JPH0724324A - Catalyst for treating exhaust gas - Google Patents

Catalyst for treating exhaust gas

Info

Publication number
JPH0724324A
JPH0724324A JP5175438A JP17543893A JPH0724324A JP H0724324 A JPH0724324 A JP H0724324A JP 5175438 A JP5175438 A JP 5175438A JP 17543893 A JP17543893 A JP 17543893A JP H0724324 A JPH0724324 A JP H0724324A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
crystalline silicate
ion
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5175438A
Other languages
Japanese (ja)
Other versions
JP3249243B2 (en
Inventor
Shigeru Nojima
野島  繁
Kozo Iida
耕三 飯田
Takafuru Kobayashi
敬古 小林
Akira Serizawa
暁 芹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17543893A priority Critical patent/JP3249243B2/en
Publication of JPH0724324A publication Critical patent/JPH0724324A/en
Application granted granted Critical
Publication of JP3249243B2 publication Critical patent/JP3249243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst purifying exhaust gas containing nitrogen oxide, carbon monoxide and hydrocarbon. CONSTITUTION:A catalyst for treating exhaust gas is composed of crystalline silicate having an X-ray diffraction pattern and having a chemical formula represented by aR2O[bIr2O3.cMeO3].y-SiO2 (wherein R is an alkali metal ion and/or a hydrogen ion, M is at least one element ion selected from a group cosisting of group VIII elements, a rare earth element, titanium, vanadium, chromium, niobium, antimony, gallium and aluminum, a>=0, b>0, c>=0, b+c=1 and y>11) containing oxides in a mol ratio in a dehydrated state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物(以下、NO
xと略す)、一酸化炭素(CO)、炭化水素(以下、H
Cと略す)を含有する排気ガスを浄化する触媒に関する
ものである。
The present invention relates to nitrogen oxides (hereinafter referred to as NO
abbreviated as x), carbon monoxide (CO), hydrocarbon (hereinafter, H)
The present invention relates to a catalyst for purifying exhaust gas containing C).

【0002】[0002]

【従来の技術】自動車等の排ガス処理においては、排ガ
ス中のCO、HCを利用して、アルミナを担体とした貴
金属系の触媒を用いて浄化するのが一般的であるが、理
論空燃比付近の極めて狭い範囲でしかNOxは浄化され
ない。近年、地球環境問題の高まりの中で自動車の低燃
費化の要求は強く理論空燃比以上で燃焼させるリーンバ
ーンエンジンがキーテクノロジーとして注目されてい
る。ただし、自動車の走行性、加速性を考慮に入れると
リーン領域のみのエンジンは不具合点が多く、実際は理
論空燃比(ストイキオ)付近、リーン領域の双方で燃焼
を行わせる必要がある。最近、リーン領域でNOxの浄
化に関してはコバルト又は銅を含有した結晶性シリケー
ト触媒が高性能を有する触媒として脚光をあびている。
2. Description of the Related Art In the treatment of exhaust gas from automobiles and the like, it is common to use CO and HC in the exhaust gas to purify it using a noble metal catalyst with alumina as a carrier. NOx is purified only in an extremely narrow range. In recent years, the demand for low fuel consumption of automobiles has been strongly demanded due to the increase of global environmental problems, and a lean burn engine that burns at a ratio higher than the theoretical air-fuel ratio has been attracting attention as a key technology. However, considering the driving and acceleration characteristics of the automobile, there are many problems with the engine only in the lean region, and it is necessary to actually perform combustion both in the vicinity of the stoichiometric air-fuel ratio (Stoichio) and in the lean region. Recently, regarding purification of NOx in the lean region, a crystalline silicate catalyst containing cobalt or copper has been highlighted as a catalyst having high performance.

【0003】これらの触媒は反応初期においては十分な
性能を有するが、耐久性において問題点が生じており、
これまで耐久性を向上させるために種々の結晶性シリケ
ートの改良が検討されている。例えば、結晶性シリケー
トの主要な構成元素であるアルミニウムの脱離を防い
で、コバルト又は銅の安定性を図るために結晶格子中に
VIII族元素や希土類元素(特願平3−165816号公
報)、さらにアルカリ土類金属(特願平3−31919
5号)を添加させた新規なシリケートを用いる方法が提
案されている。加えて、アルミニウムの脱離を促進する
スチームの進入を防ぐため、結晶性シリケートの表層に
疎水性のシリカライトを結晶成長させ、耐スチーム性を
向上させた結晶性シリケートの適用も検討されている
(特願平3−192829号)。
These catalysts have sufficient performance in the initial stage of the reaction, but have problems in durability,
Up to now, various crystalline silicates have been studied for improvement in order to improve durability. For example, in order to prevent the elimination of aluminum, which is the main constituent element of crystalline silicate, and to stabilize cobalt or copper, the
Group VIII elements and rare earth elements (Japanese Patent Application No. 3-165816), and alkaline earth metals (Japanese Patent Application No. 3-31919).
No. 5) has been proposed to use a novel silicate. In addition, in order to prevent the invasion of steam that promotes the desorption of aluminum, the application of a crystalline silicate in which the hydrophobic silicalite is crystal-grown on the surface layer of the crystalline silicate to improve the steam resistance is being studied. (Japanese Patent Application No. 3-192829).

【0004】しかし、これらの触媒を用いることにより
リーン雰囲気での耐久性は飛躍的に向上したが、通常1
00km/hの高速走行時において加速する場合、ガス
温度が瞬時に700℃付近まで達することがあり、か
つ、この時のガス組成は水素等の還元剤が過剰に存在す
るリッチ雰囲気である。この条件においては、上記改良
型結晶性シリケートを適用しても触媒の劣化を防ぐこと
ができないため、高温リッチ雰囲気の触媒の耐久性向上
がこれらの触媒の実用化上の大きな課題となっている。
However, although the durability in a lean atmosphere is dramatically improved by using these catalysts, it is usually 1
When accelerating at a high speed of 00 km / h, the gas temperature may instantly reach around 700 ° C., and the gas composition at this time is a rich atmosphere in which a reducing agent such as hydrogen is excessively present. Under these conditions, even if the improved crystalline silicate is applied, deterioration of the catalyst cannot be prevented. Therefore, improvement of durability of the catalyst in a high temperature rich atmosphere is a major problem in practical application of these catalysts. .

【0005】[0005]

【発明が解決しようとする課題】上記問題点は銅やコバ
ルトを活性金属として用いる限りは避けられない。すな
わち、700℃以上の高温では卑金属元素は全てシンタ
リングを起こし凝集してしまうからである。そのため、
開発した結晶性シリケートを用いてリーン雰囲気で脱硝
活性を有する卑金属以外の金属を用いることができれ
ば、耐久性は十分保証され、実用化へ大きく前進すると
考えられる。これまでに、本発明者らは開発した結晶性
シリケートに白金族元素、とりわけイリジウムを担持さ
せた触媒が700℃以上の高温リッチ雰囲気においても
ほとんど活性の低下が認められず安定な性能を有するこ
とを見い出し提案している(特願平5−26369
号)。
The above problems are unavoidable as long as copper or cobalt is used as the active metal. That is, at a high temperature of 700 ° C. or higher, all base metal elements cause sintering and aggregate. for that reason,
If the developed crystalline silicate can be used with a metal other than a base metal having a denitration activity in a lean atmosphere, the durability is sufficiently ensured, and it is considered that the practical use will be greatly advanced. So far, the inventors have found that the catalyst in which the platinum group element, particularly iridium, is supported on the crystalline silicate developed by the present invention has stable activity with almost no decrease in activity even in a high temperature rich atmosphere of 700 ° C. or higher. Found and proposed (Japanese Patent Application No. 5-26369)
issue).

【0006】[0006]

【課題を解決するための手段】本発明者らはこのイリジ
ウムを担持した結晶性シリケートの活性点を鋭意解析し
た結果、結晶性シリケートの結晶格子に配置されたイリ
ジウムが有効に作用することを見い出した。そこで、さ
らにこの触媒の高機能化を図るために、結晶性シリケー
トを合成する時、イリジウム元素を添加して結晶成長さ
せることによりこれまで以上の高性能、耐久性を有する
ことがわかり、本発明を完成するに至った。
Means for Solving the Problems As a result of diligent analysis of the active sites of this crystalline silicate carrying iridium, the present inventors have found that iridium arranged in the crystalline lattice of the crystalline silicate effectively acts. It was Therefore, in order to further enhance the functionality of this catalyst, it was found that when synthesizing a crystalline silicate, by adding an iridium element to grow a crystal, it has higher performance and durability than ever before. Has been completed.

【0007】すなわち、本発明は下記表1に示されるX
線回折パターンを有し、脱水された状態において酸化物
のモル比で表わして aR2 O・〔bIr2 3 ・cMe O3 〕・ySiO2 (上記式中、Rはアルカリ金属イオン及び/又は水素イ
オン、MはVIII族元素、希土類元素、チタン、バナジウ
ム、クロム、ニオブ、アンチモン、ガリウム及びアルミ
ニウムからなる群より選ばれた少なくとも1種以上の元
素イオン、a≧0、b>0、c≧0、b+c=1、y>
11)なる化学式を有する結晶性シリケートであること
を特徴とする排気ガス処理用触媒である。
That is, the present invention provides X shown in Table 1 below.
It has a line diffraction pattern and is expressed as a molar ratio of oxides in the dehydrated state: aR 2 O. [bIr 2 O 3 .cMe O 3 ] .ySiO 2 (wherein R is an alkali metal ion and / or Hydrogen ion, M is at least one element ion selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, gallium and aluminum, a ≧ 0, b> 0, c ≧ 0, b + c = 1, y>
An exhaust gas treatment catalyst, which is a crystalline silicate having the chemical formula 11).

【0008】[0008]

【表1】 VS:非常に強い S:強い M:中級 W:弱い X線源:Cu Kα[Table 1] VS: Very strong S: Strong M: Intermediate W: Weak X-ray source: Cu Kα

【0009】[0009]

【作用】結晶格子中にイリジウムを配置した本発明で使
用する結晶性シリケートを用いて、NOx、CO、HC
を含有する酸素過剰下での排気ガスを浄化する浄化反応
式は下記のとおりである。
By using the crystalline silicate used in the present invention in which iridium is arranged in the crystal lattice, NOx, CO, HC
A purifying reaction formula for purifying exhaust gas containing oxygen in excess of oxygen is as follows.

【0010】[0010]

【化1】 *1)炭化水素(HC)の例としてC3 6 を代表とし
て示した。 *2)含酸素炭化水素の例としてCH2 Oを代表として
示した。 上記反応式において、(1)はHCの活性化、(2)は
HCの燃焼、(3)は脱硝反応、(4)はCOの燃焼を
意味している。
[Chemical 1] * 1) As an example of hydrocarbon (HC), C 3 H 6 is shown as a representative. * 2) CH 2 O is shown as an example of the oxygen-containing hydrocarbon. In the above reaction formula, (1) means activation of HC, (2) means combustion of HC, (3) means denitration reaction, and (4) means combustion of CO.

【0011】本発明触媒は250〜500℃の範囲にて
上記式にて高い脱硝活性を有する。なお、O2 が少ない
理論空燃比付近においても、本発明触媒は下記反応
(5)(6)により広範囲な温度域で脱硝反応が進行す
る。
The catalyst of the present invention has a high denitration activity in the above formula in the range of 250 to 500 ° C. Even in the vicinity of the stoichiometric air-fuel ratio where O 2 is small, the catalyst of the present invention undergoes the denitration reaction in a wide temperature range due to the following reactions (5) and (6).

【化2】 [Chemical 2]

【0012】本発明触媒は700℃以上の高温リーン又
はリッチ雰囲気に長時間さらされても上記k1 〜k6
反応速度定数はほとんど変化せず、耐久性を有する触媒
であることを見い出している。
It has been found that the catalyst of the present invention has durability even when exposed to a high temperature lean or rich atmosphere of 700 ° C. or higher for a long time, and the reaction rate constants of k 1 to k 6 are hardly changed. There is.

【0013】本発明触媒は通常オートクレーブを用いた
水熱合成法により合成されるが、合成後の結晶性シリケ
ート中のSiO2 /Ir2 3 比が5,000以下で十
分に活性が発現し、好ましくはSiO2 /Ir2 3
1,000以下で高い活性を有する。以後、本発明を実
施例にて詳述する。
The catalyst of the present invention is usually synthesized by a hydrothermal synthesis method using an autoclave, and the activity is sufficiently exhibited when the SiO 2 / Ir 2 O 3 ratio in the crystalline silicate after synthesis is 5,000 or less. , And preferably has a high activity at a SiO 2 / Ir 2 O 3 ratio of 1,000 or less. Hereinafter, the present invention will be described in detail with reference to Examples.

【0014】[0014]

【実施例】【Example】

(実施例1)水ガラス1号(SiO2 :30%):56
16gを水:5429gに溶解し、この溶液を溶液Aと
する。一方、水:4175gに塩化イリジウム酸(H2
IrCl6 ・・・ as Ir:10%)水溶液:1715
g、塩化ナトリウム:262g、濃塩酸:2020gを
溶解し、この溶液を溶液Bとする。溶液Aと溶液Bを一
定割合で供給して沈殿を生成させ、十分攪拌してpH=
8.0のスラリを得る。このスラリを20リットルのオ
ートクレーブに仕込み、さらにテトラプロピルアンモニ
ウムブロマイドを500g添加し、160℃にて72時
間水熱合成を行い、合成後水洗して乾燥させ、さらに5
00℃、3時間焼成させ結晶性シリケート1を得る。こ
の結晶性シリケート1は酸化物のモル比で(結晶水を省
く)下記の組成式で表され、結晶構造はX線回折で前記
表1にて表示されるものである。0.5NaO2 ・0.
5H2 O・Ir2 3 ・80SiO2
(Example 1) Water glass No. 1 (SiO 2 : 30%): 56
16 g is dissolved in water: 5429 g, and this solution is referred to as solution A. On the other hand, water: 4175 g was mixed with iridium chloride (H 2
IrCl 6 ··· as Ir: 10% ) aqueous solution: 1715
g, sodium chloride: 262 g, concentrated hydrochloric acid: 2020 g, and this solution is referred to as solution B. Solution A and solution B are supplied at a constant ratio to generate a precipitate, and the mixture is sufficiently stirred to adjust pH =
You get a slurry of 8.0. This slurry was charged into a 20 liter autoclave, 500 g of tetrapropylammonium bromide was further added, and hydrothermal synthesis was carried out at 160 ° C. for 72 hours. After the synthesis, washing with water and drying were conducted, and further 5
The crystalline silicate 1 is obtained by baking at 00 ° C. for 3 hours. This crystalline silicate 1 is represented by the following composition formula in terms of the molar ratio of oxides (excluding the water of crystallization), and the crystal structure is shown in Table 1 by X-ray diffraction. 0.5 NaO 2 .0.
5H 2 O ・ Ir 2 O 3・ 80SiO 2

【0015】次に、上記100部結晶性シリケート1に
対して、バインダとしてアルミナゾル:3部、シリカゾ
ル:55部(SiO2 :20%)及び水:200部加
え、充分攪拌を行いウォッシュコート用スラリとした。
次にコージェライト用モノリス基材(400セルの格子
目)を上記スラリに浸漬し、取り出した後余分なスラリ
を吹きはらい200℃で乾燥させた。コート量は基材1
リットルあたり200g担持し、このコート物をハニカ
ム触媒1とする。
Next, to 100 parts of the above crystalline silicate 1, alumina sol: 3 parts, silica sol: 55 parts (SiO 2 : 20%) and water: 200 parts were added as a binder, and the mixture was sufficiently stirred to wash slurry for washcoat. And
Next, the monolith substrate for cordierite (lattice of 400 cells) was immersed in the slurry, taken out, and then excess slurry was blown off and dried at 200 ° C. Base material 1
200 g per liter is supported, and this coated product is used as a honeycomb catalyst 1.

【0016】(実施例2)実施例1の溶液Bの中に、塩
化コバルト、塩化ルテニウム、塩化ロジウム、塩化ラン
タン、塩化セリウム、塩化チタン、塩化バナジウム、塩
化クロム、塩化アンチモン、塩化ガリウム、塩化ニオブ
及び塩化アルミニウムを各々酸化物換算でIr2 3
同じモル数だけ添加した以外は結晶性シリケート1と同
様の操作を繰り返して結晶性シリケート2〜13を調製
した。これらの結晶性シリケートの結晶構造はX線回折
で前記表1に表示されるものであり、その組成は酸化物
のモル比(脱水された形態)で表わして、0.5Na2
O・0.5H2 O(Ir2 3 ・M2 3 )・80Si
2 である。ここでMはCo,Ru,Rh,La,C
e,Ti,V,Cr,Sb,Ga,Nb及びAlであ
る。これらの結晶性シリケート2〜13を実施例1の触
媒調製法と同様の方法にてコージェライト基材にコート
してハニカム触媒2〜13を得た。
Example 2 In the solution B of Example 1, salt was added.
Cobaltide, ruthenium chloride, rhodium chloride, lanthanum chloride
Tan, cerium chloride, titanium chloride, vanadium chloride, salt
Chromium chloride, antimony chloride, gallium chloride, niobium chloride
And aluminum chloride in terms of oxide respectively Ir2O3When
Same as crystalline silicate 1 except that the same number of moles was added
Repeat the above procedure to prepare crystalline silicates 2-13
did. The crystal structures of these crystalline silicates are X-ray diffraction
Is shown in Table 1 above, and its composition is an oxide.
Expressed as a molar ratio (in dehydrated form) of 0.5 Na2
O ・ 0.5H2O (Ir2O 3・ M2O3) ・ 80Si
O2Is. Where M is Co, Ru, Rh, La, C
e, Ti, V, Cr, Sb, Ga, Nb and Al
It These crystalline silicates 2 to 13 were used as catalysts in Example 1.
Coating a cordierite substrate by the same method as the medium preparation method
Then, honeycomb catalysts 2 to 13 were obtained.

【0017】(実施例3)実施例1において溶液Bに添
加する塩化イリジウム酸(H2 IrCl6 ・・・as I
r:10%)水溶液を各々82g、343g、857
g、3430gとし、実施例1と同様の操作にて結晶性
シリケート14〜17を合成し、さらにハニカム触媒1
4〜17を得た。本発明の触媒1〜17の組成を表2に
示す。
(Example 3) Iridium chloride (H 2 IrCl 6 ... As I) added to the solution B in Example 1
r: 10%) aqueous solution 82 g, 343 g, 857, respectively.
g, 3430 g, and the crystalline silicates 14 to 17 were synthesized by the same operation as in Example 1, and further the honeycomb catalyst 1
4 to 17 were obtained. Table 2 shows the compositions of the catalysts 1 to 17 of the present invention.

【0018】[0018]

【表2】 [Table 2]

【0019】(実験例1)実施例1〜3にて調製したハ
ニカム触媒1〜17の活性評価試験を実施した。活性評
価条件は下記の通りである。 〇(ガス組成) NO:400ppm、CO:1000ppm、C
2 4 :1000ppm、C 3 6 :340ppm、O
2 :8%、CO2 :10%、H2 O:10%、残:
2 、GHSV 30000h-1、触媒形状:15mm
×15mm×60mm(144セル数) 反応温度350、450℃における初期状態の触媒の脱
硝率を表3に示す。
(Experimental Example 1) The samples prepared in Examples 1 to 3
An activity evaluation test of Nicham catalysts 1 to 17 was carried out. Active evaluation
Valuation conditions are as follows. ○ (gas composition) NO: 400ppm, CO: 1000ppm, C
2HFour: 1000 ppm, C 3H6: 340ppm, O
2: 8%, CO2: 10%, H2O: 10%, balance:
N 2, GHSV 30000h-1, Catalyst shape: 15mm
× 15 mm × 60 mm (144 cells) Desorption of the catalyst in the initial state at reaction temperatures of 350 and 450 ° C
The glass ratio is shown in Table 3.

【0020】(実験例2)ハニカム触媒1〜17をリッ
チ雰囲気(還元雰囲気)で強制劣化試験を実施した。強
制劣化試験は下記の通りである。 〇(ガス組成) H2 :3%、H2 O:10%、残:N2 GHSV:5000h-1、温度:700℃、ガス供給時
間:6時間 触媒形状:15mm×15mm×60mm(144セ
ル) 上記強制劣化条件にて処理した触媒1〜17を実験例1
の活性評価条件において活性評価試験を実施した。反応
温度350、450℃における強制劣化試験後の触媒の
脱硝率を表3に併せて示す。表3に示すように、本発明
触媒1〜17は高温還元雰囲気においても触媒の活性を
高く維持することを確認した。
(Experimental Example 2) The honeycomb catalysts 1 to 17 were subjected to a forced deterioration test in a rich atmosphere (reducing atmosphere). The forced deterioration test is as follows. 〇 (gas composition) H 2: 3%, H 2 O: 10%, remaining: N 2 GHSV: 5000h -1, temperature: 700 ° C., gas supply time: 6 hours catalyst shape: 15mm × 15mm × 60mm (144 cells ) Experimental example 1 was prepared using catalysts 1 to 17 treated under the above-mentioned forced deterioration condition
The activity evaluation test was carried out under the activity evaluation conditions of. Table 3 also shows the denitration rate of the catalyst after the forced deterioration test at reaction temperatures of 350 and 450 ° C. As shown in Table 3, it was confirmed that the catalysts 1 to 17 of the present invention maintain high catalyst activity even in a high temperature reducing atmosphere.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】以上、説明したように、本発明による排
気ガス浄化用触媒は耐久性に富む安定な触媒であること
を可能にし、ガソリン車のリーンバーンエンジン排ガス
用やディーゼルエンジン排ガス浄化用触媒として利用が
可能である。
As described above, the exhaust gas purifying catalyst according to the present invention can be a durable and stable catalyst, and can be used for lean burn engine exhaust gas of gasoline vehicles and diesel engine exhaust gas purifying catalyst. Can be used as

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 104 A (72)発明者 芹沢 暁 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location B01D 53/36 104 A (72) Inventor Akira Serizawa 1-1 1-1 Atsunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Nagasaki Shipyard Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 本文で詳記する表1に示されるX線回折
パターンを有し、脱水された状態において酸化物のモル
比で表わして aR2 O・〔bIr2 3 ・cMe O3 〕・ySiO2 (上記式中、Rはアルカリ金属イオン及び/又は水素イ
オン、MはVIII族元素、希土類元素、チタン、バナジウ
ム、クロム、ニオブ、アンチモン、ガリウム及びアルミ
ニウムからなる群より選ばれた少なくとも1種以上の元
素イオン、a≧0、b>0、c≧0、b+c=1、y>
11)なる化学式を有する結晶性シリケートであること
を特徴とする排気ガス処理用触媒。
1. An aR 2 O. [bIr 2 O 3 .cMe O 3 ] which has an X-ray diffraction pattern shown in Table 1 described in detail herein and is expressed as a molar ratio of oxides in a dehydrated state. YSiO 2 (In the above formula, R is an alkali metal ion and / or hydrogen ion, M is at least one selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, gallium and aluminum. More than one kind of elemental ion, a ≧ 0, b> 0, c ≧ 0, b + c = 1, y>
An exhaust gas treatment catalyst, which is a crystalline silicate having the chemical formula 11).
JP17543893A 1993-07-15 1993-07-15 Exhaust gas treatment catalyst Expired - Fee Related JP3249243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17543893A JP3249243B2 (en) 1993-07-15 1993-07-15 Exhaust gas treatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17543893A JP3249243B2 (en) 1993-07-15 1993-07-15 Exhaust gas treatment catalyst

Publications (2)

Publication Number Publication Date
JPH0724324A true JPH0724324A (en) 1995-01-27
JP3249243B2 JP3249243B2 (en) 2002-01-21

Family

ID=15996098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17543893A Expired - Fee Related JP3249243B2 (en) 1993-07-15 1993-07-15 Exhaust gas treatment catalyst

Country Status (1)

Country Link
JP (1) JP3249243B2 (en)

Also Published As

Publication number Publication date
JP3249243B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
EP0522490B1 (en) Catalyst and method for exhaust gas purification
JP3129377B2 (en) Exhaust gas purification catalyst
EP0642827B1 (en) Exhaust gas cleaning catalyst
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP3129373B2 (en) Exhaust gas purification catalyst
JP3310781B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08215544A (en) Method for removing nitrogen oxide of diesel engine
JP3212429B2 (en) Exhaust gas treatment method
JP3510908B2 (en) Exhaust gas purification catalyst
JP3129346B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3249243B2 (en) Exhaust gas treatment catalyst
JP3300721B2 (en) Exhaust gas purification catalyst
JP3310755B2 (en) Exhaust gas treatment catalyst
JP3276193B2 (en) Exhaust treatment catalyst
JP2605956B2 (en) Exhaust gas purification catalyst
JP3129348B2 (en) Exhaust gas treatment catalyst
JP3015568B2 (en) Exhaust gas treatment catalyst
JP3015524B2 (en) Exhaust gas treatment catalyst
JP3129350B2 (en) Exhaust gas purification catalyst, production method thereof and exhaust gas purification method
JP3154602B2 (en) Exhaust gas purification method
JP2601018B2 (en) Exhaust gas purification catalyst
JP2999039B2 (en) Exhaust gas purification catalyst
JP2923064B2 (en) Manufacturing method of exhaust gas purification catalyst
JP2846974B2 (en) Exhaust gas purification catalyst
JPH05168937A (en) Exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011016

LAPS Cancellation because of no payment of annual fees