JPH07242960A - Production of oxide dispersion strengthened alloy - Google Patents

Production of oxide dispersion strengthened alloy

Info

Publication number
JPH07242960A
JPH07242960A JP5492294A JP5492294A JPH07242960A JP H07242960 A JPH07242960 A JP H07242960A JP 5492294 A JP5492294 A JP 5492294A JP 5492294 A JP5492294 A JP 5492294A JP H07242960 A JPH07242960 A JP H07242960A
Authority
JP
Japan
Prior art keywords
mgo
solid solution
nio
treatment
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5492294A
Other languages
Japanese (ja)
Inventor
Masahiro Kawakami
正博 川上
Toshiharu Noda
俊治 野田
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5492294A priority Critical patent/JPH07242960A/en
Publication of JPH07242960A publication Critical patent/JPH07242960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To increase the performance of the characteristics of an oxide dispersion strengthened alloy by subjecting NiO-MgO solid solution or FeO-MgO solid solution as full ratio solid solution to selective reducing treatment by a reducing gas and uniformly dispersing the fine grains of MgO into a mother phase of Ni or Fe metal. CONSTITUTION:Powdery NiO and powdery Mg (OH)2 are mixed, and after that, Mg (OH)2 is thermally decomposed to form into MgO. Next, it is subjected to compression molding to allow NiO and MgO to enter into solid solution. After that, this solid solution is subjected to reducing treatment by using a reducing gas, preferably, gaseous CO and, more preferably, gaseous H2, and NiO is subjected to selective reduction. At this time, MgO is formed into fine crystals, which are uniformly precipitated into the Ni mother phase. Moreover, since pores are generally present in the sintered body in this stage, densifying treatment is furthermore executed by compressing treatment, heat treatment or the like. Even in the case FeO is used, treatment is executed by the method similar to the case in NiO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は酸化物分散強化合金の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide dispersion strengthened alloy.

【0002】[0002]

【従来の技術】母相であるNi等金属中に微細な酸化物
粒子を分散させて成る酸化物分散強化合金は、酸化物粒
子が高温まで安定であることから優れた耐熱材料として
ジェットエンジンの翼の材料等として用いられている。
2. Description of the Related Art An oxide dispersion strengthened alloy obtained by dispersing fine oxide particles in a matrix metal such as Ni is an excellent heat resistant material for jet engines because the oxide particles are stable up to high temperatures. It is used as a material for wings.

【0003】この酸化物分散強化合金の製造方法とし
て、従来メカニカル・アロイング法(MA法:機械合金
化法)が知られている。このメカニカル・アロイング法
はINCO社(シ゛・インターナショナル・ニッケル・カンハ゜ニー・インコーホ゜レ
ーテット゛)により開発されたもので、ボールミル等の混合
機の内部に基地となる金属粉末と酸化物粉末とを装入
し、そして混合機によって粉末の粉砕,混合,塑性変形
等を繰返し起こさせるとともに基地の内部に酸化物粒子
を均一に分散させるものである。
A mechanical alloying method (MA method: mechanical alloying method) is conventionally known as a method for producing the oxide dispersion strengthened alloy. This mechanical alloying method was developed by INCO (The International Nickel Company Incorporated), in which a base metal powder and oxide powder were charged into a mixer such as a ball mill. Then, pulverization, mixing, plastic deformation, etc. of the powder are repeatedly caused by a mixer, and the oxide particles are uniformly dispersed inside the matrix.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこの方法
の場合、極めて長時間(例えば1週間)混合機によるミ
リング処理を行わなければならず、酸化物分散強化合金
の製造のための所要時間が長いとともに、酸化物粒子の
微細化と均一分散には限界があり、より微細な酸化物粒
子をより均一に分散させることによって酸化物分散強化
合金の性能を更に高性能化する上で自ずと限界がある問
題がある。
However, in the case of this method, the milling treatment with the mixer must be performed for an extremely long time (for example, one week), and the time required for producing the oxide dispersion strengthened alloy is long. However, there is a limit to the miniaturization and uniform dispersion of oxide particles, and there is naturally a limit to improving the performance of oxide dispersion strengthened alloys by dispersing finer oxide particles more uniformly. There is.

【0005】[0005]

【課題を解決するための手段】本願の発明はこのような
事情を背景とし、従来とは全く異なった新規な方法で且
つ酸化物粒子をより微細に且つ均一に分散させ得る酸化
物分散強化合金の製造方法を提供すべく成されたもの
で、その要旨は、全率固溶体であるNiO−MgO固溶
体又はFeO−MgO固溶体を還元ガスにより選択的還
元処理することによってNi又はFe金属の母相中にM
gOの微細粒子を均一分散させることにある。
Under the circumstances described above, the invention of the present application is an oxide dispersion strengthened alloy capable of dispersing oxide particles more finely and uniformly by a novel method completely different from the conventional method. The present invention has been made to provide a manufacturing method of a Ni or Fe metal matrix in which a NiO-MgO solid solution or a FeO-MgO solid solution, which is a solid solution, is selectively reduced by a reducing gas. To M
It is to uniformly disperse fine particles of gO.

【0006】本発明者等は、NiO又はFeOとMgO
とが全率固溶体を形成する点に着目し、そしてこれらの
固溶体を形成した上でNiO又はFeOのみを還元ガス
で選択的に還元したところ、固溶状態にあったMgOが
結晶となってNi又はFeの母相中に析出し、しかもこ
のMgO粒子は極めて微細な析出物となって母相中に均
一に分散することを確認した。
The present inventors have found that NiO or FeO and MgO
Paying attention to the fact that and form a solid solution, and when these solid solutions are formed and then only NiO or FeO is selectively reduced with a reducing gas, MgO in the solid solution is crystallized to form Ni. Alternatively, it was confirmed that the MgO particles were precipitated in the mother phase, and the MgO particles became extremely fine precipitates and were uniformly dispersed in the mother phase.

【0007】例えば固溶体を製造するための原料MgO
粉末として1μm程度のものを用いた場合において、還
元により析出するMgO結晶の粒子は50〜70nm程
度の極めて微細な粒子として析出する。
For example, a raw material MgO for producing a solid solution
When powder having a particle size of about 1 μm is used, MgO crystal particles precipitated by reduction are precipitated as extremely fine particles of about 50 to 70 nm.

【0008】即ち本発明によれば酸化物を従来得られな
かった極めて微細な粒子として且つ均一に母相中に析出
分散させることができ、これにより酸化物分散強化合金
を従来のものに比べて高性能化することができる。
That is, according to the present invention, the oxide can be precipitated and dispersed in the mother phase as extremely fine particles which have not been obtained in the past and can be uniformly dispersed. High performance can be achieved.

【0009】本発明においては、先ずNiO又はFeO
(以下NiOを代表として説明する)とMgOとの全率
固溶体を製造する。具体的な方法としては、例えばNi
O粉末とMg(OH)2粉末とを混合した上、Mg(O
H)2を熱分解させてMgOとする。次いでこれを圧縮
成形して焼結処理し、NiOとMgOとを固溶化させ
る。
In the present invention, first, NiO or FeO is used.
(Hereinafter, NiO will be described as a representative example) and a solid solution of MgO is produced. As a specific method, for example, Ni
After mixing O powder and Mg (OH) 2 powder, Mg (O)
H) 2 is thermally decomposed into MgO. Next, this is compression-molded and sintered to make NiO and MgO a solid solution.

【0010】この後この固溶体を還元ガス、望ましくは
COガス、より望ましくはH2ガスで還元処理してNi
Oの選択還元を行う。このときMgOが微細な結晶とな
ってNi母相中に均一に析出する。尚この段階では一般
に焼結体中には気孔が存在しているので、その後圧縮処
理,熱処理等によって緻密化処理を行うのが良い。
Thereafter, this solid solution is subjected to reduction treatment with a reducing gas, preferably CO gas, more preferably H 2 gas to obtain Ni.
Selective reduction of O is performed. At this time, MgO becomes fine crystals and is uniformly precipitated in the Ni matrix. Since pores generally exist in the sintered body at this stage, it is preferable to carry out a densification treatment by compression treatment, heat treatment or the like after that.

【0011】[0011]

【実施例】次に本発明の実施例を以下に詳述する。市販
1級試薬NiO及びMg(OH)2粉末を、NH3により
pH10に調整した水溶液とともにボールミルにより3
6ks混合し、自然乾燥の後温度973Kで時間3.6
×ks大気中でMg(OH)2の熱分解処理を行った。
尚NiO粉末及びMgO粉末粒子の平均粒子径は、光透
過式沈降法にて測定したところ夫々1μm,0.75μ
mであった。
EXAMPLES Examples of the present invention will be described in detail below. A commercially available primary reagent NiO and Mg (OH) 2 powder were mixed with an aqueous solution adjusted to pH 10 with NH 3 by a ball mill to form 3
Mix for 6ks, air dry, and then heat at 973K for 3.6 hours.
Thermal decomposition treatment of Mg (OH) 2 was performed in the atmosphere of × ks.
The average particle diameters of the NiO powder and the MgO powder particles were 1 μm and 0.75 μm, respectively, as measured by a light transmission type sedimentation method.
It was m.

【0012】次に上記熱分解処理後の混合粉末を1〜3
mmφ程度の円柱状に圧縮成形し、その後1473K×
3.6ks空気中で焼結処理し、NiO−MgO全率固
溶体を得た。
Next, 1 to 3 of the mixed powder after the thermal decomposition treatment is added.
Compression molded into a cylinder with a diameter of about mmφ, then 1473K ×
Sintering was performed in the air for 3.6 ks to obtain a NiO-MgO total solid solution.

【0013】次にこの固溶体を内径50mmの反応管で
構成した充填層を用いてH2ガスにより1273Kで還
元処理し、NiOをNiに選択還元した。尚ガス流量は
4Nl/分で一定とし、時間5.4ks還元処理を行っ
た。続いて上記還元処理したNi−MgOの成形焼結体
を再度圧縮成形した後、1273K,H2雰囲気で熱処
理した。この処理はNi−MgOの成形焼結体の密度を
高めるための処理である。
Next, this solid solution was subjected to reduction treatment with H 2 gas at 1273 K using a packed bed composed of a reaction tube having an inner diameter of 50 mm to selectively reduce NiO to Ni. The gas flow rate was kept constant at 4 Nl / min, and reduction treatment was performed for 5.4 ks. Subsequently, the reduction-treated Ni—MgO compacted sintered body was compression-molded again, and then heat-treated in a 1273K, H 2 atmosphere. This treatment is a treatment for increasing the density of the Ni-MgO compacted sintered body.

【0014】このようにして得られた焼結体についてX
線回折装置及び電子顕微鏡を用いてMgOの分散状態の
観察を行った。また併せてマイクロビッカース硬度計を
用いて硬度測定を行った。これらの結果が図1,図2に
示してある。
Regarding the sintered body thus obtained, X
The dispersed state of MgO was observed using a line diffractometer and an electron microscope. In addition, hardness measurement was also performed using a micro Vickers hardness meter. The results are shown in FIGS.

【0015】図1は20mol%MgOを含有するNi
O−MgO固溶体(図中(a))と、これを還元処理し
たもののX線回折測定結果(図中(b))を示してい
る。図中(a)においてはNiOのピークのみが現われ
ており、しかも僅かに低角側にシフトしていることか
ら、MgOはNiOに全率固溶しているものと判断でき
る。
FIG. 1 shows Ni containing 20 mol% MgO.
An O-MgO solid solution ((a) in the figure) and an X-ray diffraction measurement result ((b) in the figure) of the reduction treatment product are shown. In (a) of the figure, only the peak of NiO appears, and since it is slightly shifted to the lower angle side, it can be determined that MgO is solid-dissolved in NiO in all proportion.

【0016】一方(b)に示しているように還元処理し
たものにおいてはNiとMgOの両ピークが認められ、
しかもNiのピークの低角側へのシフトは無く、MgO
がNi中に結晶として存在していることが認められる。
このMgOのピーク強度は、MgOの含有量を変化させ
たところ、MgOの含有量の増加とともに直線的に増加
した。
On the other hand, both Ni and MgO peaks were observed in the product subjected to the reduction treatment as shown in (b),
Moreover, there is no shift of the Ni peak to the lower angle side, and MgO
Is present as crystals in Ni.
The peak intensity of this MgO increased linearly with the increase of the content of MgO when the content of MgO was changed.

【0017】また還元処理したものをTEM(透過形電
子顕微鏡)観察したところ、MgOはNi中に粒状で存
在していることが確認できた。またSEM(走査形電子
顕微鏡)による面分析の結果、Ni中にMgと酸素とが
均一に認められ、偏析は生じていなかった。
The TEM (transmission electron microscope) observation of the reduced material confirmed that MgO was present in Ni in a granular form. As a result of surface analysis by SEM (scanning electron microscope), Mg and oxygen were uniformly observed in Ni, and segregation did not occur.

【0018】これらの結果は、NiOと固溶した状態の
MgOは、還元の進行とともにMgOの結晶としてNi
中に均一に分散することを示している。尚Ni中に析出
したMgOの結晶の粒子の大きさを測定したところ、5
0〜70nmと極めて微細であった。
These results show that MgO in a state of solid solution with NiO forms NiO as MgO crystals as the reduction proceeds.
It shows that it is uniformly dispersed in the medium. The size of the MgO crystal particles precipitated in Ni was measured to be 5
It was extremely fine as 0 to 70 nm.

【0019】他方、上記還元処理したものについてこれ
を一定圧力の下で圧縮処理したところ、圧縮体の気孔率
はMgOの含有量の増加とともに増加しており、MgO
の存在によって圧縮抵抗が増加する現象が認められた。
On the other hand, when the above-mentioned reduced material was compressed under a constant pressure, the porosity of the compressed body increased with an increase in the content of MgO.
The phenomenon that the compression resistance increases due to the presence of the is observed.

【0020】図2は気孔率がほぼ等しくなるように処理
した試料におけるMgO含有量と硬度(荷重50gf)
との関係を示している。尚、各試料は圧縮圧の相違によ
る硬さへの影響を取り除くため、1273K,99k
s,H2雰囲気中で熱処理を行った上で硬さ測定した。
FIG. 2 shows the MgO content and hardness (load: 50 gf) of the sample treated so that the porosities are almost equal.
Shows the relationship with. In addition, in order to remove the influence on hardness of each sample due to the difference in compression pressure, 1273K, 99k
Hardness was measured after heat treatment in s, H 2 atmosphere.

【0021】図2に示しているように硬度はMgO含有
量の増加とともに直線的に増加しており、MgO粒子の
分散により硬さが向上していることが明らかである。
As shown in FIG. 2, the hardness increases linearly with the increase of the MgO content, and it is clear that the hardness is improved by the dispersion of MgO particles.

【0022】以上本発明の実施例を詳述したがこれはあ
くまで一例示である。例えば本発明はFeOとMgOと
の全率固溶体を選択還元処理してMgOをFe中に均一
分散させることも可能であるし、また還元ガスとしてC
Oガスを用いることも可能であるなど、その主旨を逸脱
しない範囲において種々変更を加えた態様で実施可能で
ある。
Although the embodiment of the present invention has been described in detail above, this is merely an example. For example, in the present invention, it is possible to perform a selective reduction treatment of the total solid solution of FeO and MgO to uniformly disperse MgO in Fe, and use C as a reducing gas.
O 2 gas can be used, and various modifications can be made without departing from the spirit of the invention.

【0023】[0023]

【発明の効果】以上のように、本発明によって従来とは
全く異なった新規な酸化物粒子分散合金の製造方法が提
供され、しかも母相中に極めて微細なMgO粒子が均一
に分散したものが得られ、酸化物分散強化合金の性能を
より高性能化することができる効果が得られる。またM
gOは母相となる金属酸化物と全率固溶体を形成するの
で、MgOの含有量(母相への析出量)を自由にコント
ロールできる利点が得られる。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a novel method for producing an oxide particle-dispersed alloy which is completely different from the conventional one, and in which extremely fine MgO particles are uniformly dispersed in the matrix phase. The obtained effect is that the performance of the oxide dispersion strengthened alloy can be further improved. Also M
Since gO forms a solid solution with the metal oxide serving as the parent phase, there is an advantage that the MgO content (precipitation amount in the parent phase) can be freely controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において得られた還元焼結体の
X線回折測定の結果を、還元処理を行っていないNiO
−MgO固溶体との比較において示す図である。
FIG. 1 shows the result of X-ray diffraction measurement of a reduced sintered body obtained in an example of the present invention, which shows that NiO not subjected to reduction treatment.
FIG. 6 is a diagram showing a comparison with a MgO solid solution.

【図2】還元焼結体におけるMgOの含有量と硬度との
関係を示す図である。
FIG. 2 is a diagram showing a relationship between the content of MgO and hardness in the reduced sintered body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 全率固溶体であるNiO−MgO固溶体
又はFeO−MgO固溶体を還元ガスにより選択的還元
処理することによってNi又はFe金属の母相中にMg
Oの微細粒子を均一分散させることを特徴とする酸化物
分散強化合金の製造方法。
1. A MgO in a parent phase of Ni or Fe metal by selectively reducing a NiO-MgO solid solution or a FeO-MgO solid solution, which is a solid solution, with a reducing gas.
A method for producing an oxide dispersion strengthened alloy, characterized in that fine particles of O are uniformly dispersed.
JP5492294A 1994-02-28 1994-02-28 Production of oxide dispersion strengthened alloy Pending JPH07242960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5492294A JPH07242960A (en) 1994-02-28 1994-02-28 Production of oxide dispersion strengthened alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5492294A JPH07242960A (en) 1994-02-28 1994-02-28 Production of oxide dispersion strengthened alloy

Publications (1)

Publication Number Publication Date
JPH07242960A true JPH07242960A (en) 1995-09-19

Family

ID=12984118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5492294A Pending JPH07242960A (en) 1994-02-28 1994-02-28 Production of oxide dispersion strengthened alloy

Country Status (1)

Country Link
JP (1) JPH07242960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034392A1 (en) * 2006-09-18 2008-03-27 Siemens Aktiengesellschaft Turbine component
CN110465281A (en) * 2018-07-10 2019-11-19 吉林大学 A kind of nickel magnesium sosoloid method for preparing catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034392A1 (en) * 2006-09-18 2008-03-27 Siemens Aktiengesellschaft Turbine component
CN110465281A (en) * 2018-07-10 2019-11-19 吉林大学 A kind of nickel magnesium sosoloid method for preparing catalyst

Similar Documents

Publication Publication Date Title
JP4895151B2 (en) Iron-based nano-sized particles and method for producing the same
JP4063151B2 (en) Porous spherical nickel powder and method for producing the same
JP6441351B2 (en) Powder or powder granule containing chromium
JPS5939719B2 (en) Nuclear fuel body and its manufacturing method
JP2009091205A (en) Fine particle lower zirconium oxide-zirconium nitride composite and method of manufacturing the same
DE60017635D1 (en) Process for the preparation of metallic powders, powders so produced and compacts containing these powders
JP4348650B2 (en) Prealloyed powders and their use in the production of diamond tools.
KR100840742B1 (en) Manufacturing method of carbon nano tube/metal composite powder
JP2011246820A (en) Iron-based nanosize particle and method for producing the same
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
JP2005120470A (en) Method for producing metallic fine particle, and metallic fine particle
JPH07242960A (en) Production of oxide dispersion strengthened alloy
US6019813A (en) Cobalt metal agglomerates, process for producing the same and their use
Sekino et al. Reduction and Sintering of Alumina/Tungsten Nanocomposites Powder Processing, Reduction Behavior and Microstructural Characterization
TW555610B (en) Phosphorus-containing iron powder and its preparation process
CN112846170B (en) (Ti, W) C solid solution powder and preparation method thereof
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
JPH11505883A (en) Cobalt metal agglomerates, their production and use
JPS59143002A (en) Organic binder of fine pulverous powder for powder metallurgy
JP5088277B2 (en) Method for producing rare earth-iron-nitrogen alloy powder
WO2003091467A2 (en) Process for manufacturing an alloy material for use in the manufacture of synthetic diamonds
JP2005325373A (en) Method for casting iron powder for magnetic material
KR100555760B1 (en) METHOD FOR PRODUCTING Al2O3 ODS Cu POWDER USING MECHANOSYNTHESIS AND Al2O3 ODS Cu POWDER PRODUCED THEREFROM
Tracey The Properties and Some Applications of Carbonyl-Nickel Powders
JP2002212605A (en) Nonsintered molded getter