JPH07243080A - Method for removing fe and p in copper containing metal of platinum group recovered after absorption of metal of platinum group from used catalyst of automobile - Google Patents

Method for removing fe and p in copper containing metal of platinum group recovered after absorption of metal of platinum group from used catalyst of automobile

Info

Publication number
JPH07243080A
JPH07243080A JP6038150A JP3815094A JPH07243080A JP H07243080 A JPH07243080 A JP H07243080A JP 6038150 A JP6038150 A JP 6038150A JP 3815094 A JP3815094 A JP 3815094A JP H07243080 A JPH07243080 A JP H07243080A
Authority
JP
Japan
Prior art keywords
copper
metal
platinum group
slag
pgm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6038150A
Other languages
Japanese (ja)
Inventor
Kazuaki Kawanaka
一哲 川中
Nobuyuki Kii
伸之 紀井
Yoshiaki Mori
芳秋 森
Yasuhiro Tsugita
泰裕 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6038150A priority Critical patent/JPH07243080A/en
Publication of JPH07243080A publication Critical patent/JPH07243080A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To remove Fe and P in copper contg. a metal of the platinum group and to minimize the loss of the metal of the platinum group by adding a flux to the copper, melting them by heating and then feeding copper oxide or oxidizing gas before the electrolysis when the metal of the platinum group is recovered by electrolyzing the copper. CONSTITUTION:The used catalyst of an automobile with an alumina or cordierite substrate and copper are melted, a metal of the platinum group in the used catalyst is flocculated and absorbed in the metal copper and this copper contg. the metal of the platinum group is electrolyzed. Copper is recovered as electrolytic copper and the metal of the platinum group is concd., separated and recovered as electrolytic slime. In this method, CaO, SiO2 or Na2CO3 as a flux is added to the copper contg. the metal of the platinum group, they are melted by heating and copper oxide or one or more kinds of oxidizing gases selected from among air, oxygen-enriched air and oxygen are fed to remove Fe and P in the copper contg. the metal of the platinum group before the electrolysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車排ガス浄化用の
白金族金属(以下、PGMと記す)を有するアルミナま
たはコージエライト等のハニカム状、ビーズ状の基材か
らなる使用済み廃触媒(以下、ASCと記す)からPG
Mを回収する工程における、白金族金属含有銅の脱F
e、脱P方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spent spent catalyst (hereinafter referred to as a spent catalyst) comprising a honeycomb-like or bead-like substrate such as alumina or cordierite having a platinum group metal (hereinafter referred to as PGM) for purifying automobile exhaust gas. From ASC) to PG
Removal of F from copper containing platinum group metal in the step of recovering M
e, the P removal method.

【0002】[0002]

【従来の技術】ASCからのPGMの回収方法として、
銅をPGMの吸収材として用い、電気炉等でASCを還
元溶解し、PGMをCu中に吸収させ、このCuをアノ
ードとして電解し、Cuは電気銅とするとともに、PG
Mを電解スライムとして回収する方法がある。
2. Description of the Related Art As a method for recovering PGM from ASC,
Copper is used as an absorber of PGM, ASC is reduced and dissolved in an electric furnace or the like, PGM is absorbed in Cu, and this Cu is electrolyzed as an anode.
There is a method of recovering M as electrolytic slime.

【0003】ところが、Cuアノード中にFe及びPが
共存すると、電解中にFe及びPの溶出とともに、PG
MのうちRhの溶出が起るという問題点が顕在化した。
この溶出したRhは電解スライムに入らないので、その
回収には多くの工程と労力及び時間がかかり、コストア
ップにつながる。さらにRhの回収において、電解液中
に溶出したFe及びPはRhとほぼ同じ挙動を示し、回
収Rh澱物中の品位を下げる。
However, when Fe and P coexist in the Cu anode, Fe and P are eluted during electrolysis, and PG
Of M, the problem that Rh elution occurs has become apparent.
Since this eluted Rh does not enter the electrolytic slime, many steps, labor and time are required for its recovery, leading to an increase in cost. Further, in the recovery of Rh, Fe and P eluted in the electrolytic solution exhibit almost the same behavior as that of Rh, and deteriorate the quality of the recovered Rh precipitate.

【0004】以上のようにASCからCuを吸収剤とし
てPGMを回収する方法にあっては、還元溶解工程にお
いてASC中に共存するFe及びPがPGMと共に銅中
に入ってくる。そしてこの銅中のFe及びPは電解前に
除去するのが望ましい。この銅中のFeの除去には通常
の銅の脱Fe法が適用できるといえるが、PGM含有量
が高く、且つPを含む銅からの脱Feには不明な点が多
く、PGMのロスを最小にした脱Fe、脱P方法が必要
である。
As described above, in the method of recovering PGM from ASC using Cu as an absorbent, Fe and P coexisting in ASC enter copper together with PGM in the reduction dissolution step. It is desirable that Fe and P in this copper be removed before electrolysis. It can be said that a normal copper deFe method can be applied to the removal of Fe in this copper, but there are many unclear points in deFe from copper containing a high PGM content and P, resulting in a loss of PGM. Minimized Fe-free and P-free methods are required.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記したよう
なPGM含有銅の電解時のRhの溶出を防止するため
に、フラックス及び酸化剤を適正に選択して、PGM含
有銅中の脱Fe、脱Pを、PGMのロスを最小限に抑え
て行うことを課題とする。
In order to prevent the elution of Rh during the electrolysis of PGM-containing copper as described above, the present invention properly selects a flux and an oxidizing agent to remove Fe from PGM-containing copper. , P removal with a minimum PGM loss.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明は、アルミナあるいはコージエライトを基材と
する自動車廃触媒を銅とともに溶融し、自動車廃触媒中
の白金族金属を銅金属中に凝集、吸収させた後、その白
金族金属含有銅を電解することにより、銅を電気銅と
し、白金族金属を電解スライムとして濃縮分離回収する
方法において、前記電解前に、白金族金属含有銅にフラ
ックスとしてCaO,SiO2 ,Na2 CO3 のいずれ
か一種を添加して加熱溶融するとともに、酸化銅あるい
は空気、酸素富化空気、酸素のうち少くとも一種の酸化
性ガスを供給して白金族金属含有銅中のFeおよびPを
除去することを特徴とする自動車廃触媒から白金族金属
を吸収して回収された白金族金属含有銅の脱Fe、脱P
方法にある。
In order to solve the above-mentioned problems, the present invention is to melt an automobile waste catalyst having alumina or cordierite as a base material together with copper to convert the platinum group metal in the automobile waste catalyst into copper metal. Aggregation, after absorption, by electrolyzing the platinum group metal-containing copper, copper as electrolytic copper, in the method of concentrating and separating platinum group metal as electrolytic slime, before the electrolysis, to platinum group metal-containing copper One of CaO, SiO 2 , and Na 2 CO 3 is added as a flux to heat and melt, and at least one oxidizing gas of copper oxide, air, oxygen-enriched air, or oxygen is supplied to supply platinum group metals. Removal of Fe and P from platinum group metal-containing copper recovered by absorbing platinum group metal from an automobile waste catalyst, characterized by removing Fe and P in the metal-containing copper
On the way.

【0007】白金族金属含有銅からの脱Fe、脱Pの基
本反応は以下のように考えられる。
The basic reactions of Fe removal and P removal from copper containing a platinum group metal are considered as follows.

【0008】 Cu2 O+Fe=2Cu+FeO (1) 5Cu2 O+2P=10Cu+P2 5 (2)Cu 2 O + Fe = 2Cu + FeO (1) 5Cu 2 O + 2P = 10Cu + P 2 O 5 (2)

【0009】このCu2 Oの生成は次の式のように生成
される。
The Cu 2 O is produced by the following equation.

【0010】 2Cu+1/2O2 =Cu2 O (3)2Cu + 1 / 2O 2 = Cu 2 O (3)

【0011】脱Fe、脱Pの基本はPGM含有銅がCu
2 Oで飽和している必要がある。そこで、まず、酸化剤
として酸化銅を用い脱Fe、脱Pに必要な酸素量を把握
した。
The basic principle of Fe removal and P removal is that PGM-containing copper is Cu.
Must be saturated with 2 O. Therefore, first, the amount of oxygen required for Fe removal and P removal was grasped using copper oxide as an oxidant.

【0012】そして生成スラグ系としては、コスト、取
り扱い性も考慮して、脱Feされ生成した酸化鉄を主成
分とするスラグとして、Fe−O系、Ca−Fe−
O系、Si−Fe−O系、Na−Fe−O系につい
て検討した。PGMのロスを最小にして脱Fe、脱Pを
行なうために最小限必要なことは、生成スラグとメタル
との分離が良いことであり、この分離性は融点、粘度、
比重、表面張力などいくつかの物性が影響するが、まず
状態図を参考に次のような組成について検討した。
[0012] In consideration of cost and handleability, the produced slag-based slag is a Fe-O-based or Ca-Fe-based slag whose main component is iron oxide produced by removing Fe.
The O type, the Si-Fe-O type, and the Na-Fe-O type were examined. The minimum requirement for performing Fe removal and P removal by minimizing the loss of PGM is good separation of the produced slag and metal.
Some physical properties such as specific gravity and surface tension influence, but first, the following compositions were examined with reference to the phase diagram.

【0013】Fe−O系(Cu2 Oの装入による鉄の
酸化除去) PGM含有銅メタル中の鉄を全てFe2 3 まで酸化 Ca−Fe−O系(Cu2 O及びCaOの装入による
鉄のスラグ化・除去) 目標スラグ組成(モル%) CaO:Fe2 3 :FeO=23:75:2 Si−Fe−O系(Cu2 O及びSiO2 の装入によ
る鉄のスラグ化・除去) 目標スラグ組成(モル%) SiO2 :Fe2 3 :FeO=32:7:61 Na−Fe−O系(Cu2 O及びNa2 CO3 装入に
よる鉄のスラグ化・除去) −1 Na2 O・Fe2 3 (l)の生成除去 PGM含有銅メタル中の鉄を全てFe2 3 まで酸化
し、Fe2 3 と当量のNa2 CO3 によりNa2 O・
Fe2 3 (l)を生成させる。 反応式:Fe2 3 +Na2 CO3 =Na2 O・Fe2
3 (l)+CO2 −2 3Na2 O・Fe2 3 (l)の生成除去 PGM含有銅メタル中の鉄を全てFe2 3 まで酸化
し、Fe2 3 に対し3当量のNa2 CO3 により3N
2 O・Fe2 3 (l)を生成させる。 反応式:Fe2 3 +3Na2 CO3 =3Na2 O・F
2 3 (l)+3CO2
Fe-O system (oxidation and removal of iron by charging Cu 2 O) All iron in PGM-containing copper metal is oxidized to Fe 2 O 3 Ca-Fe-O system (charge of Cu 2 O and CaO) slag-removal) target slag composition of iron by (mol%) CaO: Fe 2 O 3 : FeO = 23: 75: 2 Si-FeO system (Cu 2 O and slag of iron by charging of SiO 2 and removing) the target slag composition (mol%) SiO 2: Fe 2 O 3: FeO = 32: 7: 61 Na-FeO system (Cu 2 O and Na 2 CO 3 slag and removal of iron by charging) -1 Na 2 O · Fe 2 O 3 iron product removal PGM-containing copper in metal (l) was oxidized until all Fe 2 O 3, Na 2 O · by Fe 2 O 3 and equivalents of Na 2 CO 3
Fe 2 O 3 (l) is produced. Reaction formula: Fe 2 O 3 + Na 2 CO 3 = Na 2 O.Fe 2
O 3 (l) + CO 2 -2 3Na 2 O · Fe 2 O 3 iron product removal PGM-containing copper in metal (l) All was oxidized to Fe 2 O 3, Fe 2 O 3 to 3 equivalents of Na 3N by 2 CO 3
a 2 O · Fe 2 O 3 (l) is produced. Reaction formula: Fe 2 O 3 + 3Na 2 CO 3 = 3Na 2 O · F
e 2 O 3 (l) + 3CO 2

【0014】上記した各系について表1に示す物量割合
でアルミナ製タンマン管(T−5)に装入した後、試験
用小型電気炉にて、1250℃、および1300℃に昇
温し、4hr保持した後、直ちに炉内から取り出し大気
冷却を行なった。
After charging the alumina Tamman tubes (T-5) in the proportions shown in Table 1 for each of the above-mentioned systems, the temperature was raised to 1250 ° C. and 1300 ° C. in a small electric furnace for testing and 4 hr. Immediately after holding, it was taken out of the furnace and cooled to the atmosphere.

【0015】[0015]

【表1】 [Table 1]

【0016】以下に実験結果について説明する。PGM
のスラグロスは、スラグ中に懸垂した銅メタルに起因す
ることが判ったので、まず、懸垂ロスの状況把握のた
め、定性的ではあるが冷却後のサンプルのスラグ/メタ
ルの分離性を4段階で評価した。さらにメタル中のFe
の分析を行なった。その結果を表2、表3に示す。な
お、表中のFe%は重量%である。
The experimental results will be described below. PGM
Since it was found that the slag loss of slag was caused by the copper metal suspended in the slag, first, in order to grasp the situation of the suspension loss, the slag / metal separation property of the sample after cooling was qualitatively determined in four stages. evaluated. Further Fe in metal
Was analyzed. The results are shown in Tables 2 and 3. Fe% in the table is% by weight.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】表2、表3から明らかなように、Si−F
e−O系スラグは1250℃,1300℃いずれも非常
に分離性がよく、脱Feも進んでいる。Na−Fe−O
系スラグについては、装入するNa2 CO3 の多いもの
が良好な分離性を示した。Ca−Fe−O系について
は、温度が1300℃と高いものが一応良好と言える結
果を示した。
As is clear from Tables 2 and 3, Si--F
The e-O-based slag has very good separability at both 1250 ° C and 1300 ° C, and the Fe removal is progressing. Na-Fe-O
Regarding the system slag, the one with a large amount of Na 2 CO 3 charged exhibited good separability. As for the Ca-Fe-O system, the result that the temperature is as high as 1300 ° C. can be said to be good.

【0020】上記の如く、実験番号−2のスラグは1
300℃の実験において良好な分離性を示したが、実験
番号のスラグの分離性に及ばなかった。そこでさらに
装入するNa2 CO3 量が増えた場合、分離性が向上す
るかどうか実験を行なった。
As mentioned above, the slag of Experiment No.-2 is 1
Although it showed good separability in the experiment at 300 ° C, it did not reach the separability of the slag of the experiment number. Therefore, an experiment was conducted to see if the separability is improved when the amount of Na 2 CO 3 charged further increases.

【0021】−3 PGM含有銅中の鉄を全てFe2
3 まで酸化し、Fe2 3 に対し5当量のNa2 CO
3 により、このFe2 3 を溶解する。 −4 PGM含有銅中の鉄を全てFe2 3 まで酸化
し、Fe2 3 に対して7当量のNa2 CO3 により、
このFe2 3 を溶解する。 −5 PGM含有銅中の鉄を全てFe2 3 まで酸化
し、Fe2 3 に対し10当量のNa2 CO3 により、
このFe2 3 を溶解する。
-3 All Fe in the PGM-containing copper is Fe 2
Until O 3 is oxidized, Fe 2 O 3 to 5 equivalents of Na 2 CO
By 3 , the Fe 2 O 3 is dissolved. All -4 PGM iron-containing copper oxide to Fe 2 O 3, the Na 2 CO 3 in 7 equivalents relative to Fe 2 O 3,
This Fe 2 O 3 is dissolved. The -5 all PGM iron-containing copper oxide to Fe 2 O 3, Fe 2 O 3 to 10 equivalents of Na 2 CO 3,
This Fe 2 O 3 is dissolved.

【0022】上記各スラグ系について、実験条件と方法
は温度を1300℃とした以外は前記の実験と同じにし
て、実験を行なった。各々の装入物量を表4に示す。
An experiment was carried out on each of the above slag systems in the same manner as the above-mentioned experiment except that the experimental conditions and method were 1300 ° C. The amount of each charge is shown in Table 4.

【0023】[0023]

【表4】 [Table 4]

【0024】実験の結果は、前記の実験と同様に、冷却
後のサンプルのスラグ/メタルの分離性を4段階で評価
し、メタル中のFeの分析を行なった。これを表5に示
す。
As the results of the experiment, the slag / metal separation property of the sample after cooling was evaluated in four stages as in the above experiment, and Fe in the metal was analyzed. This is shown in Table 5.

【0025】[0025]

【表5】 [Table 5]

【0026】すなわち、いずれの場合も、スラグは2層
に分離したが、メタルとの分離性は良好であり、Feも
良好に除去されている。
That is, in each case, the slag was separated into two layers, but the separability from the metal was good, and Fe was also removed well.

【0027】[0027]

【作用】以上の実験から明らかなように、フラックスと
してはSiO2 ,Na2 CO3,CaOが使用できる。
このうち、より好ましいのは、SiO2 ,Na2 CO3
である。
As apparent from the above experiment, SiO 2 , Na 2 CO 3 and CaO can be used as the flux.
Among these, more preferable are SiO 2 , Na 2 CO 3
Is.

【0028】SiO2 をフラックスとして使用する場合
は、PGM含有銅中のFeを酸化して、SiO2 :Fe
2 3 :FeO=32:7:61(モル比)となる条件
を予備実験では選択したが、実際には、Fe2 3 とF
eOの割合を同定することは難しいので、以下に示すフ
アイヤライトスラグを生成させるよう、PGM含有銅の
Fe量に対して、SiO2 の添加量を決定すればよい。
When SiO 2 is used as the flux, Fe in PGM-containing copper is oxidized to obtain SiO 2 : Fe.
The condition that 2 O 3 : FeO = 32: 7: 61 (molar ratio) was selected in the preliminary experiment, but in reality, Fe 2 O 3 and F
Since it is difficult to identify the ratio of eO, the amount of SiO 2 added may be determined with respect to the amount of Fe in PGM-containing copper so as to produce the following ferrite slag.

【0029】 2FeO+SiO2 =2FeO・SiO2 (4)2FeO + SiO 2 = 2FeO · SiO 2 (4)

【0030】次に、Na2 CO3 をフラックスとして添
加する場合のNa2 CO3 の添加量については、PGM
含有銅中のFeをFe2 3 まで酸化して3Na2 O・
Fe2 3 が生成するように、添加量を選ぶのが好まし
い。また、これ以上Na2 CO3 の添加量が多くてもさ
しつかえないが、Na2 CO3 は比較的高価なので、上
記の添加量が最も好ましい。
[0030] Next, the amount of Na 2 CO 3 in the case of adding a Na 2 CO 3 as fluxes, PGM
Fe in the contained copper is oxidized to Fe 2 O 3 to obtain 3Na 2 O.
It is preferable to select the addition amount so that Fe 2 O 3 is produced. Further, the amount of addition of Na 2 CO 3 may be larger than this, but since the amount of Na 2 CO 3 is relatively expensive, the above amount is most preferable.

【0031】CaOをフラックスとして添加する場合
は、3CaO・P2 5 の形態での脱Pが脱Feととも
に期待されるので、PGM含有銅中のFeを酸化して、
CaO:Fe2 3 :FeO=23:75:2(モル
比)の量の他に、CaO:P2 5 =3:1(モル比)
となる量を加えたCaO添加量が好ましい。なお、Ca
O:Fe2 3 :FeO=23:75:2としたのは、
スラグをできるだけ低い温度での溶融域とするためであ
る。
When CaO is added as a flux, P removal in the form of 3CaO.P 2 O 5 is expected together with Fe removal. Therefore, Fe in PGM-containing copper is oxidized to
In addition to the amount of CaO: Fe 2 O 3 : FeO = 23: 75: 2 (molar ratio), CaO: P 2 O 5 = 3: 1 (molar ratio)
The amount of CaO added is preferably such that Note that Ca
O: Fe 2 O 3 : FeO = 23: 75: 2 is defined as
This is to make the slag a melting region at a temperature as low as possible.

【0032】酸化剤としては、前記の実験に示したよう
に酸化銅(Cu2 O)が用い得るが、より実用的には酸
素、酸素富化空気、空気のような酸化性ガスが用い得
る。なお、酸化性ガスを用いる場合、O2 含有率はほと
んど反応に影響ないが、N2 の持去熱により融体が冷却
されることが問題となる場合があるので、O2 含有率は
高い方がよい。
As the oxidizing agent, copper oxide (Cu 2 O) can be used as shown in the above experiment, but more practically, oxidizing gas such as oxygen, oxygen-enriched air, or air can be used. . When an oxidizing gas is used, the O 2 content has almost no effect on the reaction, but there is a problem that the melt is cooled by the heat of removing N 2 , so the O 2 content is high. Better.

【0033】[0033]

【実施例】【Example】

実施例1 Fe3.7重量%、P0.8重量%を含むPGM含有銅
2000.33gをアルミナ製のルツボに装入し、13
00℃にて30分間保持し、溶体を均一にした後、Fe
が酸化されてFeOとなり、シリカと反応しフアイヤラ
イトスラグ2FeO・SiO2 を生成するように、シリ
カを39.2g添加し、純酸素を約500cc/min
で吹き込みながら脱Fe、脱Pを行ない、吹き込み量が
脱Feに必要な量に達した後、5〜10分間セトリング
し生成スラグとメタルを充分に相分離した後、炉内から
取り出し、大気冷却後、スラグとメタルを分離した。ス
ラグとメタルを秤量したところ、184.38gと18
15.26gであった。表6に物量及び品位を示す。
Example 1 200.33 g of PGM-containing copper containing 3.7% by weight of Fe and 0.8% by weight of P was charged into an alumina crucible, and 13
After holding at 00 ° C for 30 minutes to make the solution uniform, Fe
Is oxidized to become FeO, and 39.2 g of silica is added and pure oxygen is added at about 500 cc / min so that it reacts with silica to form the ferrite slag 2FeO.SiO 2.
After de-Feing and de-Ping while blowing, the amount of blowing reaches the amount required for de-Feing, and after 5-10 minutes settling to sufficiently phase-separate the generated slag and metal, take out from the furnace and cool to the atmosphere. Later, the slag and metal were separated. When weighed the slag and metal, it was 184.38g and 18
It was 15.26 g. Table 6 shows the quantity and quality.

【0034】[0034]

【表6】 [Table 6]

【0035】スラグ中のCu含有量は7.23重量%で
あり、これはCu2 Oとしての化学的溶解銅が大部分で
あった。スラグ中のPGM品位はそれぞれ、Pt=0.
0015重量%、Pd=0.0016重量%、Rh=
0.0003重量%であった。表6に基づき各元素の分
配率を求めたものを表7に示す。
The Cu content in the slag was 7.23% by weight, which was mostly the chemically dissolved copper as Cu 2 O. The PGM grades in the slag are Pt = 0.
0015% by weight, Pd = 0.0016% by weight, Rh =
It was 0.0003% by weight. Table 7 shows the distribution ratio of each element obtained based on Table 6.

【0036】[0036]

【表7】 [Table 7]

【0037】スラグへの銅損失は0.76%であり、P
GMのスラグロスはPt=0.017%、Pd=0.0
49%、Rh=0.031%であった。この脱Fe、脱
Pを行った銅メタルをアノードとして電解を行なったと
ころ、Rhの電解液中への溶出率は1%以下であった。
なお、表8に処理途中の脱Fe、脱P挙動を示す。サン
プリングはシリンジにより行ない、水中に急冷した。
The copper loss to the slag is 0.76% and P
The slag loss of GM is Pt = 0.017%, Pd = 0.0
It was 49% and Rh = 0.031%. When electrolysis was performed using the copper metal from which Fe and P had been removed as an anode, the elution rate of Rh in the electrolytic solution was 1% or less.
Table 8 shows the deFe and deP behavior during the treatment. Sampling was done by syringe and quenched in water.

【0038】[0038]

【表8】 [Table 8]

【0039】実施例2 Fe3.7重量%、P0.8重量%を含むPGM含有銅
2000.33gをアルミナ製のルツボに装入し、13
00℃にて30分間保持し、溶体を均一にした後、ソー
ダスラグ3Na2 O・Fe2 3 を生成するようにNa
2 CO3 を207.8g添加し、純酸素を約500cc
/minで吹き込みながら脱Fe、脱Pを行ない、吹き
込み量が脱Feに必要な量に達した後、5〜10分間セ
トリングし、生成スラグとメタルを充分に相分離した
後、炉内から取り出し、大気冷却後、スラグとメタルを
分離した。スラグは2層に分離しており、Fe系スラグ
の上にNa系スラグが生成していた。産出量としては、
Fe系スラグが80.31g、Na系スラグが183.
0gであり、脱Feメタルは1862.59gであっ
た。物量と品位を表9に示す。
Example 2 200.33 g of PGM-containing copper containing 3.7% by weight of Fe and 0.8% by weight of P was charged into an alumina crucible, and 13
After holding at 00 ° C for 30 minutes to make the solution uniform, Na was added so as to generate soda slag 3Na 2 O · Fe 2 O 3.
2 CO 3 207.8g was added, and pure oxygen was about 500cc
Fe / P removal while blowing at a flow rate of / min. After the amount of injection reaches the amount required for Fe removal, settling is performed for 5 to 10 minutes to sufficiently phase-separate the generated slag and metal, and then remove from the furnace. After cooling the atmosphere, the slag and metal were separated. The slag was separated into two layers, and Na-based slag was formed on the Fe-based slag. As for the output,
Fe-based slag 80.31 g, Na-based slag 183.
The amount of Fe-free metal was 1862.59 g. Table 9 shows the quantity and quality.

【0040】[0040]

【表9】 [Table 9]

【0041】また、この場合の元素の分配率を表10に
示す。
Table 10 shows the distribution ratio of the elements in this case.

【0042】[0042]

【表10】 [Table 10]

【0043】スラグのCu品位は、Fe系スラグでは
1.51重量%であり、Na系スラグでは0.20重量
%であった。スラグ中のPGM品位はFe系スラグで
は、Pt0.0052重量%、Pd0.0020重量
%、Rh0.0009重量%であり、Na系スラグでは
Pt0.0008重量%、Pd0.0003重量%、R
h0.0001重量%であった。
The Cu quality of the slag was 1.51% by weight for the Fe-based slag and 0.20% by weight for the Na-based slag. The PGM grades in the slag are 0.0052 wt% Pt, 0.0020 wt% Pd, and 0.0009 wt% Rh in the Fe-based slag, and 0.0008 wt% Pt and 0.0003 wt% in the Na-based slag.
It was h 0.0001% by weight.

【0044】また分配率としては、スラグへの銅損失
は、Fe系スラグに0.07%、Na系スラグに0.0
2%であり、このときのPGMのスラグロスは、Fe系
スラグにはPt0.026%、Pd0.027%、Rh
0.040%となり、Na系スラグにはPt0.009
%、Pd0.009%、Rh0.010%となった。
As for the distribution ratio, the copper loss to the slag was 0.07% for the Fe-based slag and 0.0 for the Na-based slag.
2%, and the PGM slag loss at this time was 0.026% Pt, 0.027% Pd, and Rh for Fe-based slag.
0.040%, Pt 0.009 for Na-based slag
%, Pd 0.009%, and Rh 0.010%.

【0045】この脱Fe、脱Pされた銅アノードを用い
て電解を行なったところ、Rhの電解液中への溶出率は
1%以下であった。
When electrolysis was performed using this copper anode that had been deFe and P removed, the elution rate of Rh in the electrolytic solution was 1% or less.

【0046】なお、Na−Fe−O系スラグを用いた場
合の脱Fe、脱P挙動を表11に示す。サンプリングは
シリンジにより行い、水中に急冷した。
Table 11 shows the Fe-free and P-free behaviors when the Na-Fe-O slag was used. Sampling was performed with a syringe and quenched in water.

【0047】[0047]

【表11】 [Table 11]

【0048】実施例3 CaOをフラックスとして用いたこと、および酸素吹き
込み速度を1000cc/minとした以外は、実施例
2と同様な条件と方法で行なった。CaOの添加量は脱
Fe、脱Pに必要な量として、PGM含有銅中のFeを
酸化して、CaO:Fe2 3 :FeO=23:75:
2(モル比)、およびPを酸化してCaO:P2 5
3:1(モル比)となるCaO量を加算した26.8g
を添加した。
Example 3 The same conditions and methods as in Example 2 were used except that CaO was used as the flux and the oxygen blowing rate was set to 1000 cc / min. The amount of CaO added is the amount required for Fe removal and P removal, and Fe in PGM-containing copper is oxidized to CaO: Fe 2 O 3 : FeO = 23: 75:
2 (molar ratio), and P is oxidized to CaO: P 2 O 5 =
26.8g which added the amount of CaO which becomes 3: 1 (molar ratio)
Was added.

【0049】脱Fe、脱P挙動を表12に示す。Table 12 shows the Fe-free and P-free behaviors.

【0050】[0050]

【表12】 [Table 12]

【0051】フラックスとしてCaOを用いた場合、ス
ラグ化がSiO2 やNa2 CO3 に比べて悪いようなの
で、脱P速度も反応の前半では遅い傾向があるが、Ca
Oがスラグ化されると、CaOとP2 5 が反応し脱P
も充分に進み最終的に0.05重量%以下となった。脱
Feについては、ほぼ、吹き込み酸素量に比例して進行
した。
When CaO is used as the flux, the slag formation seems to be worse than that of SiO 2 or Na 2 CO 3 , so the P removal rate tends to be slow in the first half of the reaction.
When O is slagged, CaO reacts with P 2 O 5 to remove P
Also progressed sufficiently and finally became less than 0.05% by weight. Regarding Fe removal, it proceeded almost in proportion to the amount of blown oxygen.

【0052】スラグ中のCu含有量は3.5重量%と高
目であったが、スラグを観察してみると、メタリック状
のCuが大部分であった。このためスラグ中のPGM品
位もPGMトータルで0.040重量%と高くなった。
しかし、この脱Fe、脱Pした銅をアノードとして電解
を行なったところ、Rhの電解液中への溶出率は1%以
下であった。
The Cu content in the slag was as high as 3.5% by weight, but when the slag was observed, most of the metallic Cu was present. For this reason, the PGM quality in the slag was as high as 0.040% by weight in total PGM.
However, when this Fe-free and P-free copper was used as an anode for electrolysis, the elution rate of Rh into the electrolytic solution was 1% or less.

【0053】実施例4 酸化ガスとして通常の空気を使用した以外は、実施例2
と同様な条件でPGM含有銅の処理を行なったが、酸素
を使用した場合と同様に脱Fe、脱Pされた。即ち、
3.7重量%Fe及び0.8重量%Pを含むPGM含有
銅を脱Fe、脱Pした結果、メタル中のFe品位及びP
品位はそれぞれ0.05重量%以下となった。
Example 4 Example 2 except that normal air was used as the oxidizing gas.
Although the PGM-containing copper was treated under the same conditions as described above, it was deFeed and dePed as in the case of using oxygen. That is,
As a result of de-Feing and de-Ping PGM-containing copper containing 3.7 wt% Fe and 0.8 wt% P, Fe grade and P in metal
The quality was 0.05% by weight or less.

【0054】ただし、融体の温度は低下気味で、時々吹
き込みを中断して、浴温の上昇を待って、空気の吹き込
みをする必要があった。しかし、酸素効率は酸素を用い
た場合と差異はなかった。
However, the temperature of the melt tended to drop, and it was necessary to interrupt the blowing from time to time and wait for the bath temperature to rise before blowing air. However, the oxygen efficiency was not different from that when oxygen was used.

【0055】実施例5 実施例2と同様な条件下で、実施例4の現象を参考にO
2 =50%の酸素富化空気を用いたところ、融体の温度
の低下もほとんどなく、実施例2と同様な状態で脱F
e、脱Pが実施できた。すなわち、3.7重量%Fe及
び0.8重量%Pを含むPGM含有銅を脱Fe、脱Pし
た結果、メタル中のFe品位、P品位はそれぞれ0.0
5重量%以下となった。
Example 5 Under the same conditions as in Example 2, referring to the phenomenon of Example 4, O
When 2 = 50% oxygen-enriched air was used, there was almost no decrease in the temperature of the melt, and F removal was performed in the same manner as in Example 2.
e, P removal could be implemented. That is, the PGM-containing copper containing 3.7 wt% Fe and 0.8 wt% P was deFeed and dePed, and as a result, the Fe grade and P grade in the metal were each 0.0
It became 5% by weight or less.

【0056】[0056]

【発明の効果】本発明により、PGM含有銅からPGM
のロスを最小限に抑制しながらPGM含有銅中に含まれ
るFeおよびPを効率よく除去できる。これにより、銅
に吸収されたPGMは、Rhの溶出を抑制しながら、既
存の銅電解により効率よく回収できる。
INDUSTRIAL APPLICABILITY According to the present invention, from PGM-containing copper to PGM
Fe and P contained in the PGM-containing copper can be efficiently removed while minimizing the loss of As a result, the PGM absorbed by copper can be efficiently recovered by the existing copper electrolysis while suppressing the elution of Rh.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミナあるいはコージエライトを基材
とする自動車廃触媒を銅とともに溶融し、自動車廃触媒
中の白金族金属を銅金属中に凝集、吸収させた後、その
白金族金属含有銅を電解することにより、銅を電気銅と
し、白金族金属を電解スライムとして濃縮分離回収する
方法において、前記電解前に、白金族金属含有銅にフラ
ックスとしてCaO,SiO2 ,Na2 CO3 のいずれ
か一種を添加して加熱溶融するとともに、酸化銅あるい
は空気、酸素富化空気、酸素のうち少くとも一種の酸化
性ガスを供給して白金族金属含有銅中のFeおよびPを
除去することを特徴とする自動車廃触媒から白金族金属
を吸収して回収された白金族金属含有銅の脱Fe、脱P
方法。
1. An automobile waste catalyst containing alumina or cordierite as a base material is melted together with copper, the platinum group metal in the automobile waste catalyst is aggregated and absorbed in the copper metal, and the platinum group metal-containing copper is electrolyzed. In the method of concentrating, separating and recovering copper as electrolytic copper and platinum group metal as electrolytic slime by doing so, any one of CaO, SiO 2 , and Na 2 CO 3 as a flux is added to the platinum group metal-containing copper before the electrolysis. Fe and P in the platinum-group metal-containing copper are removed by adding at least one oxidizing gas selected from copper oxide or air, oxygen-enriched air, and oxygen while adding and melting. Removal of Fe and P from platinum group metal-containing copper recovered by absorbing platinum group metal from used automobile waste catalysts
Method.
JP6038150A 1994-03-09 1994-03-09 Method for removing fe and p in copper containing metal of platinum group recovered after absorption of metal of platinum group from used catalyst of automobile Pending JPH07243080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6038150A JPH07243080A (en) 1994-03-09 1994-03-09 Method for removing fe and p in copper containing metal of platinum group recovered after absorption of metal of platinum group from used catalyst of automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038150A JPH07243080A (en) 1994-03-09 1994-03-09 Method for removing fe and p in copper containing metal of platinum group recovered after absorption of metal of platinum group from used catalyst of automobile

Publications (1)

Publication Number Publication Date
JPH07243080A true JPH07243080A (en) 1995-09-19

Family

ID=12517395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038150A Pending JPH07243080A (en) 1994-03-09 1994-03-09 Method for removing fe and p in copper containing metal of platinum group recovered after absorption of metal of platinum group from used catalyst of automobile

Country Status (1)

Country Link
JP (1) JPH07243080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053914A (en) * 2000-08-03 2002-02-19 Nippon Steel Corp Method and apparatus for treating molten slag of waste material
WO2004013361A1 (en) * 2002-08-05 2004-02-12 Dowa Mining Co., Ltd. Method of recovering platinum group element and apparatus therefor
JP2010506714A (en) * 2006-10-20 2010-03-04 テラ ノヴァ Method for treating waste containing precious metals and apparatus for carrying out the method
EP2684969A4 (en) * 2011-03-11 2015-03-11 Tanaka Precious Metal Ind Method for recovering platinum group metals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053914A (en) * 2000-08-03 2002-02-19 Nippon Steel Corp Method and apparatus for treating molten slag of waste material
WO2004013361A1 (en) * 2002-08-05 2004-02-12 Dowa Mining Co., Ltd. Method of recovering platinum group element and apparatus therefor
CN100350062C (en) * 2002-08-05 2007-11-21 同和金属矿业有限公司 Method of recovering platinum group element and apparatus therefor
KR100976715B1 (en) * 2002-08-05 2010-08-19 도와 홀딩스 가부시키가이샤 Method of recovering platinum group element and apparatus therefor
US7815706B2 (en) 2002-08-05 2010-10-19 Dowa Metals & Mining Co., Ltd. Method and apparatus for recovering platinum group elements
US8366991B2 (en) 2002-08-05 2013-02-05 Dowa Metals & Mining Co., Ltd. Apparatus for recovering platinum group elements
JP2010506714A (en) * 2006-10-20 2010-03-04 テラ ノヴァ Method for treating waste containing precious metals and apparatus for carrying out the method
EP2684969A4 (en) * 2011-03-11 2015-03-11 Tanaka Precious Metal Ind Method for recovering platinum group metals

Similar Documents

Publication Publication Date Title
CA1162054A (en) Process for the recovery of platinum group metals from refractory ceramic substrates
AU2008337430B2 (en) Method for refining copper concentrate
JP5713697B2 (en) How to recover PGM
JP3516604B2 (en) Recovery of platinum group elements from metal-based catalysts
US20220259697A1 (en) Method for recovering pgm
WO2012108522A1 (en) Method for recovering pgm from member to be processed that contains pgm
JPH07243080A (en) Method for removing fe and p in copper containing metal of platinum group recovered after absorption of metal of platinum group from used catalyst of automobile
JP2005113253A (en) Method for recovering platinum group metal
JPH09291317A (en) Treatment for waste material of iron-containing nickel
JP3906333B2 (en) Precious metal recovery method
JP5263483B2 (en) Precious metal recovery method
JPH07216467A (en) Method for recovering platinum-group metal from spent automobile catalyst by concentration
JP2008001916A (en) Method for recovering noble metal, and recovered noble metal
RU2564187C2 (en) Method of platinum-group metals extraction from spent catalysts on carriers out of aluminium oxide
JP7269754B2 (en) How to recover precious metals
GB2090616A (en) Recovery of precious metals
GB2067599A (en) Recovery of Pt group metals
JP3839431B2 (en) Method for recovering platinum group metals
JP2008088452A (en) METHOD FOR RECOVERING GOLD OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP2023019519A (en) Method for recovering platinum group metals
JPH06228671A (en) Method for concentrating platinum-group metal from spent catalyst containg the metal
JP4984122B2 (en) Method for recovering gold or platinum group elements from SiC-based materials
JP3292060B2 (en) Deoxygenation method of scandium metal
CN113621869B (en) Method for removing silicon and phosphorus from iron-silicon-phosphorus alloy containing platinum group metal
CA1055710A (en) Nickel matte refining by oxidation