using stereo image processing

Publications (1)

Publication Number Publication Date
JPH07243852A true JPH07243852A (en) 1995-09-19

Family

ID=12362358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6032562A Pending JPH07243852A (en) 1994-03-02 1994-03-02 Water surface monitoring device using stereo image processing

Country Status (1)

Country Link
JP (1) JPH07243852A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335215B1 (en) * 2000-06-12 2002-05-04 김형벽ㅂ Draught measuring devices
KR100579424B1 (en) * 2004-04-09 2006-06-01 군산대학교산학협력단 System and method for measuring wave heigth by monitoring the image, and buoy used therein
KR100894977B1 (en) * 2008-09-17 2009-04-24 주식회사 와텍 Hydrograph apparatus in use binocular disparity
KR101283363B1 (en) * 2013-02-18 2013-07-08 (주)해양정보기술 Water level observation unit
CN103591939A (en) * 2013-10-29 2014-02-19 中国科学院力学研究所 Method for measuring simulated seabed terrain based on active stereo vision technology and measuring equipment
US20140111642A1 (en) * 2012-10-23 2014-04-24 Syscor Controls & Automation Inc. Visual monitoring system for covered storage tanks
KR101505015B1 (en) * 2013-06-27 2015-03-25 인제대학교 산학협력단 Ground water level measuring device using water level scale and ground water level measuring method
WO2015045717A1 (en) * 2013-09-26 2015-04-02 日本電気株式会社 Anomalous tide level fluctuation sensing device, anomalous tide level fluctuation sensing method, and anomalous tide level fluctuation sensing program
CN105675086A (en) * 2016-04-15 2016-06-15 洛阳功航机械科技有限公司 Hydrological detection scale
CN106370271A (en) * 2016-08-26 2017-02-01 成都汉康信息产业有限公司 Reservoir water level monitoring system applicable to remote regions
CN109443476A (en) * 2018-10-17 2019-03-08 水利部交通运输部国家能源局南京水利科学研究院 A kind of the fluctuating procession of the water level non-contact measurement device and method
CN115164847A (en) * 2022-08-11 2022-10-11 北京奥特美克科技股份有限公司 Water level measuring method, device and system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335215B1 (en) * 2000-06-12 2002-05-04 김형벽ㅂ Draught measuring devices
KR100579424B1 (en) * 2004-04-09 2006-06-01 군산대학교산학협력단 System and method for measuring wave heigth by monitoring the image, and buoy used therein
KR100894977B1 (en) * 2008-09-17 2009-04-24 주식회사 와텍 Hydrograph apparatus in use binocular disparity
US20140111642A1 (en) * 2012-10-23 2014-04-24 Syscor Controls & Automation Inc. Visual monitoring system for covered storage tanks
KR101283363B1 (en) * 2013-02-18 2013-07-08 (주)해양정보기술 Water level observation unit
KR101505015B1 (en) * 2013-06-27 2015-03-25 인제대학교 산학협력단 Ground water level measuring device using water level scale and ground water level measuring method
US9989361B2 (en) 2013-09-26 2018-06-05 Nec Corporation Anomalous tide level fluctuation sensing device, anomalous tide level fluctuation sensing method, and anomalous tide level fluctuation sensing program
WO2015045717A1 (en) * 2013-09-26 2015-04-02 日本電気株式会社 Anomalous tide level fluctuation sensing device, anomalous tide level fluctuation sensing method, and anomalous tide level fluctuation sensing program
JP2015069219A (en) * 2013-09-26 2015-04-13 日本電気株式会社 Abnormal tide level variation detection device, abnormal tide level variation detection method, and abnormal tide level variation detection program
CN103591939B (en) * 2013-10-29 2015-11-04 中国科学院力学研究所 Based on simulation sea bed topographic survey method and the measurement mechanism of active stereo vision technique
CN103591939A (en) * 2013-10-29 2014-02-19 中国科学院力学研究所 Method for measuring simulated seabed terrain based on active stereo vision technology and measuring equipment
CN105675086A (en) * 2016-04-15 2016-06-15 洛阳功航机械科技有限公司 Hydrological detection scale
CN106370271A (en) * 2016-08-26 2017-02-01 成都汉康信息产业有限公司 Reservoir water level monitoring system applicable to remote regions
CN109443476A (en) * 2018-10-17 2019-03-08 水利部交通运输部国家能源局南京水利科学研究院 A kind of the fluctuating procession of the water level non-contact measurement device and method
CN115164847A (en) * 2022-08-11 2022-10-11 北京奥特美克科技股份有限公司 Water level measuring method, device and system
CN115164847B (en) * 2022-08-11 2023-09-22 北京奥特美克科技股份有限公司 Water level measurement method, device and system

Similar Documents

Publication Publication Date Title
JP3049603B2 (en) 3D image-object detection method
CN103852130B (en) Water level acquisition method based on image recognition
JP4800455B2 (en) Vehicle speed measuring method and apparatus
JPH07243852A (en) Water surface monitoring device using stereo image processing
KR101666466B1 (en) Marine risk management system and marine risk management method using marine object distance measuring system with monocular camera
CN111435081B (en) Sea surface measuring system, sea surface measuring method and storage medium
CN113850137A (en) Power transmission line image online monitoring method, system and equipment
CN111583200A (en) Large-span power transmission line early warning system and method
CN108476282A (en) Radiography assisting device and photography householder method
JP4852905B2 (en) Image processing apparatus and image processing method
CN113570656A (en) Ship height measurement and superelevation early warning system and method for bridge area water area
JPWO2020174916A1 (en) Shooting system
KR20210090573A (en) Method and device for monitoring harbor and ship considering sea level
JPH1144533A (en) Preceding vehicle detector
KR101720679B1 (en) Lane recognition system using light fied camera and method therefor
CN116027319A (en) Radar automatic labeling system and method based on radar photoelectric target fusion
CN110178157B (en) Self-position estimation device, self-position estimation method, program, and image processing device
CN115808129B (en) Method for identifying displacement and deformation of generator bus through machine vision
CN113267128A (en) Binocular vision automatic side slope displacement monitoring method
CN109883393B (en) Method for predicting front gradient of mobile robot based on binocular stereo vision
JP2003259357A (en) Calibration method for camera and attachment of camera
CN110907132A (en) Wave direction detection method, system, equipment and medium
Van Leussen et al. The underwater video system VIS
CN114239995A (en) Method and system for generating full-area cruising route, electronic device and storage medium
CN210269898U (en) Binocular vision automobile speed capturing system