JPH07240296A - Grid control device of hot cathode three-pole x-ray tube used for khz repetitively pulsed x-ray device - Google Patents

Grid control device of hot cathode three-pole x-ray tube used for khz repetitively pulsed x-ray device

Info

Publication number
JPH07240296A
JPH07240296A JP15721792A JP15721792A JPH07240296A JP H07240296 A JPH07240296 A JP H07240296A JP 15721792 A JP15721792 A JP 15721792A JP 15721792 A JP15721792 A JP 15721792A JP H07240296 A JPH07240296 A JP H07240296A
Authority
JP
Japan
Prior art keywords
capacitor
grid
voltage
pulse
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15721792A
Other languages
Japanese (ja)
Inventor
Hidekazu Sato
英一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15721792A priority Critical patent/JPH07240296A/en
Publication of JPH07240296A publication Critical patent/JPH07240296A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate a stable repetitively pulsed X ray with the maximum 500kHz in a movable or fixed X-ray radiating time in the mus zone, by installing three sorts of grid control devices to an X-ray device having a capacitor and a hot cathode three-pole X-ray tube. CONSTITUTION:The electric charge of negatively charged capacitors 18 for grid voltage feeding, connected to a hot cathode three-pole are X-ray tube, is discharged, and then they are charged through a variable resistor 17 for X-ray time regulation, and those operations are repeated. And a capacitor 25 for constant grid voltage feeding, and a negatively charged capacitor 23 which is maintained at a stable charging voltage by a constant voltage diode 26, are connected to the grid 4, and a variable and positive high voltage pulse is applied repeatedly.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は医療診断や高速度非破壊
試験などの繰返パルスX線装置に用いる熱陰極3極X線
管に関し、特に熱陰極を有する3極X線管をkHz以上
の周波数で駆動するために用いる格子制御装置に関す
る。 【0002】 【従来の技術】従来の医療診断や高速度非破壊試験など
の繰返パルスX線装置に用いる熱陰極3極X線管では、
主にタイマー回路を使用して信号を発生させ、該信号を
トランジスタのベースに入力してX線照射時間を調整し
ているが、繰返周波数は1kHz以下である。 【0003】また従来の熱陰極を有する2極X線管で
は、インバータ式高電圧トタンスを用いて1kHz以下
の周波数を得ている。 【0004】 【発明が解決しようとする課題】目的を医療診断に絞っ
た場合に、現在使用されているX線照射時間が1ms以
上のX線装置では、高速動態たとえば環状動脈の造影撮
影などの場合に完全静止画像を得ることが難しいという
問題点があった。 【0005】X線イメージインテンシファイヤを用いて
kHz域の高速度ストロボ撮影を行うためには、イメー
ジインテンシファイヤの残光を少なくする必要があり、
これを解決するには短いX線照射時間で、高周波、高線
量率、しかも時間分解能の高いパルスX線装置が必要で
ある。 【0006】本発明の第1の目的は、μs域のX線照射
時間を高時間分解能の熱陰極3極X線管格子制御装置を
用いて調整し、X線出力のばらつきが1%未満で、しか
も最大で100kHz程度の周波数を得ることである。 【0007】本発明の第2の目的は、直列に接続された
複数個の放電用高速度サイリスタや放電用トランジスタ
を同時刻に高速で点弧できる熱陰極3極管格子制御装置
を提供することである。 【0008】本発明の第3の目的は、3極X線管の格子
に尖頭電圧が+10kv以下の正のパルス高電圧を印加
し、該尖頭電圧を変化させることにより熱陰極の印加電
圧を固定した場合でも管電流が調整でき、最大管電流が
2A程度、X線照射時間が1μs程度で、最大周波数が
500kHz程度の繰返パルスX線を得ることである。 【0009】 【課題を解決するための手段】上記目的を解決するため
に、本発明は、3極X線管の対陰極(2)と熱陰極
(3)との間に高電圧充電端子(7)を介して最大+1
50kVに正充電される1.5μF程度の主放電用高電
圧コンデンサ(5)を接続し、格子(4)を制御して前
記主放電用高電圧コンデンサ(5)に蓄積された電荷を
熱陰極3極X線管内に放電させパルスX線を発生させる
熱陰極3極X線管の格子制御装置であって、3極X線管
の前記格子(4)に格子用充電端子(8)を介して最大
−3kV程度に負充電される格子電圧供給用コンデンサ
(18)を接続し、該格子電圧供給用コンデンサ(1
8)に蓄積された電荷を放電する放電用高速度スイッチ
ング素子(20、22)を接続するとともに、絶縁トリ
ガトランス(13)の1次コイルにパルサ充電端子
(9)を介して+100V程度に正充電されるパルス発
生用コンデンサ(11)の電荷を、方形波入力端子(1
0)から入力される方形波を微分回路(14、15)と
電圧遮断用ダイオード(16)を介して前記放電用高速
スイッチング素子(12、21)のゲートあるいはベー
スに入力することにより放出させ、前記トリガトランス
(13)の2次コイルにパルス電流供給用コンデンサ
(19)を介して前記放電用高速度スイッチング素子
(20、22)のゲートあるいはベースを接続したこと
を特徴とするものである。 【0010】また本発明は3極X線管の格子(4)に格
子用充電端子(8)を介して最大−3kVに負充電され
る格子パルス伝送用コンデンサ(23)を接続するとと
もに、絶縁トリガトランス(13)の2次コイルに前記
格子パルス伝送用コンデンサ(23)を接続して前記2
次コイルに発生する最大+10kV程度の正パルス高電
圧を前記格子パルス伝送用コンデンサ(23)を介して
前記格子(4)に印加し、発生する格子電流により前記
格子パルス伝送用コンデンサ(23)に蓄積された負の
電荷を定電圧ダイオード(26)にて一定電圧に保持さ
せる定格子電圧供給用コンデンサ(25)へ電荷放電用
抵抗器(24)を介して放電するように構成したことを
特徴とするものである。 【0011】 【作用】上記のようなX線照射時間調整機能を有する熱
陰極3極X線管格子制御装置では、必要とされるμs域
のX線照射時間にあわせたパルスX線を最大100kH
zの高周波で出力することができ、主放電用高電圧コン
デンサの充電電圧の約2乗および熱陰極の温度でほぼ決
定される管電流に比例した最大線量率のパルスX線を照
射することができる。 【0012】上記のような熱陰極3極X線管格子制御装
置では、直列に接続された複数個の放電用高速度サイリ
スタや放電用トランジスタ、および複数個のパルス電流
供給用コンデンサを用いて−3kV程度に負充電された
格子電圧供給用コンデンサの電荷を同時刻に放電するこ
とができ、したがって時間分解能が良く、最短で数μs
のパルスX線を発生することができる。 【0013】そして上記のような熱陰極3極X線管格子
制御装置では、格子電圧がX線照射中0Vから熱陰極3
極X線管の電子遮断電圧まで変化し、これにともなって
電子集束電圧も変化するので、X線強度分布の均一な実
効焦点径が得易い。 【0014】またX線照射時間が固定で格子電圧により
管電流を調整できる熱陰極3極X線管格子制御装置で
は、熱陰極の温度を約2000Kに充分に高め、格子に
正のパルス高電圧を印加した場合に管電流が飽和しない
ように設定してあり、また格子電圧を最大+10kV程
度まで昇圧できるので尖頭管電流を2A程度まで高める
ことができる。 【0015】そして上記格子電圧により管電流を調整で
きる熱陰極3極X線管格子制御装置では、格子電圧を最
大+10kV程度の正の高電圧にすることにより、熱陰
極からの電子流を陽極に集束することができる。 【0016】 【実施例】図1に示される実施例では、硝子管体(1)
を有する熱陰極(3)付き3極X線管の対陰極(2)と
前記熱陰極(3)との間に1.5μF 程度の主放電用
高電圧コンデンサ(5)を接続し、高電圧充電端子
(7)を介して最大+150kV程度に前記主放電用コ
ンデンサ(5)を正充電するとともに、直列に接続され
た複蜘固の格子電圧供給用コンデンサ(18)を格子用
充電端子(8)とX線照射時間調整用可変抵抗器(1
7)を介して最大−3kV程度に負充電する。またパル
ス発生用サイリスタパルサ充電端子(9)を介してパル
ス発生用コンデンサ(11)を+100 V程度に正充
電する。そして方形波入力端子(10)より入力された
方形波を微分回路用コンデンサ(14)と微分回路用抵
抗器(15)からなる微分回路と電圧遮断用ダイオード
(16)を介してパルス発生用サイリスタ(12)のゲ
ートに入力し、前期パルス発生用コンデンサ(11)に
蓄積された電荷を前期パルス発生用サイリスタ(12)
を介して絶縁トリガトランス(13)の1次コイルに放
電する。該絶縁トリガトランス(13)の2次コイルに
発生するパルス電流を複数個のパルス電流供給用コンデ
ンサ(19)を介して複数個の放電用高速度サイリスタ
(20)のゲートに入力し、複数個の前記格子電圧供給
用コンデンサ(18)に蓄積された電荷を同時刻に前記
放電用高速度サイリスタ(20)を用いて放電する。そ
の後、前記格子電圧供給用コンデンサ(18)を前記格
子用充電端子(8)とX線照射時間調整用可変抵抗器
(17)を介して再び充電し、直列に接続された複数個
の前記格子電圧供給用コンデンサ(18)の充電電圧が
0 V程度から3極X線管の電子遮断電圧に至る電圧範
囲で前期主放電用高電圧コンデンサ(5)に蓄積された
電荷を3極X線管内に放電させ、μs域のパルスX線を
発生させる。また前記X線照射時間調整用可変抵抗器
(17)の抵抗値に比例したX線照射時間が得られ、さ
らに最大で100kHz程度の繰返周波数を実現するこ
とができる。 【0017】図2に示される実施例では、図1の放電用
高速度サイリスタ(20)を放電用トランジスタ(2
2)に置き換え、絶縁トリガトランス(13)よりのパ
ルス電流を複数個のパルス電流供給用コンデンサ(1
8)を介して前期放電用トランジスタ(22)のベース
に供給することにより、上記格子電圧供給用コンデンサ
(18)の電荷を高速度で放電するようにしてある。そ
の他のX線発生回路は図1のものと同様である。 【0018】図3に示される実施例では、格子パルス伝
送用コンデンサ(23)を格子用充電端子(8)を介し
て最大−3kV程度に負充電し、パルス発生用コンデン
サ(11)をサイリスタパルサ充電端子(9)を介して
+500 V程度に正充電する。そして方形波入力端子
(10)より入力された方形波を微分回路用コンデンサ
(14)と微分回路用抵抗器(15)から成る微分回路
と電圧遮断用ダイオード(16)を介してパルス発生用
サイリスタ(12)のゲートに入力し、前記パルス発生
用コンデンサ(11)に蓄積された電荷を前記パルス発
生用サイリスタ(12)を介して絶縁トリガトランス
(13)の1次コイルに放電する。該トリガトランス
(13)の2次コイルに発生する最大+10kV程度の
正のパルス高電圧を格子パルス伝送用コンデンサ(2
3)を介して格子(4)に印加する。正パルス高電圧印
加で発生する格子電流により前記パルス伝送用コンデン
サ(23)に蓄積された負の電荷を、定電圧ダイオード
(26)により一定電圧に保たれた2μF程度の定格子
電圧供給用コンデンサ(25)に放電用抵抗器(24)
を介して放電する。そして主放電用コンデンサ(5)に
蓄積された電荷は格子電圧が正の尖頭パルス高電圧から
負の3極X線管の電子遮断電圧までの電圧範囲で3極X
線管内に放電するので、1μs程度の照射時間のパルス
X線を発生することができる。また前記格子(4)に印
加するパルス高電圧を変化させることにより管電流を調
整し、最大2A 程度の尖頭管電流を得ることができ、
さらに最大で500 kHz程度の繰返周波数も実現す
ることができる。 【0019】 【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。 【0020】主放電用高電圧コンデンサと熱陰極3極X
線管を有するX線装置に高周波で駆動する格子制御装置
を組み込むことにより、最大で500kHz程度の繰返
しパルスX線を得ることができる。 【0021】そして格子制御回路の格子電圧供給用コン
デンサの充電時間を抵抗器にて変化させることにより、
μs域でX線照射時間を正確に調整することができ、し
かも発生するパルスX線強度のばらつきを1%以下にす
ることができる。 【0022】また熱陰極3極X線管の格子に正の高電圧
パルスを印加することにより、1μs程度の照射時間で
線量率の高い繰返しパルスX線を得ることができる。 【0023】そして、これらの熱陰極3極X線管格子制
御装置を組込んだX線装置より発生する繰返しパルスX
線を医療や工業分野に応用した際には、最大500kH
z程度の高速度ストロボ撮影や高周波の気体電離も可能
となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot cathode triode X-ray tube used in a repetitive pulse X-ray apparatus for medical diagnosis, high speed non-destructive testing, etc. The present invention relates to a grid control device used to drive a three-pole X-ray tube having a frequency of not less than kHz. In a conventional hot cathode triode X-ray tube used for a repetitive pulse X-ray apparatus for medical diagnosis and high-speed nondestructive testing,
A timer circuit is mainly used to generate a signal and the signal is input to the base of a transistor to adjust the X-ray irradiation time, but the repetition frequency is 1 kHz or less. Further, in a conventional two-pole X-ray tube having a hot cathode, a frequency of 1 kHz or less is obtained by using an inverter type high voltage transistor. When the purpose is focused on medical diagnosis, an X-ray apparatus which is currently used and has an X-ray irradiation time of 1 ms or more is used for high-speed dynamics such as contrast imaging of a circular artery. In this case, it is difficult to obtain a completely still image. In order to perform high-speed stroboscopic photography in the kHz range using the X-ray image intensifier, it is necessary to reduce the afterglow of the image intensifier.
In order to solve this, a pulse X-ray apparatus having a high X-ray irradiation time, a high frequency, a high dose rate and a high time resolution is required. A first object of the present invention is to adjust the X-ray irradiation time in the μs range by using a hot cathode triode X-ray tube grid control device with high time resolution, and if the variation in X-ray output is less than 1%. Moreover, it is necessary to obtain a frequency of about 100 kHz at maximum. A second object of the present invention is to provide a hot cathode triode grid control device capable of igniting a plurality of discharge high speed thyristors or discharge transistors connected in series at the same time and at high speed. Is. A third object of the present invention is to apply a positive pulse high voltage having a peak voltage of +10 kv or less to the grid of a three-pole X-ray tube and change the peak voltage to thereby apply voltage to the hot cathode. The tube current can be adjusted even when is fixed, and the maximum tube current is about 2 A, the X-ray irradiation time is about 1 μs, and the repetitive pulse X-ray with the maximum frequency of about 500 kHz is obtained. In order to solve the above-mentioned object, the present invention provides a high voltage charging terminal (a) between an anticathode (2) and a hot cathode (3) of a triode X-ray tube. Up to +1 via 7)
A high-voltage capacitor (5) for main discharge of about 1.5 μF, which is positively charged to 50 kV, is connected, and the grid (4) is controlled to charge the electric charge accumulated in the high-voltage capacitor (5) for main discharge. A grid control device for a hot cathode triode X-ray tube, which discharges pulse X-rays in a triode X-ray tube, wherein the grid (4) of the triode X-ray tube is connected to a grid charging terminal (8). And a grid voltage supply capacitor (18) that is negatively charged to a maximum of about −3 kV is connected to the grid voltage supply capacitor (1).
The discharge high-speed switching elements (20, 22) for discharging the electric charge accumulated in 8) are connected, and the primary coil of the insulation trigger transformer (13) is positively charged to about +100 V via the pulser charging terminal (9). The electric charge of the pulse generating capacitor (11) to be charged is transferred to the square wave input terminal (1
0) is input to the gate or the base of the high-speed switching device for discharge (12, 21) through the differentiating circuit (14, 15) and the voltage cut-off diode (16) to release the square wave, The gate or base of the discharge high speed switching device (20, 22) is connected to the secondary coil of the trigger transformer (13) through a pulse current supply capacitor (19). According to the present invention, a grid pulse transmission capacitor (23), which is negatively charged to a maximum of -3 kV, is connected to the grid (4) of a three-pole X-ray tube through a grid charging terminal (8) and is insulated. The secondary coil of the trigger transformer (13) is connected to the grid pulse transmission capacitor (23), and
A positive pulse high voltage of up to +10 kV generated in the next coil is applied to the grid (4) through the grid pulse transmission capacitor (23), and the grid current is generated to the grid pulse transmission capacitor (23). It is characterized in that the stored negative charges are discharged through a charge discharging resistor (24) to a rated voltage supplying capacitor (25) which holds a constant voltage by a constant voltage diode (26). It is what In the hot cathode triode X-ray tube lattice control device having the above-mentioned X-ray irradiation time adjusting function, a maximum of 100 kH of pulsed X-rays is adjusted to the required X-ray irradiation time in the μs range.
It is possible to output a pulsed X-ray with a maximum dose rate proportional to the tube current that is output at a high frequency of z and is approximately determined by the square of the charging voltage of the high-voltage capacitor for main discharge and the temperature of the hot cathode. it can. In the hot cathode triode X-ray tube grid controller as described above, a plurality of discharge high-speed thyristors and discharge transistors, and a plurality of pulse current supply capacitors are connected in series. The electric charge of the grid voltage supply capacitor negatively charged to about 3 kV can be discharged at the same time, so that the time resolution is good and the shortest is several μs.
Pulsed X-rays can be generated. In the hot cathode triode X-ray tube grid controller as described above, the grid voltage changes from 0 V during X-ray irradiation to the hot cathode 3.
Since the electron blocking voltage of the polar X-ray tube changes, and the electron focusing voltage also changes accordingly, it is easy to obtain an effective focal diameter with a uniform X-ray intensity distribution. Further, in a hot cathode three-pole X-ray tube grid control device in which the X-ray irradiation time is fixed and the tube current can be adjusted by the grid voltage, the temperature of the hot cathode is sufficiently raised to about 2000 K, and a positive pulse high voltage is applied to the grid. Is set so that the tube current is not saturated when the voltage is applied, and the lattice voltage can be boosted up to about +10 kV, so that the peak tube current can be increased to about 2A. In the hot cathode triode X-ray tube grid control device capable of adjusting the tube current by the grid voltage, the electron voltage from the hot cathode is made to be the anode by setting the grid voltage to a positive high voltage of about +10 kV at maximum. Can be focused. EXAMPLE In the example shown in FIG. 1, a vitreous tube (1) is used.
A high-voltage capacitor (5) for main discharge of about 1.5 μF is connected between the anticathode (2) of the triode X-ray tube with a hot cathode (3) and the hot cathode (3), The main discharging capacitor (5) is positively charged to a maximum of about +150 kV through the charging terminal (7), and the multiple grid voltage supplying capacitors (18) connected in series are connected to the charging terminal (8) for the grid. ) And a variable resistor for adjusting X-ray irradiation time (1
Negatively charge up to about -3 kV via 7). Further, the pulse generating capacitor (11) is positively charged to about +100 V through the pulse generating thyristor pulser charging terminal (9). Then, the square wave input from the square wave input terminal (10) is passed through a differentiation circuit including a differentiation circuit capacitor (14) and a differentiation circuit resistor (15) and a voltage cutoff diode (16) to generate a pulse thyristor. The charge accumulated in the capacitor (11) for pulse generation in the previous period is input to the gate of (12), and the thyristor (12) for pulse generation in the previous period.
Through the primary coil of the insulation trigger transformer (13). The pulse current generated in the secondary coil of the insulation trigger transformer (13) is input to the gates of a plurality of discharging high-speed thyristors (20) through a plurality of pulse current supplying capacitors (19), The electric charges accumulated in the grid voltage supply capacitor (18) are discharged at the same time using the discharging high speed thyristor (20). After that, the grid voltage supply capacitor (18) is charged again through the grid charging terminal (8) and the X-ray irradiation time adjusting variable resistor (17), and a plurality of the grids connected in series are charged. The charge accumulated in the high-voltage capacitor (5) for main discharge in the previous term is stored in the 3-pole X-ray tube in the voltage range from the charging voltage of the voltage supply capacitor (18) to the electron cutoff voltage of the 3-pole X-ray tube. To generate a pulse X-ray in the μs range. Further, an X-ray irradiation time proportional to the resistance value of the X-ray irradiation time adjusting variable resistor (17) can be obtained, and a repetition frequency of about 100 kHz at maximum can be realized. In the embodiment shown in FIG. 2, the discharging high speed thyristor (20) shown in FIG.
2) to replace the pulse current from the insulation trigger transformer (13) with a plurality of pulse current supply capacitors (1
By supplying it to the base of the transistor (22) for discharging in the previous period via 8), the electric charge of the capacitor (18) for supplying the grid voltage is discharged at a high speed. Other X-ray generation circuits are the same as those in FIG. In the embodiment shown in FIG. 3, the lattice pulse transmission capacitor (23) is negatively charged to a maximum of about -3 kV through the lattice charging terminal (8), and the pulse generation capacitor (11) is replaced by a thyristor pulser. It is positively charged to about +500 V through the charging terminal (9). Then, the square wave input from the square wave input terminal (10) is passed through a differentiation circuit including a differentiation circuit capacitor (14) and a differentiation circuit resistor (15) and a voltage cutoff diode (16) to generate a pulse thyristor. The charge stored in the pulse generating capacitor (11) is input to the gate of (12) and discharged to the primary coil of the insulation trigger transformer (13) through the pulse generating thyristor (12). A positive pulse high voltage of about +10 kV at maximum generated in the secondary coil of the trigger transformer (13) is applied to the grid pulse transmission capacitor (2
Apply to the grating (4) via 3). A capacitor for supplying a rated voltage of about 2 μF in which the negative charge accumulated in the pulse transmission capacitor (23) due to the lattice current generated by applying the positive pulse high voltage is kept at a constant voltage by the constant voltage diode (26). (25) Discharge resistor (24)
To discharge through. The electric charge accumulated in the main discharge capacitor (5) has a 3-pole X-ray in a voltage range from a high peak pulse voltage having a positive lattice voltage to a negative 3-pole X-ray tube electron cutoff voltage.
Since it discharges into the tube, it is possible to generate pulsed X-rays with an irradiation time of about 1 μs. Further, the tube current can be adjusted by changing the pulse high voltage applied to the lattice (4) to obtain a peak tube current of about 2 A at maximum.
Furthermore, a repetition frequency of up to about 500 kHz can be realized. Since the present invention is constructed as described above, it has the following effects. High-voltage capacitor for main discharge and hot cathode 3-pole X
By incorporating a grid control device driven at high frequency into an X-ray device having a ray tube, it is possible to obtain repetitive pulsed X-rays at a maximum of about 500 kHz. By changing the charging time of the grid voltage supply capacitor of the grid control circuit with a resistor,
The X-ray irradiation time can be adjusted accurately in the μs range, and the variation in the generated pulse X-ray intensity can be reduced to 1% or less. By applying a positive high voltage pulse to the grid of the hot cathode triode X-ray tube, repetitive pulse X-rays with a high dose rate can be obtained in an irradiation time of about 1 μs. Repetitive pulse X generated from an X-ray device incorporating these hot cathode triode X-ray tube grid control devices.
When the wire is applied to the medical and industrial fields, a maximum of 500 kH
High-speed flash photography of about z and high-frequency gas ionization are also possible.

【図面の簡単な説明】 【図1】μs域でX線照射時間が調整可能なサイリスタ
式格子制御装置を有するkHz繰返パルスX線装置の電
気回路の1実施例を示す図である。 【図2】μs域でX線照射時間が調整可能なトランジス
タ式格子制御装置を有するkHz繰返パルスX線装置の
電気回路の他の実施例を示す図である。 【図3】パルス格子電圧で管電流が調整可能な格子制御
装置を有するX線照射時間が固定のkHz繰返パルスX
線装置の電気回路の1実施例を示す図である。 【符号の説明】 1 硝子管体 2 対陰極 3 熱陰極 4 格子 5 主放電用高電圧コンデンサ 6 熱陰極用直流電源 7 高電圧充電端子 8 格子用充電端子 9 サイリスタパルサー充電端子 10 方形波入力端子 11 パルス発生用コンデンサ 12 パルス発生用サイリスタ 13 絶縁トリガトランス 14 微分回路用コンデンサ 15 微分回路用抵抗器 16 電圧遮断用ダイオード 17 X線照射時間調整用可変抵抗器 18 格子電圧調整用コンデンサ 19 パルス電流供給用コンデンサ 20 放電用高速度サイリスタ 21 パルス発生用トランジスタ 22 放電用トランジスタ 23 格子パルス伝送用コンデンサ 24 電荷放電用抵抗器 25 定格子電圧供給用大容量コンデンサ 26 定電圧ダイオード
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an embodiment of an electric circuit of a kHz repetitive pulse X-ray device having a thyristor type grating controller capable of adjusting an X-ray irradiation time in a μs range. FIG. 2 is a diagram showing another embodiment of the electric circuit of the kHz repetitive pulse X-ray apparatus having the transistor type grating control apparatus capable of adjusting the X-ray irradiation time in the μs range. FIG. 3 shows a repetitive pulse X having a fixed X-ray irradiation time and a grid control device in which a tube current can be adjusted by a pulse grid voltage.
It is a figure which shows one Example of the electric circuit of a line device. [Explanation of symbols] 1 glass tube body 2 anticathode 3 hot cathode 4 grid 5 high-voltage capacitor for main discharge 6 hot cathode DC power supply 7 high-voltage charging terminal 8 grid charging terminal 9 thyristor pulser charging terminal 10 square wave input terminal 11 Pulse Generation Capacitor 12 Pulse Generation Thyristor 13 Insulation Trigger Transformer 14 Differentiation Circuit Capacitor 15 Differentiation Circuit Resistor 16 Voltage Cutoff Diode 17 X-Ray Irradiation Time Adjustment Variable Resistor 18 Lattice Voltage Adjustment Capacitor 19 Pulse Current Supply Capacitor 20 Discharge high-speed thyristor 21 Pulse generation transistor 22 Discharge transistor 23 Lattice pulse transmission capacitor 24 Charge discharge resistor 25 Constant capacitance voltage supply large capacity capacitor 26 Constant voltage diode

Claims (1)

【特許請求の範囲】 [請求項1] 3極X線管の対陰極(2)と熱陰極
(3)との間に高電圧充電端子(7)を介して最大+1
50kVに正充電される1.5μF程度の主放電用コン
デンサ(5)を接続し、格子(4)を制御して該主放電
用コンデンサ(5)に蓄積された電荷を3極X線管内に
放電させ、パルスX線を発生させる熱陰極3極X線管の
格子制御装置であって、3極X線管の格子(4)に格子
用充電端子(8)を介して最大−3kV程度に負充電さ
れる格子電圧供給用コンデンサ(18)を接続し、該格
子電圧供給用コンデンサ(18)の端子間に蓄積された
電荷を放電する放電用高速スイッチング素子(18)を
接続すると共に、絶縁トリガトランス(13)の1次コ
イルにパルサー充電端子(9)を介して+100V程度
に正充電されるパルス発生用コンデンサ(11)及び方
形波入力端子(10)から微分回路(14、15)と電
圧遮断用ダイオード(16)を介して方形波をゲートに
入力して前記1次コイルを介して前記パルス発生用コン
デンサ(11)に蓄積された電荷を放電するスイッチン
グ素子(12、21)を接続し、前記絶縁トリガトラン
ス(13)の2次コイルにゲートパルス供給用コンデン
サ(19)を介して前記放電用高速スイッチング素子
(20、22)のゲートを接続したことを特徴とするk
Hz繰返パルスX線装置に用いる熱陰極3極X線管の格
子制御装置。 [請求項2] 3極X線管の対陰極(2)と熱陰極
(3)との間に高電圧充電端子(7)を介して最大15
0kVに正充電される1.5μF程度の主放電用高電圧
コンデンサ(5)を接続し、格子(4)を制御して該主
放電用高電圧コンデンサ(5)に蓄積された電荷を3極
X線管内に放電させパルスX線を発生させる熱陰極3極
X線管の格子制御装置であって、3極X線管の格子
(4)に格子用充電端子(8)を介して最大−3kV程
度に負充電される格子パルス伝送用コンデンサ(23)
を接続すると共に、絶縁トリガトランス(13)の1次
コイルにパルサー充電端子(9)を介して+500V程
度に正充電されるパルス発生用コンデンサ(11)及び
方形波入力端子(10)から微分回路(14、15)と
電圧遮断用ダイオード(16)を介して方形波をゲート
に入力して前記1次コイルを介して前記パルス発生用コ
ンデンサ(11)に蓄積された電荷を放電するスインチ
ング素子(12、21)を接続し、前記絶縁トリガトラ
ンス(13)の2次コイルに前記格子パルス伝送用コン
デンサ(23)を接続して前記2次コイルに発生する最
大+10kV程度の正パルス高電圧を前記格子パルス伝
送用コンデンサ(23)を介して前記格子(4)に印加
し、発生する格子電流により前記格子パルス伝送用コン
デンサ(23)に蓄積された負の電荷を定電圧素子(2
6)で一定電圧に保持される定格子電圧供給用コンデン
サ(25)と放電用抵抗器(24)により放電するよう
に構成したことを特徴とするkHz繰返パルスX線装置
に用いる熱陰極3極X線管の格子制御装置。
Claims [Claim 1] A maximum of +1 between the anticathode (2) and the hot cathode (3) of the triode X-ray tube via a high-voltage charging terminal (7).
A main discharge capacitor (5) of about 1.5 μF, which is positively charged to 50 kV, is connected, and the grid (4) is controlled so that the charge accumulated in the main discharge capacitor (5) is stored in the triode X-ray tube. A grid control device for a hot cathode triode X-ray tube that discharges and generates pulsed X-rays, wherein the grid (4) of the triode X-ray tube has a maximum of about -3 kV via a grid charging terminal (8). A grid voltage supply capacitor (18) that is negatively charged is connected, and a discharge high-speed switching element (18) that discharges the electric charge accumulated between the terminals of the grid voltage supply capacitor (18) is connected and insulated. From the pulse generating capacitor (11) and the square wave input terminal (10), which are positively charged to about + 100V to the primary coil of the trigger transformer (13) via the pulser charging terminal (9), to the differentiating circuits (14, 15). Voltage cut-off diode The switching element (12, 21) for inputting a square wave to the gate via (16) and discharging the electric charge accumulated in the pulse generating capacitor (11) via the primary coil is connected, The secondary coil of the trigger transformer (13) is connected to the gate of the discharge high-speed switching element (20, 22) through a gate pulse supply capacitor (19).
A grid control device for a hot cathode triode X-ray tube used for a Hz repetitive pulse X-ray device. [Claim 2] Between the anticathode (2) and the hot cathode (3) of the triode X-ray tube, a maximum of 15 is provided via a high-voltage charging terminal (7).
A main discharge high voltage capacitor (5) of about 1.5 μF that is positively charged to 0 kV is connected, and the grid (4) is controlled to charge the electric charge accumulated in the main discharge high voltage capacitor (5) into three poles. A grid control device for a hot cathode triode X-ray tube, which discharges pulse X-rays in an X-ray tube, wherein a maximum of − is provided on a grid (4) of the triode X-ray tube via a grid charging terminal (8). Lattice pulse transmission capacitor (23) that is negatively charged to about 3 kV
And a pulse generator capacitor (11) and a square wave input terminal (10) that positively charge the primary coil of the insulation trigger transformer (13) to about + 500V through a pulser charging terminal (9). A swinging element () for discharging a charge accumulated in the pulse generating capacitor (11) through the primary coil by inputting a square wave into the gate through (14, 15) and the voltage blocking diode (16). 12, 21) and the secondary coil of the insulation trigger transformer (13) is connected to the lattice pulse transmission capacitor (23) to generate a positive pulse high voltage of about +10 kV at maximum in the secondary coil. It is applied to the lattice (4) through the lattice pulse transmission capacitor (23), and the lattice current generated by the lattice pulse transmission capacitor (23) is applied to the lattice pulse transmission capacitor (23). The negative charges product constant voltage element (2
6) A hot cathode 3 used in a kHz repetitive pulse X-ray device, characterized in that it is configured to discharge by a rated voltage supply capacitor (25) and a discharge resistor (24) which are held at a constant voltage in 6). Grating control device for polar X-ray tube.
JP15721792A 1992-05-01 1992-05-01 Grid control device of hot cathode three-pole x-ray tube used for khz repetitively pulsed x-ray device Pending JPH07240296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15721792A JPH07240296A (en) 1992-05-01 1992-05-01 Grid control device of hot cathode three-pole x-ray tube used for khz repetitively pulsed x-ray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15721792A JPH07240296A (en) 1992-05-01 1992-05-01 Grid control device of hot cathode three-pole x-ray tube used for khz repetitively pulsed x-ray device

Publications (1)

Publication Number Publication Date
JPH07240296A true JPH07240296A (en) 1995-09-12

Family

ID=15644783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15721792A Pending JPH07240296A (en) 1992-05-01 1992-05-01 Grid control device of hot cathode three-pole x-ray tube used for khz repetitively pulsed x-ray device

Country Status (1)

Country Link
JP (1) JPH07240296A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782390A (en) * 2010-04-07 2010-07-21 中国科学院西安光学精密机械研究所 Ground simulation method and device for X ray pulsars-based navigation
CN104411080A (en) * 2014-10-30 2015-03-11 北京艾立科技有限公司 Method for obtaining direct-current pulse high voltage applied to grid-control X-ray bulb tube
JP2017079858A (en) * 2015-10-23 2017-05-18 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782390A (en) * 2010-04-07 2010-07-21 中国科学院西安光学精密机械研究所 Ground simulation method and device for X ray pulsars-based navigation
CN104411080A (en) * 2014-10-30 2015-03-11 北京艾立科技有限公司 Method for obtaining direct-current pulse high voltage applied to grid-control X-ray bulb tube
JP2017079858A (en) * 2015-10-23 2017-05-18 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus
US10412818B2 (en) 2015-10-23 2019-09-10 Canon Medical Systems Corporation X-ray diagnostic apparatus

Similar Documents

Publication Publication Date Title
KR950011848B1 (en) Ion implantation and surface processing method and apparatus
KR100331777B1 (en) Compact solid state klystron power supply
SE469810B (en) Device for ion plasma electron gun and methods for generating secondary electrons from an ion plasma electron gun
US4473875A (en) Inductive storage pulse circuit device
JPH07240296A (en) Grid control device of hot cathode three-pole x-ray tube used for khz repetitively pulsed x-ray device
Chen et al. Developing a solid-state quasi-square pulse Marx generator
JP2003142295A (en) X-ray image forming x-ray system
RU98633U1 (en) PULSE X-RAY GENERATOR
Kanchi et al. Plasma triggered spark gap switch for multiple switch synchronization
WO1989001713A1 (en) Metal vapor laser
Sato et al. Diagnostic soft flash x-ray techniques
Masugata et al. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration
Brussaard et al. A 2.5-MV subnanosecond pulser with laser-triggered spark gap for the generation of high-brightness electron bunches
US3137820A (en) High-current pulsed ion source
DE102010055889B4 (en) Method and device for generating short-wave radiation by means of a gas-discharge-based high-frequency high-current discharge
US2576634A (en) Electrotherapeutic impulse generator
Sokovnin et al. Improving the Operating Characteristics of an УPT-0.5 Accelerator
HU190959B (en) Method and apparatus for the irradiation of solid materials with ions
Kovalchuk et al. Plasma-filled diode with a rod anode for repetitive pulsed X-ray sources
SATO et al. Kilohertz-range sub-millisecond flash x-ray generator utilizing a hot-cathode triode
JP2532443B2 (en) Plasma X-ray generator
SU307539A1 (en) Neutron pulse generator
SU206730A1 (en) PULSE NEUTRON GENERATOR
SATO et al. Repetitive flash x-ray generator utilizing a hot-cathode diode in conjunction with a modified Blumlein pulser
JPS6224544A (en) X-ray generation apparatus