JPH07239546A - Method for designing translucent film - Google Patents

Method for designing translucent film

Info

Publication number
JPH07239546A
JPH07239546A JP2859294A JP2859294A JPH07239546A JP H07239546 A JPH07239546 A JP H07239546A JP 2859294 A JP2859294 A JP 2859294A JP 2859294 A JP2859294 A JP 2859294A JP H07239546 A JPH07239546 A JP H07239546A
Authority
JP
Japan
Prior art keywords
refractive index
transmittance
film thickness
phase difference
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2859294A
Other languages
Japanese (ja)
Other versions
JP3222678B2 (en
Inventor
Shinichi Ito
信一 伊藤
Hiroaki Hazama
博顕 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02859294A priority Critical patent/JP3222678B2/en
Publication of JPH07239546A publication Critical patent/JPH07239546A/en
Priority to US08/583,857 priority patent/US5629115A/en
Priority to US08/729,592 priority patent/US5907393A/en
Priority to US08/730,017 priority patent/US5728494A/en
Application granted granted Critical
Publication of JP3222678B2 publication Critical patent/JP3222678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide a method for designing a translucent film capable of recognizing the conventional translucent phase shift film not by indirect information, such as phase difference and transmittance but by more concrete information, such as refractive index, attenuation coefft. and film thickness with exactness and elucidating the permissible ranges thereof. CONSTITUTION:The phase difference phi and transmittance (t) obtd. by multiple reflection calculations using an arbitrary coefft. (k) and film thickness (d) are calculated for an arbitrary refractive index (n) by considering this (n) as a fixed value in the method for designing the translucent film which determines the refractive indexing, attenuation coefft. (k) and film thickness (d) of the translucent film. The error between the desired value and the calculated value for the phase difference phi is reduced to the film thickness (d) and the error between the desired value and the calculated value for the transmittance (t) is reduced to the attenuation constant (k). The refractive index (n), attenuation coefft. (k) and film thickness (d) satisfying the desired phase difference phi and transmittance (t) are rapidly and accurately determined by repeating the multiple reflection calculation and reduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造工程
におけるリソグラフィー技術に係わり、特に位相シフト
マスクを形成するために用いる半透明膜の屈折率n,消
衰係数k,膜厚dを決定するための設計方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithographic technique in a manufacturing process of a semiconductor device, and particularly, to determine a refractive index n, an extinction coefficient k and a film thickness d of a semitransparent film used for forming a phase shift mask. Design method for doing.

【0002】[0002]

【従来の技術】半導体技術の進歩と共に、半導体装置ひ
いては半導体素子は高集積化,微細化の一途を辿ってい
る。この半導体素子の製造に際し、リソグラフィー技術
は加工の要として特に重要である。現在のリソグラフィ
ー技術ではマスクパターンを縮小光学系を介してLSI
基板上に投影露光する方法が主に用いられている。
2. Description of the Related Art With the progress of semiconductor technology, semiconductor devices, and thus semiconductor elements, are becoming highly integrated and miniaturized. When manufacturing this semiconductor element, the lithography technique is particularly important as a cornerstone of processing. In the current lithography technology, the mask pattern is transferred to the LSI through the reduction optical system.
A method of projection exposure on a substrate is mainly used.

【0003】このようなリソグラフィー技術において、
微細化は露光波長λの制約を大きく受け、波長以下のパ
ターンを形成するのは非常に困難であった。これは、波
長とほぼ同寸法のパターンでは隣接するパターンで干渉
が生じ、本来暗部として形成したい領域で光強度を有
し、暗部と明部の光量差が殆ど生じないことが原因とな
っている。このため、任意の波長を用いてLSI基板上
にパターン形成を行う場合、最小線幅を波長に対し1.
4倍程度の寸法に止めざるを得なかった。
In such a lithography technique,
The miniaturization is greatly restricted by the exposure wavelength λ, and it has been very difficult to form a pattern of a wavelength or less. This is because in a pattern having almost the same size as the wavelength, interference occurs between adjacent patterns, the light intensity is in a region originally desired to be formed as a dark portion, and the light amount difference between the dark portion and the bright portion hardly occurs. . Therefore, when a pattern is formed on an LSI substrate using an arbitrary wavelength, the minimum line width is 1.
I had no choice but to limit the size to about four times.

【0004】ところで、近年のLSIに要求される最小
線幅は、64MdRAMで0.35μm、更に256M
dRAMでは0.25μmとされている。これらの寸法
を従来のリソグラフィー技術で実現するためには、最小
線幅0.35μmについては露光光源をKrFレーザ、
最小線幅0.25μmについてはArFレーザで対処す
る必要が出てくる。しかし、これらの光源を用いた場合
には対応するレジストの開発が必要となるが、これらの
レジストは未だ研究過程にあり実用化にはなおかなりの
時期を必要とする。露光光源をEBに置き換えることも
不可能ではないが、光を用いた露光と比較しスループッ
トが大幅に低下し実用性にそぐわない。これらの理由か
ら、従来の露光光源の短波長化に代わり、露光波長λを
変えることなく微細化を促進させる手法について考えら
れるようになった。
By the way, the minimum line width required for recent LSIs is 64 MdRAM, 0.35 μm, and 256 Mm.
It is set to 0.25 μm in dRAM. In order to realize these dimensions by the conventional lithography technique, a KrF laser is used as an exposure light source for a minimum line width of 0.35 μm,
For the minimum line width of 0.25 μm, it becomes necessary to deal with it with an ArF laser. However, when these light sources are used, it is necessary to develop corresponding resists, but these resists are still in the research process, and it takes a considerable time for practical use. Although it is not impossible to replace the exposure light source with EB, the throughput is significantly reduced as compared with the exposure using light, which is not practical. For these reasons, in place of the conventional shortening of the wavelength of the exposure light source, a method of promoting miniaturization without changing the exposure wavelength λ has come to be considered.

【0005】この目的を達成する手法として、特開平4
−136854公報に記載されているよいに、デバイス
設計変更を必要としないハーフトーン型位相シフト法が
ある。この位相シフト法の効果を最大限に生かすには、
透明部分と半透過膜を透過した光の位相差φと透過率t
を最適化することが重要である。これらの光学変数はシ
ミュレーション等で容易に最適化を行うことが可能であ
る。
As a technique for achieving this purpose, Japanese Patent Laid-Open No. 4 (1999) -242242
There is a halftone type phase shift method which does not require a device design change, as described in Japanese Patent Laid-Open No. 136854. To maximize the effect of this phase shift method,
The phase difference φ and the transmittance t of the light transmitted through the transparent portion and the semi-transmissive film.
It is important to optimize. These optical variables can be easily optimized by simulation or the like.

【0006】従来、半透明位相シフトマスクは2層膜で
作成していたが、この手法では位相差φと透過率tを独
立に制御しており作成が容易であった。しかし、2層構
造では、膜形成工程及びエッチング工程がそれぞれ2度
必要であるなど、工程数の増加が問題となっていた。ま
た、下層膜に欠陥が生じた場合に修正が難しい等の問題
が生じていた。これに対し特開平4−136854公報
では単層構造の半透明位相シフト膜についても同時に記
載している。また、同様に特開平4−162039号公
報でも単層構造の半透明位相シフト膜について論じられ
ている。
Conventionally, the semi-transparent phase shift mask is made of a two-layer film, but this method is easy to make because the phase difference φ and the transmittance t are controlled independently. However, in the two-layer structure, an increase in the number of steps has been a problem since the film forming step and the etching step are required twice. Further, when a defect occurs in the lower layer film, there is a problem that it is difficult to correct. On the other hand, Japanese Patent Laid-Open No. 4-136854 also describes a semi-transparent phase shift film having a single layer structure. Similarly, JP-A-4-162039 also discusses a semi-transparent phase shift film having a single layer structure.

【0007】これらの公報では塗布ガラス中に色素を混
入させることで単層半透明位相シフト膜を形成してい
る。この手法は透過率を色素で、位相差を塗布ガラスで
調整していた。また、特開平5−127361号公報で
も単層半透明膜についての記述が示されているが、半透
明膜の厚さについては、半透明膜が配設されていない部
分との位相関係2π(dn/λ−d/λ)=πの関係か
ら、厚さdをd=λ/2(n−1)に設定していた。
In these publications, a single-layer semitransparent phase shift film is formed by mixing a dye into the coated glass. In this method, the transmittance was adjusted with a dye and the phase difference was adjusted with a coated glass. Further, Japanese Unexamined Patent Publication (Kokai) No. 5-127361 also describes a single-layer semitransparent film, but the thickness of the semitransparent film has a phase relationship of 2π ( From the relationship of dn / λ-d / λ) = π, the thickness d is set to d = λ / 2 (n-1).

【0008】しかしながら、この種の方法にあっては次
のような問題があった。即ち、塗布ガラス中に色素を混
入させることで単層半透明位相シフト膜を形成する手法
では、透過率を色素で、位相差を塗布ガラスで調整して
いた。この手法では、所望の透過率,位相差を得るのに
必要な屈折率,消衰係数,膜厚の具体的な決定法につい
て述べられておらず、実際に得られる透過率,位相差に
対して信頼性を欠いていた。一方、単層半透明膜の膜厚
をd=λ/2(n−1)とするような手法は、消衰係数
の位相差に対する効果を考慮しておらず、また多重反射
で生じる位相ずれについても考慮されていないなど、透
過率,位相差に対する信頼性を欠いていた。
However, this type of method has the following problems. That is, in the method of forming a single-layer semitransparent phase shift film by mixing a dye in the coated glass, the transmittance was adjusted by the dye and the phase difference was adjusted by the coated glass. This method does not describe a specific method for determining the refractive index, extinction coefficient, and film thickness necessary to obtain the desired transmittance and phase difference, and it is not Was lacking in credibility. On the other hand, the method in which the film thickness of the single-layer semi-transparent film is d = λ / 2 (n−1) does not consider the effect of the extinction coefficient on the phase difference, and the phase shift caused by the multiple reflection. However, the reliability of transmittance and phase difference was lacking.

【0009】[0009]

【発明が解決しようとする課題】このように従来、単層
で半透明位相シフト膜を形成する場合、位相差φと透過
率tを所望値に合わせることが必須である。このために
は、半透明膜の露光波長λに於ける所望の透過率t,位
相差φに対して屈折率n,消衰係数k,膜厚dの取り得
る関係を迅速かつ厳密に定める必要があるが、これを満
足するような半透明膜の設計方法は未だ提唱されていな
い。
As described above, conventionally, when a semitransparent phase shift film is formed of a single layer, it is essential to match the phase difference φ and the transmittance t to desired values. For this purpose, it is necessary to quickly and rigorously determine the possible relationship among the desired transmittance t and the phase difference φ of the semitransparent film at the exposure wavelength λ with respect to the refractive index n, the extinction coefficient k, and the film thickness d. However, a method of designing a semitransparent film that satisfies this has not yet been proposed.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、単層膜で振幅透過率t
と位相差φの条件を満足するような半透明膜の屈折率
n,消衰係数k,膜厚dの条件を正確かつ迅速に求める
ことのできる半透明膜の設計方法を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a single layer film with an amplitude transmittance t.
It is to provide a method of designing a semitransparent film that can accurately and promptly determine the conditions of the refractive index n, the extinction coefficient k, and the film thickness d of the semitransparent film that satisfy the conditions of the phase difference φ and the phase difference φ. .

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。
In order to solve the above problems, the present invention employs the following configurations.

【0012】即ち本発明(請求項1)は、半透明膜の屈
折率n,消衰係数k及び膜厚dを最適に設定するための
半透明膜の設計方法において、半透明膜の露光波長λに
おける任意の屈折率nに対し、該半透明膜の露光波長λ
における消衰係数k及び膜厚dの初期値を与える工程
と、半透明膜の屈折率n,消衰係数k,膜厚d及び該半
透明膜を形成した基板と空気の屈折率,消衰係数,膜厚
から多重反射を考慮し、半透明膜の透過率tc ,透明部
分と半透明膜を透過する光の位相差φc を算出する工程
と、算出した透過率tc ,位相差φc を所望の透過率
t,位相差φと比較する工程と、比較して得られた位相
誤差,透過率誤差からそれぞれ消衰係数k,膜厚dを再
設定する工程とを備え、再設定された膜厚d,消衰係数
kを基に、透過率tc ,位相差φc の算出工程及び比較
工程を行い、且つ透過率tc ,位相差φc の両方が所望
値φ,tと一致するまで、再設定する工程、算出する工
程、及び比較する工程を繰り返すことを特徴とする。
That is, the present invention (claim 1) is a method of designing a semitransparent film for optimally setting the refractive index n, the extinction coefficient k, and the film thickness d of the semitransparent film. Exposure wavelength λ of the semitransparent film for an arbitrary refractive index n at λ
And the initial values of the extinction coefficient k and the film thickness d, the refractive index n of the semitransparent film, the extinction coefficient k, the film thickness d, and the refractive index and the extinction of the substrate and air on which the semitransparent film is formed. Considering the multiple reflection from the coefficient and film thickness, the step of calculating the transmissivity tc of the semitransparent film and the phase difference φc of the light passing through the transparent portion and the semitransparent film, and the calculated transmissivity tc and the phase difference φc are desired. And a step of resetting the extinction coefficient k and the film thickness d from the phase error and the transmittance error obtained by the comparison, respectively. Based on the thickness d and the extinction coefficient k, the calculation process and the comparison process of the transmittance tc and the phase difference φc are performed, and the resetting is performed until both the transmittance tc and the phase difference φc match the desired values φ and t. The step of performing, the step of calculating, and the step of comparing are repeated.

【0013】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。
The preferred embodiments of the present invention are as follows.

【0014】(1) 膜厚dの初期値が、露光波長λにおけ
る所望の位相差φ(度),半透明膜の屈折率nに対し
て、d=φλ/(360(n−1))で与えられるよう
にしている。
(1) The initial value of the film thickness d is d = φλ / (360 (n-1)) with respect to the desired phase difference φ (degrees) at the exposure wavelength λ and the refractive index n of the semitransparent film. Will be given in.

【0015】(2) 膜厚dの初期値が、露光波長λにおけ
る所望の位相差φ(ラジアン),半透明膜の屈折率nに
対して、d=φλ/(2π(n−1))で与えられるよ
うにしている。
(2) The initial value of the film thickness d is d = φλ / (2π (n-1)) with respect to the desired phase difference φ (radian) at the exposure wavelength λ and the refractive index n of the semitransparent film. Will be given in.

【0016】(3) 消衰係数kの初期値が、所望の透過率
t,露光波長λ,半透明膜の膜厚dから計算され与えら
れるようにしている。
(3) The initial value of the extinction coefficient k is calculated and given from the desired transmittance t, the exposure wavelength λ, and the film thickness d of the semitransparent film.

【0017】(4) 屈折率nの再設定を、位相差φの所望
値を計算値で除した値に計算で用いた屈折率nを乗ずる
ことで行うようにしている。
(4) The refractive index n is reset by multiplying the value obtained by dividing the desired value of the phase difference φ by the calculated value by the refractive index n used in the calculation.

【0018】(5) 消衰係数kの再設定を、透過率tの所
望値を計算値で除した値の対数値に−λ/2πを乗じ、
さらに計算で用いた消衰係数kで除することで行うよう
にしている。
(5) For resetting the extinction coefficient k, multiply the logarithm of the desired value of the transmittance t by the calculated value by -λ / 2π,
Further, it is performed by dividing by the extinction coefficient k used in the calculation.

【0019】(6) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの組み合わせを少
なくとも1組決定することを含むようにしている。
(6) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d are The method includes determining at least one combination.

【0020】(7) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの少なくとも1項
目の範囲を決定することを含むようにしている。
(7) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d It also includes determining the range of at least one item.

【0021】(8) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの全ての範囲を決
定することを含むようにしている。
(8) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d It is meant to include determining all ranges.

【0022】(9) 所望の透過率t,位相差φが適当な範
囲に設定されており、且つ屈折率nの範囲が適当な範囲
に設定されており、透過率t,位相差φ,屈折率nの範
囲を満足するような消衰係数k,膜厚dの範囲を決定す
ることを含むようにしている。
(9) The desired transmittance t and the phase difference φ are set in appropriate ranges, and the refractive index n is set in the appropriate range. It includes determining the range of the extinction coefficient k and the film thickness d that satisfy the range of the ratio n.

【0023】また、本発明(請求項2)は、半透明膜の
屈折率n,消衰係数k及び膜厚dを最適に設定するため
の半透明膜の設計方法において、半透明膜の露光波長λ
における任意の消衰係数kに対し、該半透明膜の露光波
長λにおける屈折率n及び膜厚dの初期値を与える工程
と、半透明膜の屈折率n,消衰係数k,膜厚d及び該半
透明膜を形成した基板と空気の屈折率,消衰係数,膜厚
から多重反射を考慮して、半透明膜の透過率tc ,透明
部分と半透明膜を透過する光の位相差φc を算出する工
程と、該算出した透過率tc ,位相差φc を所望の透過
率t,位相差φと比較する工程と、比較により得られた
位相誤差,透過率誤差からそれぞれ屈折率n,膜厚dを
再設定する工程とを備え、再設定された屈折率n及び膜
厚dを基に、透過率tc ,位相差φc の算出工程及び比
較工程を行い、且つ透過率tc ,位相差φc の両方が所
望値φ,tと一致するまで、再設定する工程、算出する
工程、及び比較する工程を繰り返すことを特徴とする。
The present invention (claim 2) is a method for designing a semitransparent film for optimally setting the refractive index n, the extinction coefficient k, and the film thickness d of the semitransparent film. Wavelength λ
For an arbitrary extinction coefficient k in, the step of giving initial values of the refractive index n and the film thickness d of the semitransparent film at the exposure wavelength λ; And the transmittance tc of the semitransparent film, the phase difference between the light transmitted through the transparent portion and the semitransparent film, taking into account multiple reflection from the refractive index, extinction coefficient, and film thickness of the substrate on which the semitransparent film is formed. The step of calculating φc, the step of comparing the calculated transmittance tc, the phase difference φc with the desired transmittance t, the phase difference φ, and the refractive index n, respectively, from the phase error and the transmittance error obtained by the comparison. And a step of resetting the film thickness d. Based on the reset refractive index n and the film thickness d, the transmittance tc and the phase difference φc are calculated and compared, and the transmittance tc and the phase difference are compared. The steps of resetting, calculating, and comparing are repeated until both φc and the desired values φ and t match. And wherein the return.

【0024】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。
Here, the following are preferred embodiments of the present invention.

【0025】(1) 膜厚dの初期値が、所望の透過率t,
露光波長λ,消衰係数kから計算され与えられるように
している。
(1) The initial value of the film thickness d is the desired transmittance t,
It is calculated and given from the exposure wavelength λ and the extinction coefficient k.

【0026】(2) 屈折率nの初期値が、露光波長λにお
ける所望の位相差φ(度)、半透明膜の膜厚dに対して
n=φλ/360d+1で与えられるようにしている。
(2) The initial value of the refractive index n is given by n = φλ / 360d + 1 with respect to the desired phase difference φ (degrees) at the exposure wavelength λ and the film thickness d of the semitransparent film.

【0027】(3) 屈折率nの初期値が、露光波長λにお
ける所望の位相差φ(ラジアン),半透明膜の膜厚dに
対して、n=φλ/2πd+1で与えられるようにして
いる。 (4) 屈折率nの再設定を、位相差φの所望値を計算値で
除した値に計算で用いた屈折率nを乗ずることで行うよ
うにしている。
(3) The initial value of the refractive index n is given by n = φλ / 2πd + 1 with respect to the desired phase difference φ (radian) at the exposure wavelength λ and the film thickness d of the semitransparent film. . (4) The refractive index n is reset by multiplying the value obtained by dividing the desired value of the phase difference φ by the calculated value by the refractive index n used in the calculation.

【0028】(5) 膜厚dの再設定を、透過率tの所望値
を計算値で除した値の対数値に−λ/2πを乗じ、さら
に計算で用いた膜厚dで除することで行うようにしてい
る。
(5) To reset the film thickness d, multiply the logarithm of the desired value of the transmittance t by the calculated value by -λ / 2π, and divide by the film thickness d used in the calculation. I am going to do it.

【0029】(6) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの組み合わせを少
なくとも1組決定することを含むようにしている。
(6) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d The method includes determining at least one combination.

【0030】(7) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの少なくとも1項
目の範囲を決定することを含むようにしている。
(7) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d It also includes determining the range of at least one item.

【0031】(8) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの全ての範囲を決
定することを含むようにしている。
(8) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d are It is meant to include determining all ranges.

【0032】(9) 所望の透過率t,位相差φが適当な範
囲に設定されており、且つ消衰係数kの範囲が適当な範
囲に設定されており、透過率t,位相差φ,消衰係数k
の範囲を満足するような屈折率n,膜厚dの範囲を決定
することを含むようにしている。
(9) The desired transmittance t and phase difference φ are set in appropriate ranges, and the extinction coefficient k is set in an appropriate range. Extinction coefficient k
It is included to determine the range of the refractive index n and the film thickness d that satisfy the above range.

【0033】また、本発明(請求項3)は、半透明膜の
屈折率n,消衰係数k及び膜厚dを最適に設定するため
の半透明膜の設計方法において、半透明膜の露光波長λ
における任意の膜厚dに対し、該半透明膜の露光波長λ
における屈折率n及び消衰係数kの初期値を与える工程
と、半透明膜の屈折率n,消衰係数k,膜厚d及び該半
透明膜を形成した基板と空気の屈折率,消衰係数,膜厚
から多重反射を考慮し、半透明膜の透過率tc ,透明部
分と半透明膜を透過する光の位相差φc を算出する工程
と、算出した透過率tc ,位相差φc を所望の透過率
t,位相差φを比較する工程と、比較して得られた位相
誤差,透過率誤差からそれぞれ屈折率n,消衰係数kを
再設定する工程とを備え、再設定された屈折率n,消衰
係数kを基に、透過率tc ,位相差φc の算出工程及び
比較工程を行い、且つ透過率tc ,位相差φc の両方が
所望値φ,tと一致するまで、再設定する工程、算出す
る工程、及び比較する工程を繰り返すことを特徴とす
る。
Further, the present invention (claim 3) is a method of designing a semitransparent film for optimally setting the refractive index n, the extinction coefficient k and the film thickness d of the semitransparent film. Wavelength λ
Exposure wavelength λ of the semitransparent film for an arbitrary film thickness d in
And the initial values of the extinction coefficient k and the refractive index n of the semitransparent film, the extinction coefficient k, the film thickness d, and the refractive index and extinction of the substrate and air on which the semitransparent film is formed. Considering the multiple reflection from the coefficient and film thickness, the step of calculating the transmissivity tc of the semitransparent film and the phase difference φc of the light passing through the transparent portion and the semitransparent film, and the calculated transmissivity tc and the phase difference φc are desired. And the step of resetting the refractive index n and the extinction coefficient k from the phase error and the transmittance error obtained by the comparison, respectively. Based on the rate n and the extinction coefficient k, the steps of calculating and comparing the transmittance tc and the phase difference φc are performed, and reset until both the transmittance tc and the phase difference φc match the desired values φ and t. The step of performing, the step of calculating, and the step of comparing are repeated.

【0034】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。
The preferred embodiments of the present invention are as follows.

【0035】(1) 膜厚dの初期値が、所望の透過率t,
露光波長λ,消衰係数kから計算され与えられるように
している。
(1) The initial value of the film thickness d is the desired transmittance t,
It is calculated and given from the exposure wavelength λ and the extinction coefficient k.

【0036】(2) 屈折率nの初期値が、露光波長λにお
ける所望の位相差φ(度),半透明膜の膜厚dに対し
て、n=φλ/360d+1で与えられるようにしてい
る。
(2) The initial value of the refractive index n is given by n = φλ / 360d + 1 with respect to the desired phase difference φ (degree) at the exposure wavelength λ and the film thickness d of the semitransparent film. .

【0037】(3) 屈折率nの初期値が、露光波長λに於
ける所望の位相差φ(ラジアン),半透明膜の膜厚dに
対して、n=φλ/2πd+1で与えられるようにして
いる。 (4) 屈折率nの再設定を、位相差φの所望値を計算値で
除した値に計算で用いた屈折率nを乗ずることで行うよ
うにしている。
(3) The initial value of the refractive index n is given by n = φλ / 2πd + 1 with respect to the desired phase difference φ (radian) at the exposure wavelength λ and the film thickness d of the semitransparent film. ing. (4) The refractive index n is reset by multiplying the value obtained by dividing the desired value of the phase difference φ by the calculated value by the refractive index n used in the calculation.

【0038】(5) 膜厚dの再設定を、透過率tの所望値
を計算値で除した値の対数値に−λ/2πを乗じ、さら
に計算で用いた膜厚dで除することで行うようにしてい
る。
(5) To reset the film thickness d, multiply the logarithmic value of the desired value of the transmittance t by the calculated value by -λ / 2π, and further divide by the film thickness d used in the calculation. I am going to do it.

【0039】(6) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの組み合わせを少
なくとも1組決定することを含むようにしている。
(6) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d The method includes determining at least one combination.

【0040】(7) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの少なくとも1項
目の範囲を決定することを含むようにしている。
(7) The desired transmittance t and phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d It also includes determining the range of at least one item.

【0041】(8) 所望の透過率t,位相差φが適当な範
囲に設定されており、これらの透過率t,位相差φを満
足する屈折率n,消衰係数k,膜厚dの全ての範囲を決
定することを含むようにしている。
(8) The desired transmittance t and the phase difference φ are set in appropriate ranges, and the transmittance t, the refractive index n satisfying the phase difference φ, the extinction coefficient k, and the film thickness d It is meant to include determining all ranges.

【0042】(9) 所望の透過率t,位相差φが適当な範
囲に設定されており、且つ膜厚dの範囲が適当な範囲に
設定されており、透過率t,位相差φ,膜厚dの範囲を
満足するような屈折率n,消衰係数kの範囲を決定する
ことを含むようにしている。
(9) Desired transmittance t and phase difference φ are set in appropriate ranges, and film thickness d is set in an appropriate range. Transmittance t, phase difference φ, film It includes determining the range of the refractive index n and the extinction coefficient k that satisfy the range of the thickness d.

【0043】また、請求項1〜3の発明において望まし
い実施態様として、次のものがあげられる。
Further, as preferred embodiments in the inventions of claims 1 to 3, the following can be mentioned.

【0044】(1) 所望の透過率t,位相差φの適当な範
囲が、露光時においてレジストパタンの解像性能,焦点
深度,露光を想定したシミュレーションで得られる像プ
ロファイルにより決定されるようにしている。
(1) Appropriate ranges of the desired transmittance t and phase difference φ should be determined by the resolution performance of the resist pattern at the time of exposure, the depth of focus, and the image profile obtained by simulation assuming exposure. ing.

【0045】(2) 所望値との一致が、所望の透過率t,
位相差φに対していずれも所望値±0.01×所望値の
範囲であるように設定している。
(2) The agreement with the desired value means that the desired transmittance t,
The phase difference φ is set to be within a range of desired value ± 0.01 × desired value.

【0046】(3) 設定した屈折率n,消衰係数k,膜厚
tを持つ半透明膜を透光性基板上に作成したものを含む
ようにしている。
(3) A semitransparent film having a set refractive index n, extinction coefficient k, and film thickness t is formed on a transparent substrate.

【0047】(4) 設定した屈折率n,消衰係数k,膜厚
tを持つ半透明膜を透光性基板上に作成したものを加工
しパターン形成を行った露光用マスクを含むようにして
いる。 (5-1) 設定した屈折率n,消衰係数k,膜厚tを持つ半
透明膜が、Si,SiO,SiN,SiON,SiC,
MoSi,MoSiO,MoSiN,MoSiON,C
rO,CrN,CrON,AlO,AlN,AlNO,
TiO,TiN,TiNOのうち少なくとも1つの組成
により構成されていることを特徴としている。
(4) A semi-transparent film having a set refractive index n, extinction coefficient k, and film thickness t is formed on a translucent substrate and is processed to include a patterning exposure mask. . (5-1) The semitransparent film having the set refractive index n, extinction coefficient k, and film thickness t is made of Si, SiO, SiN, SiON, SiC,
MoSi, MoSiO, MoSiN, MoSiON, C
rO, CrN, CrON, AlO, AlN, AlNO,
It is characterized in that it is composed of at least one of TiO, TiN, and TiNO.

【0048】(5-2) 半透明膜が上記の組成に、更に水
素,炭素又はハロゲン元素が添加されているようにして
いる。
(5-2) The semitransparent film is such that hydrogen, carbon or a halogen element is further added to the above composition.

【0049】(5-3) 半透明膜の屈折率nと消衰係数k
を、上記の組成の比率を調整することで得るようにして
いる。
(5-3) Refractive index n and extinction coefficient k of the semitransparent film
Is obtained by adjusting the ratio of the above composition.

【0050】(5-4) 半透明膜の形成には反応性スパッ
タ,プラズマCVD,光CVD,常圧CVD又は蒸着を
用い、半透明膜の組成の比率は反応時のガス組成,圧力
又は温度を調整することで得るようにしている。
(5-4) Reactive sputtering, plasma CVD, photo CVD, atmospheric pressure CVD or vapor deposition is used for forming the semitransparent film, and the composition ratio of the semitransparent film is gas composition, pressure or temperature during the reaction. I am trying to get it by adjusting.

【0051】(6-1) 設定した屈折率n,消衰係数k,膜
厚tを持つ半透明膜を透光性基板上に作成したものを加
工しパターン形成を行った露光用マスクを用い、マスク
像を放射線等により基板上結像させ、この像に基づき加
工を施した半導体基板を含むようにしている。
(6-1) Using an exposure mask in which a semitransparent film having a set refractive index n, extinction coefficient k, and film thickness t is formed on a transparent substrate and processed to form a pattern. A mask image is formed on a substrate by radiation or the like, and a semiconductor substrate processed based on this image is included.

【0052】(6-2) 放射線の波長が、100nm〜45
0nmのいずれかであるようにしている。
(6-2) The radiation wavelength is 100 nm to 45 nm.
It is set to either 0 nm.

【0053】また、本発明の応用として、露光波長λに
おいて、位相差180度で且つ強度透過率Tを満足する
屈折率n0,消衰係数k0,膜厚Dの半透明膜に対し、
半透明膜の位相差φ=180±Pe度で且つ強度透過率
t=T×(1±Te)で且つ膜厚d=D(1±De)を
許容範囲としたときに、半透明膜の屈折率nと消衰係数
kがそれぞれ n=n0±λ(5.58Pe+ 0.167T−12.7Te− 982D
e−0.68)/2000D k=k0±λ(-0.413Pe+ 0.417T+163Te− 312D
e−2.41)/2000D の範囲に設定された半透明膜を提供している。
Further, as an application of the present invention, a semitransparent film having a refractive index n0, an extinction coefficient k0, and a film thickness D, which has a phase difference of 180 degrees at the exposure wavelength λ and satisfies the intensity transmittance T,
When the phase difference φ of the semitransparent film is 180 ± Pe, the intensity transmittance t = T × (1 ± Te), and the film thickness d = D (1 ± De) is within the allowable range, Refractive index n and extinction coefficient k are n = n0 ± λ (5.58Pe + 0.167T-12.7Te-982D)
e−0.68) / 2000D k = k0 ± λ (−0.413Pe + 0.417T + 163Te−312D
We provide semi-transparent film set in the range of e-2.41) / 2000D.

【0054】望ましくは、位相差の許容範囲Peが10
度以内であるように設定している。望ましくは、所望強
度透過率Tが1〜20%であるように設定している。
Desirably, the allowable range Pe of the phase difference is 10
It is set to be within the degree. Desirably, the desired intensity transmittance T is set to be 1 to 20%.

【0055】望ましくは、透過率の許容範囲の所望透過
率Tに対する割合Teが0.2以下であるように設定し
ている。
Desirably, the ratio Te of the allowable range of the transmittance to the desired transmittance T is set to 0.2 or less.

【0056】望ましくは、半透明膜の膜厚の許容範囲の
所望膜厚Dに対する割合Deが0.02以下であるよう
に設定している。
Desirably, the ratio De of the allowable range of the thickness of the semitransparent film to the desired film thickness D is set to 0.02 or less.

【0057】望ましくは、透光性基板上に本発明で示さ
れた屈折率範囲と消衰係数範囲を同時に満たす半透明膜
が少なくとも配設された基板を提供している。
Desirably, there is provided a substrate on which at least a semitransparent film which simultaneously satisfies the refractive index range and the extinction coefficient range shown in the present invention is provided on a transparent substrate.

【0058】望ましくは、透光性基板上に本発明で示さ
れた屈折率範囲と消衰係数範囲を同時に満たす半透明膜
により形成されたパタンが少なくとも配設された露光用
マスク基板を提供している。
It is desirable to provide an exposure mask substrate on which at least a pattern formed of a semitransparent film that simultaneously satisfies the refractive index range and the extinction coefficient range shown in the present invention is provided on a transparent substrate. ing.

【0059】望ましくは、半透明膜がSi,SiO,S
iN,SiON,SiC,MoSi,MoSiO,Mo
SiN,MoSiON,CrO,CrN,CrON,A
lO,AlN,AlNO,TiO,TiN,TiNOの
うち少なくとも1つの組成により構成されていることを
特徴としている。
Desirably, the semitransparent film is Si, SiO, S.
iN, SiON, SiC, MoSi, MoSiO, Mo
SiN, MoSiON, CrO, CrN, CrON, A
It is characterized in that it is composed of at least one composition of 10, AlN, AlNO, TiO, TiN, and TiNO.

【0060】さらにまた望ましくは、半透明膜が組成に
更に水素,炭素又はハロゲン元素が添加されているよう
にしている。
Still more preferably, the semitransparent film is such that hydrogen, carbon or a halogen element is added to the composition.

【0061】さらにまた望ましくは、半透明膜の屈折率
nと消衰係数kを上記組成の比率を調整することで得る
ようにしている。
Further preferably, the refractive index n and the extinction coefficient k of the semitransparent film are obtained by adjusting the ratio of the above composition.

【0062】さらにまた望ましくは、半透明膜の形成に
は反応性スパッタ,プラズマCVD,光CVD,常圧C
VD又は蒸着を用い、半透明膜の組成の比率は反応時の
ガス組成または圧力または温度を調整することで得るよ
うにしている。
Further preferably, reactive sputtering, plasma CVD, photo CVD, atmospheric pressure C are used for forming the semitransparent film.
VD or vapor deposition is used, and the composition ratio of the semitransparent film is obtained by adjusting the gas composition or pressure or temperature during the reaction.

【0063】望ましくは、露光用マスク基板を用い、マ
スク像を放射線等により基板上結像させ、この像に基づ
き加工を施した半導体基板を含むようにしている。
Preferably, a mask substrate for exposure is used, a mask image is formed on the substrate by radiation or the like, and a semiconductor substrate processed based on this image is included.

【0064】さらに望ましくは、放射線の波長が100
nm〜450nmのいずれかであるようにしている。
More preferably, the wavelength of the radiation is 100
nm to 450 nm.

【0065】また、本発明の応用として、露光波長λに
対し、位相差がほぼ180度を満足する半透明膜におい
て、半透明膜の屈折率n,消衰係数kが、半透明膜の任
意を抽出して得られる平均屈折率n0,平均消衰係数k
0,平均膜厚Dに対してそれぞれ n=n0±0.214λ/D k=k0±0.115λ/D の範囲に設定された半透明膜を提供している。
As an application of the present invention, in a semitransparent film having a phase difference of approximately 180 degrees with respect to the exposure wavelength λ, the refractive index n and the extinction coefficient k of the semitransparent film are arbitrary. Average refractive index n0 and average extinction coefficient k obtained by extracting
0 and the average film thickness D are n = n0 ± 0.214λ / D and k = k0 ± 0.115λ / D.

【0066】望ましくは、透光性基板上に本発明で示さ
れた屈折率範囲と消衰係数範囲を同時に満たす半透明膜
が少なくとも配設された基板を提供している。
Desirably, there is provided a substrate on which at least a semitransparent film which simultaneously satisfies the range of refractive index and the range of extinction coefficient shown in the present invention is provided on a transparent substrate.

【0067】望ましくは、透光性基板上に本発明で示さ
れた屈折率範囲と消衰係数範囲を同時に満たす半透明膜
により形成されたパターンが少なくとも配設された露光
用マスク基板を提供している。
It is desirable to provide an exposure mask substrate on which at least a pattern formed by a semitransparent film that simultaneously satisfies the range of refractive index and the range of extinction coefficient shown in the present invention is provided on a transparent substrate. ing.

【0068】望ましくは、半透明膜がSi,SiO,S
iN,SiON,SiC,MoSi,MoSiO,Mo
SiN,MoSiON,CrO,CrN,CrON,A
lO,AlN,AlNO,TiO,TiN,TiNOの
うち少なくとも1つの組成により構成されていることを
特徴としている。
Desirably, the semitransparent film is Si, SiO, S.
iN, SiON, SiC, MoSi, MoSiO, Mo
SiN, MoSiON, CrO, CrN, CrON, A
It is characterized in that it is composed of at least one composition of 10, AlN, AlNO, TiO, TiN, and TiNO.

【0069】さらにまた望ましくは、半透明膜が上記の
組成に更に水素,炭素又はハロゲン元素が添加されてい
るようにしている。
Further preferably, the semitransparent film is made such that hydrogen, carbon or a halogen element is further added to the above composition.

【0070】さらにまた望ましくは、半透明膜の屈折率
nと消衰係数kを上記組成の比率を調整することで得る
ようにしている。
Further preferably, the refractive index n and the extinction coefficient k of the semitransparent film are obtained by adjusting the ratio of the above composition.

【0071】さらにまた望ましくは、半透明膜の形成に
は反応性スパッタ,プラズマCVD,光CVD,常圧C
VD又は蒸着を用い、半透明膜の組成の比率は反応時の
ガス組成,圧力又は温度を調整することで得るようにし
ている。
Further preferably, reactive sputtering, plasma CVD, photo-CVD, atmospheric pressure C are used for forming the semitransparent film.
VD or vapor deposition is used, and the composition ratio of the semitransparent film is obtained by adjusting the gas composition, pressure or temperature during the reaction.

【0072】望ましくは、露光用マスク基板を用い、マ
スク像を放射線等により基板上結像させ、この像に基づ
き加工を施した半導体基板を含むようにしている。
Preferably, a mask substrate for exposure is used, a mask image is formed on the substrate by radiation or the like, and a semiconductor substrate processed based on this image is included.

【0073】さらに望ましくは、放射線の波長が100
nm〜450nmのいずれかであるようにしている。
More preferably, the wavelength of the radiation is 100
nm to 450 nm.

【0074】[0074]

【作用】以下、本発明に関し、透光性基板の開口部に対
し所望の透過率tと位相差φを得ることのできる単層半
透明膜を得る条件及び具体的手法について述べる。
In the following, with respect to the present invention, conditions and a specific method for obtaining a single-layer semitransparent film capable of obtaining a desired transmittance t and a phase difference φ with respect to an opening of a transparent substrate will be described.

【0075】半透明膜を単層で用いようとした場合、半
透明膜を透過する光の位相を透明な部分を透過する光の
位相に対し180°に制御することが必要で、かつ半透
明膜の透過率tを所望の値にすることが必要である。
When the translucent film is used as a single layer, it is necessary to control the phase of the light passing through the semitransparent film to 180 ° with respect to the phase of the light passing through the transparent portion, and the translucent film is semitransparent. It is necessary to set the transmittance t of the membrane to a desired value.

【0076】半透明膜の位相シフトマスクで最大の解像
度を得るためには、半透明膜の光学定数は次の条件を満
たす必要がある。
In order to obtain the maximum resolution with the phase shift mask of the semitransparent film, the optical constants of the semitransparent film must satisfy the following conditions.

【0077】膜の位相差φ及び透過率tを求めるには鶴
田匡夫著の応用光学(培風館)の記載されているように
膜の特性マトリクスを用いた多重干渉計算を行うのが非
常に有効である。今半透明膜の屈折率をn、消衰係数を
k、膜厚をdとし、露光光が半透明膜に垂直に入射する
場合を考えると半透明膜の特性マトリクスは(式1)の
様に表すことができる。
To obtain the phase difference φ and the transmittance t of the film, it is very effective to perform multiple interference calculation using the characteristic matrix of the film as described in Applied Optics (Baifukan) by Masao Tsuruta. Is. Considering a case where the refractive index of the semitransparent film is n, the extinction coefficient is k, the film thickness is d, and the exposure light is vertically incident on the semitransparent film, the characteristic matrix of the semitransparent film is as shown in (Equation 1). Can be expressed as

【0078】[0078]

【数1】 ここで、δは(式2)のように与えられる。[Equation 1] Here, δ is given by (Equation 2).

【0079】 δ=2πnd/λ (式2) この特性マトリクスを用い、更に半透明膜と石英基板の
境界面上の電場E0 磁場H0 は半透明膜と空気境界面上
の電場E1 磁場H1 を用いて
Δ = 2πnd / λ (Equation 2) Using this characteristic matrix, the electric field E 0 magnetic field H 0 on the interface between the semitransparent film and the quartz substrate is the electric field E 1 magnetic field on the interface between the semitransparent film and the air. With H 1

【数2】 と表すことができる。ところで、基板が露光波長λに対
し十分厚いことを考え基板で多重干渉が生じないことを
考慮すると、基板側から近づけた境界面上の透過波の電
磁場の接線成分をE2 + とH2 + =E2 + 2 とおく
と、境界条件からE1 =E2 + 、H1 =H2 + となるか
ら、
[Equation 2] It can be expressed as. By the way, considering that the substrate is sufficiently thick with respect to the exposure wavelength λ and that multiple interference does not occur in the substrate, the tangential components of the electromagnetic field of the transmitted wave on the boundary surface brought close to the substrate side are E 2 + and H 2 +. = E 2 + Y 2 , since E 1 = E 2 + and H 1 = H 2 + from the boundary condition,

【数3】 を得る。これより複素透過率t’は(式5)と表せる。[Equation 3] To get From this, the complex transmittance t ′ can be expressed as (Equation 5).

【0080】 t’=E2 + /E0 + =2n0 /{n0 (m11+n2 m12)+(m21+n2 m22)}(式5) 更にtから強度透過率tと位相φを求めると t=(t’の実部)2 +(t’の嘘部)2 (式6) φ=tan-1(t’の嘘部/t’の実部) (式7) を得る。この様にして得た半透明膜の強度透過率t及び
位相φと、半透明膜と同一の厚さの空気で得られる強度
透過率tと位相の相対値φを求めることで、この半透明
膜をマスクパターンに適用したときの透過率tと位相差
φを求めることができる。
T ′ = E 2 + / E 0 + = 2n 0 / {n 0 (m11 + n 2 m12) + (m21 + n 2 m22)} (Equation 5) Furthermore, when the intensity transmittance t and the phase φ are calculated from t, t = (Real part of t ′) 2 + (lie part of t ′) 2 (Equation 6) φ = tan −1 (lie part of t ′ / real part of t ′) (Equation 7) The intensity transmissivity t and the phase φ of the semitransparent film thus obtained and the relative value φ of the intensity transmissivity t and the phase obtained with the air having the same thickness as the semitransparent film are obtained to obtain the semitransparent film. The transmittance t and the phase difference φ when the film is applied to the mask pattern can be obtained.

【0081】ところで、上述の計算は半透明膜の屈折率
n,消衰係数k,膜厚dが与えられたときの透過率t,
位相差φに対する算出法にすぎず、所望の位相差φ,透
過率tを満足する屈折率n,消衰係数k,膜厚dの組み
合わせを求めることはできない。そこで実際には、上述
の多重反射計算に加え屈折率n,消衰係数k,膜厚dを
調整することが必要で、この調整が所望の透過率t,位
相差φを満足する屈折率n,消衰係数k,膜厚dを決め
る上で極めて重要な要素となる。
By the way, in the above calculation, the transmittance t when the refractive index n, the extinction coefficient k, and the film thickness d of the semitransparent film are given,
This is merely a calculation method for the phase difference φ, and a combination of the desired phase difference φ, the refractive index n, the extinction coefficient k, and the film thickness d satisfying the desired transmittance t cannot be obtained. Therefore, in practice, it is necessary to adjust the refractive index n, the extinction coefficient k, and the film thickness d in addition to the above-described multiple reflection calculation. This adjustment makes the refractive index n satisfying the desired transmittance t and phase difference φ. , Is an extremely important factor in determining the extinction coefficient k and the film thickness d.

【0082】調整法としては屈折率n,消衰係数k,膜
厚dという3つの変数を同時に調整する手法がある。し
かし、この手法は計算効率上好ましくない。なぜなら、
所望となる位相差φについて支配的な要素は屈折率n,
膜厚dであり、透過率tについて支配的な要素は消衰係
数k,膜厚dであるため、3要素を同時に調整した場合
に位相差φ,透過率tに対して膜厚dがいずれも重要な
要素であるがゆえ計算値が収束しないか或いは収束しに
くいからである。また、計算精度が悪い場合も生じる。
計算精度の劣化は非常に致命的である。例えば、半透明
位相シフト膜を形成する上で屈折率n,消衰係数kの許
容範囲はおおよそ所望値に対して0.05以内に抑える
ことが必要であり、計算誤差が0.01存在した場合で
も無視することはできない。
As an adjusting method, there is a method of simultaneously adjusting three variables of a refractive index n, an extinction coefficient k, and a film thickness d. However, this method is not preferable in terms of calculation efficiency. Because
The dominant factor for the desired phase difference φ is the refractive index n,
Since the film thickness d is the dominant factor for the transmittance t, the extinction coefficient k and the film thickness d are used. Is also an important factor, and therefore the calculated values do not converge or are difficult to converge. In addition, the calculation accuracy may be poor.
The deterioration of calculation accuracy is extremely fatal. For example, in forming a semi-transparent phase shift film, it is necessary to keep the permissible ranges of the refractive index n and the extinction coefficient k within 0.05 with respect to the desired values, and the calculation error was 0.01. Even if you can't ignore it.

【0083】そこで、精度劣化の防止及び計算時間の短
縮化をはかる意味で本願では屈折率n,消衰係数k,膜
厚dの調整を、次の3手法のいずれかにより達成してい
る。 (1)任意の屈折率nに対しこのnを固定値として考
え、任意の消衰係数k及び膜厚dを用いて多重反射計算
により得られる位相差φ,透過率tを算出し、位相差φ
に対する所望値と計算値の誤差を膜厚dに、透過率tに
対する所望値と計算値の誤差を消衰係数kに還元し、前
記多重反射計算と還元を少なくとも一度行うことで迅速
に且つ精度よく所望の位相差φと透過率tを満足する屈
折率n,消衰係数k,膜厚dを求める。
Therefore, in the present application, the adjustment of the refractive index n, the extinction coefficient k, and the film thickness d is achieved by any one of the following three methods in order to prevent the deterioration of accuracy and shorten the calculation time. (1) Considering this n as a fixed value for an arbitrary refractive index n, the phase difference φ and the transmittance t obtained by multiple reflection calculation are calculated using the arbitrary extinction coefficient k and the film thickness d, and the phase difference is calculated. φ
The error between the desired value and the calculated value for the film thickness d is reduced, and the error between the desired value and the calculated value for the transmittance t is reduced to the extinction coefficient k. Often, a refractive index n, an extinction coefficient k, and a film thickness d satisfying the desired phase difference φ and transmittance t are obtained.

【0084】(2)任意の消衰係数kに対しこのkを固
定値として考え、任意の屈折率n及び膜厚dを用いて多
重反射計算により得られる位相差φ,透過率tを算出
し、位相差φに対する所望値と計算値の誤差を屈折率n
に、透過率tに対する所望値と計算値の誤差を膜厚dに
還元し、前記多重反射計算と還元を少なくとも一度行う
ことで迅速に且つ精度よく所望の位相差φと透過率tを
満足する屈折率n,消衰係数k,膜厚dを求める。
(2) Considering this k as a fixed value for an arbitrary extinction coefficient k, a phase difference φ and a transmittance t obtained by multiple reflection calculation are calculated using an arbitrary refractive index n and film thickness d. , The difference between the desired value and the calculated value for the phase difference φ is
In addition, by reducing the error between the desired value and the calculated value with respect to the transmittance t to the film thickness d, and performing the multiple reflection calculation and the reduction at least once, the desired phase difference φ and the transmittance t can be quickly and accurately satisfied. The refractive index n, extinction coefficient k, and film thickness d are obtained.

【0085】(3)任意の膜厚dに対しこのdを固定値
として考え、任意の屈折率n及び消衰係数kを用いて多
重反射計算により得られる位相差φ,透過率tを算出
し、位相差φに対する所望値と計算値の誤差を屈折率n
に、透過率tに対する所望値と計算値の誤差を消衰係数
kに還元し、前記多重反射計算と還元を少なくとも一度
行うことで迅速に且つ精度よく所望の位相差φと透過率
tを満足する屈折率n,消衰係数k,膜厚dを求める。
(3) Considering this d as a fixed value for an arbitrary film thickness d, a phase difference φ and a transmittance t obtained by multiple reflection calculation are calculated using an arbitrary refractive index n and extinction coefficient k. , The difference between the desired value and the calculated value for the phase difference φ is
In addition, by reducing the error between the desired value and the calculated value with respect to the transmittance t to the extinction coefficient k, and performing the multiple reflection calculation and the reduction at least once, the desired phase difference φ and the transmittance t can be satisfied quickly and accurately. The refractive index n, the extinction coefficient k, and the film thickness d are calculated.

【0086】(1)、(2)、(3)の好ましい形態と
してはそれぞれ図1、図2、図3が掲げられる。図中の
11は半透明膜の露光波長λにおける任意の屈折率nに
対して消衰係数k及び膜厚dの初期値を与える手段、1
2は半透明膜の露光波長λにおける任意の消衰係数kに
対して屈折率n及び膜厚dの初期値を与える手段、13
は半透明膜の露光波長λにおける任意の膜厚dに対して
屈折率n及び消衰係数kの初期値を与える手段、20は
多重反射を考慮して半透明膜の透過率tc ,位相差φc
を算出する手段、30は算出された透過率tc ,位相差
φc を理想値t,φと比較する手段、41は位相誤差,
透過率誤差からそれぞれ膜厚d,消衰係数kを再設定す
る手段、42は位相誤差,透過率誤差からそれぞれ屈折
率n,膜厚dを再設定する手段、43は位相誤差,透過
率誤差からそれぞれ屈折率n,消衰係数kを再設定する
手段である。
Preferred modes of (1), (2) and (3) are shown in FIGS. 1, 2 and 3, respectively. Reference numeral 11 in the figure is a means for giving an initial value of the extinction coefficient k and the film thickness d to an arbitrary refractive index n of the semitransparent film at the exposure wavelength λ.
2 is means for giving initial values of the refractive index n and the film thickness d to an arbitrary extinction coefficient k of the semitransparent film at the exposure wavelength λ;
Is a means for giving an initial value of the refractive index n and the extinction coefficient k to an arbitrary film thickness d at the exposure wavelength λ of the semitransparent film, and 20 is the transmissivity tc and phase difference of the semitransparent film in consideration of multiple reflection. φc
, 30 is means for comparing the calculated transmittance tc and phase difference φc with the ideal values t, φ, 41 is a phase error,
Means for resetting the film thickness d and extinction coefficient k respectively from the transmittance error, 42 is a means for resetting the refractive index n and film thickness d from the transmittance error, respectively 43 is a phase error, the transmittance error Are means for resetting the refractive index n and the extinction coefficient k, respectively.

【0087】図1〜図3の初期設定では、所望の透過率
t,位相差φを満足する屈折率n,消衰係数k,膜厚d
をより迅速に求めるために、予め多重反射を考慮せずに
位相差φ(図1〜3では180°に設定しているが所望
の位相差φが180°と異なる場合、位相差に応じて設
定することも可能),透過率tから屈折率n,消衰係数
k,膜厚dのいずれか2つを算出しているが、算出式は
これらに限るものではない。
In the initial settings of FIGS. 1 to 3, a desired transmittance t, a refractive index n satisfying a desired phase difference φ, an extinction coefficient k, and a film thickness d.
In order to obtain more quickly, the phase difference φ (which is set to 180 ° in FIGS. 1 to 3 without considering multiple reflections in advance, but when the desired phase difference φ is different from 180 °, Any two of the refractive index n, the extinction coefficient k, and the film thickness d are calculated from the transmittance t, but the calculation formula is not limited to these.

【0088】また、図1〜図3の再設定では、所望の透
過率t,位相差φを満足する屈折率n,消衰係数k,膜
厚dをより迅速に求めるための計算式が記載されている
が、(1)、(2)、(3)の主旨を逸脱しない限りに
おいて計算式を定めることができる。
Further, in the resetting of FIGS. 1 to 3, calculation formulas for more promptly obtaining the refractive index n satisfying the desired transmittance t, the phase difference φ, the extinction coefficient k, and the film thickness d are described. However, the calculation formula can be defined as long as it does not deviate from the gist of (1), (2), and (3).

【0089】また、図1〜図3の理想値との比較では所
望の透過率t,位相差φに対していずれも所望値±0.
01×所望値の範囲で一致したと解釈することが好まし
い。なお、上述の手法は所望の透過率,位相差を満足す
る唯一の屈折率n,消衰係数k,膜厚dを求めるだけで
はなく、ある幅を持った透過率t,位相差φに対する屈
折率n,消衰係数k,膜厚の複数の組み合わせを求める
上でも大変有効である。
Further, in comparison with the ideal values shown in FIGS. 1 to 3, both desired values ± 0.
It is preferable to interpret that the agreement is within the range of 01 × desired value. The above-mentioned method not only obtains the only refractive index n, extinction coefficient k, and film thickness d that satisfy the desired transmittance and phase difference, but also refracts the transmittance t with a certain width and the phase difference φ. It is also very effective in obtaining a plurality of combinations of the rate n, the extinction coefficient k, and the film thickness.

【0090】通常、半透明位相シフト膜の透過率t,位
相差φの範囲は、露光時に得られる解像性能,焦点深度
及び露光を想定したシミュレーションによる像プロファ
イルより定めることができる。これらの検討で得られた
範囲を、屈折率n、消衰係数k、膜厚dの組み合わせで
置き換えることで、半透明位相シフト膜形成時の方向付
けを明確にすることが可能である。
Usually, the ranges of the transmittance t and the phase difference φ of the semitransparent phase shift film can be determined from the resolution performance obtained at the time of exposure, the depth of focus and the image profile obtained by a simulation assuming the exposure. By replacing the range obtained by these studies with a combination of the refractive index n, the extinction coefficient k, and the film thickness d, it is possible to clarify the orientation when the semitransparent phase shift film is formed.

【0091】以下、本発明について実施例を用いて詳細
に説明する。
The present invention will be described in detail below with reference to examples.

【0092】(実施例1)本実施例は、i線半透明位相
シフト膜について、強度透過率5%,位相差180°を
満たす屈折率n,消衰係数k,膜厚dの関係を、請求項
1の発明により求めたものである。ここで、算出の形態
は図1に示す手法により行い、且つ屈折率をn=1.5
から4.0までのそれぞれの値について求めたものであ
る。
(Example 1) In this example, regarding the i-line semitransparent phase shift film, the relationship between the refractive index n satisfying the intensity transmittance of 5% and the phase difference of 180 °, the extinction coefficient k, and the film thickness d was as follows. It is obtained by the invention of claim 1. Here, the calculation mode is the method shown in FIG. 1, and the refractive index is n = 1.5.
It is calculated for each value from 0 to 4.0.

【0093】本実施例で得た結果を、図4に示す。図中
左の縦軸に消衰係数k、右の縦軸に膜厚dを示す。図4
の如く各屈折率nに対して消衰係数k,膜厚dを一位的
に定めることができた。
The results obtained in this example are shown in FIG. In the figure, the vertical axis on the left shows the extinction coefficient k, and the vertical axis on the right shows the film thickness d. Figure 4
As described above, the extinction coefficient k and the film thickness d could be determined for each refractive index n.

【0094】本実施例では、断続的に屈折率nを変化さ
せて消衰係数k及び膜厚dを求めたが、連続的にnを変
化させて求めることがより好ましい。
In the present embodiment, the extinction coefficient k and the film thickness d are obtained by intermittently changing the refractive index n, but it is more preferable that the extinction coefficient k and the film thickness d be continuously changed.

【0095】また、請求項2の発明及び請求項3の発明
を用いて解析を行った場合においても、本実施例と全く
同一の屈折率n,消衰係数k,膜厚dの組み合わせを得
ることができた。
Further, even when the analysis is performed using the invention of claim 2 and the invention of claim 3, the same combination of the refractive index n, the extinction coefficient k, and the film thickness d as in the present embodiment is obtained. I was able to.

【0096】本実施例では露光波長をi線(365n
m)としたが、これに限るものではなく、g線(436
nm),KrF(248nm),ArF(193nm)
等の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is i-line (365n).
m), but the g-line (436
nm), KrF (248 nm), ArF (193 nm)
There is no problem even if applied to such wavelengths.

【0097】また、本実施例では所望の強度透過率を5
%、位相差を180°としたが、これに限るものでな
く、露光時の性能にもよるが強度透過率1%〜20%又
は位相差90〜270°の範囲においても十分適用可能
である。
In this embodiment, the desired intensity transmittance is 5
%, The phase difference is 180 °, but the present invention is not limited to this, but it can be sufficiently applied even in the range of the intensity transmittance of 1% to 20% or the phase difference of 90 to 270 ° depending on the performance at the time of exposure. .

【0098】更に屈折率1.5を下限と定めたが、これ
に限るものではなく1より大きい値であれば如何なる値
でも対応可能である。
Further, although the refractive index of 1.5 is set as the lower limit, it is not limited to this and any value larger than 1 can be used.

【0099】(実施例2)実施例1で得た屈折率n,消
衰係数k,膜厚dの関係が得られるよう、Siをターゲ
ットとしアルゴン雰囲気中で窒素流量を調整すること
で、強度透過率5%,位相差180°のSiN単層半透
明位相シフト膜を形成した。このとき、(屈折率,消衰
係数,膜厚)=(2.9,0.768,99.7nm)
であった。
(Embodiment 2) The strength is adjusted by adjusting the nitrogen flow rate in an argon atmosphere with Si as a target so that the relationship among the refractive index n, the extinction coefficient k, and the film thickness d obtained in Embodiment 1 can be obtained. A SiN single-layer semitransparent phase shift film having a transmittance of 5% and a phase difference of 180 ° was formed. At this time, (refractive index, extinction coefficient, film thickness) = (2.9, 0.768, 99.7 nm)
Met.

【0100】この半透明位相シフト膜が形成された透光
性基板を加工し透光性基板上2μm角の半透明位相シフ
ト膜が除去された領域と、透光性基板上1.75μmの
半透明位相シフト部と透光性基板露出部が交互に配設さ
れたライン&スペースパターンを形成した。
The translucent substrate on which the semitransparent phase shift film is formed is processed to form a region on the translucent substrate from which the semitransparent phase shift film of 2 μm square is removed, and a semitransparent substrate of 1.75 μm on the translucent substrate. A line & space pattern was formed in which transparent phase shift portions and transparent substrate exposed portions were alternately arranged.

【0101】この透光性基板を用いコヒーレントファク
ターσ=0.4のi線(365nm)照明系を用い、開
口数0.5の1/5縮小投影露光光学系により被転写基
板上に形成されたレジスト層に像を形成し、これを露光
することで0.4μmのホールパターンを形成すること
ができた。このパターンの焦点深度は約1.5μmであ
った。
This translucent substrate is used to form an i-line (365 nm) illumination system with a coherent factor σ of 0.4, and is formed on the transferred substrate by a 1/5 reduction projection exposure optical system with a numerical aperture of 0.5. An image was formed on the resist layer and exposed to light to form a hole pattern of 0.4 μm. The depth of focus of this pattern was about 1.5 μm.

【0102】同様に、この透光性基板を用いコヒーレン
トファクターσ=0.6、遮弊領域0.6σのi線(3
65nm)輪帯照明系を用い、開口数0.5の1/5縮
小投影露光光学系により被転写基板上に形成されたレジ
スト層に像を形成し、これを露光することで0.35μ
mのライン&スペースパターンを形成することができ
た。このパターンの焦点深度は約2.5μmであった。
Similarly, using this translucent substrate, the i-line (3
(65 nm), an image is formed on the resist layer formed on the transferred substrate by a ⅕ reduction projection exposure optical system with a numerical aperture of 0.5 and exposed to 0.35 μm.
m line & space pattern could be formed. The depth of focus of this pattern was about 2.5 μm.

【0103】本実施例では、半透明膜としてSiNを組
成に持つ材料を用いたが、これに限るものではなく、S
iO,SiON,CrO,CrN,CrON,MoSi
O,MoSiN,MoSiON,TiO,TiN,Ti
ON,AlO,AlN,AlON,GaAsO,WSi
O,WSiN,WSiONなどを組成に或いは組成の一
部に持つものであっても良い。
In this embodiment, a material having SiN in composition is used as the semitransparent film, but the material is not limited to this, and S
iO, SiON, CrO, CrN, CrON, MoSi
O, MoSiN, MoSiON, TiO, TiN, Ti
ON, AlO, AlN, AlON, GaAsO, WSi
It may have O, WSiN, WSiON, or the like in the composition or a part of the composition.

【0104】また、適用パターンもホールパターン,ラ
イン&スペースパターンに限るものではなく、孤立残し
パターン,孤立抜きパターン及びこれらを組み合わせた
パターンに対しても適用可能である。さらに、適用寸法
も如何なる寸法であっても良い。
Further, the applied pattern is not limited to the hole pattern and the line & space pattern, but can be applied to an isolated remaining pattern, an isolated pattern, and a combination of these patterns. Further, the applicable size may be any size.

【0105】また、露光時の照明系もこれらに限るもの
ではなく、光軸に対し少なくとも4回対称位置に開孔部
が設けられた照明系、或いは光軸に対し少なくとも2回
対称位置に開孔部が設けられた照明系などを用いても良
い。
Also, the illumination system at the time of exposure is not limited to these, and an illumination system in which an aperture is provided at a position symmetrical at least four times with respect to the optical axis, or at a position symmetrical at least twice with respect to the optical axis. An illumination system provided with a hole may be used.

【0106】(実施例3)本実施例は、i線半透明位相
シフト膜について、強度透過率5±1%,位相差180
°を満たす屈折率n,消衰係数k,膜厚dの関係を、請
求項1の発明により求めたものである。ここで、算出の
形態は図1に示す手法により行い、且つ屈折率をn=
1.5から4.0までのそれぞれの値について求めたも
のである。
(Embodiment 3) In this embodiment, the i-line semitransparent phase shift film has an intensity transmittance of 5 ± 1% and a phase difference of 180.
The relationship among the refractive index n, the extinction coefficient k, and the film thickness d satisfying the condition is obtained by the invention of claim 1. Here, the form of calculation is performed by the method shown in FIG. 1, and the refractive index is n =
It is obtained for each value from 1.5 to 4.0.

【0107】本実施例で得た結果を、図5に示す。図中
左の縦軸に消衰係数k、右の縦軸に膜厚dを示す。図5
の如く屈折率n,消衰係数k,膜厚dの範囲を定めるこ
とができた。屈折率nに対する消衰係数kの範囲を斜線
で、屈折率nに対する膜厚dの範囲を黒い領域(本実施
例の位相シフト膜の条件では領域が狭いため1本の線と
して示された。)で示す。このように本手法によれば、
位相差に範囲を持たせた場合でも屈折率n,消衰係数
k,膜厚dの許容範囲を正確に求めることができる。
The results obtained in this example are shown in FIG. In the figure, the vertical axis on the left shows the extinction coefficient k, and the vertical axis on the right shows the film thickness d. Figure 5
As described above, the ranges of the refractive index n, the extinction coefficient k, and the film thickness d could be determined. The range of the extinction coefficient k with respect to the refractive index n is shown by diagonal lines, and the range of the film thickness d with respect to the refractive index n is shown as a black region (the region is narrow under the conditions of the phase shift film of the present embodiment, and is shown as one line. ). Thus, according to this method,
Even when the phase difference has a range, the allowable range of the refractive index n, the extinction coefficient k, and the film thickness d can be accurately obtained.

【0108】本実施例では、断続的に屈折率nを変化さ
せて消衰係数k及び膜厚dを求めたが、連続的にnを変
化させて求めることがより好ましい。
In the present embodiment, the extinction coefficient k and the film thickness d were obtained by intermittently changing the refractive index n, but it is more preferable that the extinction coefficient k and the film thickness d be continuously changed.

【0109】また、請求項2の発明及び請求項3の発明
を用いて解析を行った場合においても、本実施例と全く
同一の屈折率n,消衰係数k,膜厚dの範囲を得ること
ができた。
Further, even when the analysis is carried out using the invention of claim 2 and the invention of claim 3, the same range of the refractive index n, the extinction coefficient k, and the film thickness d as in the present embodiment is obtained. I was able to.

【0110】本実施例では露光波長をi線(365n
m)としたが、これに限るものではなく、g線(436
nm),KrF(248nm),ArF(193nm)
等の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is i-line (365n).
m), but the g-line (436
nm), KrF (248 nm), ArF (193 nm)
There is no problem even if applied to such wavelengths.

【0111】また、本実施例では所望の強度透過率を5
±1%、位相差を180°としたがこれに限るものでな
く、露光時の性能にもよるが強度透過率1%〜20%又
は位相差90〜270°の範囲においても十分適用可能
である。
In this embodiment, the desired intensity transmittance is set to 5
The phase difference is set to ± 1% and the phase difference is set to 180 °, but the invention is not limited to this, and it can be sufficiently applied even in the range of intensity transmittance of 1% to 20% or phase difference of 90 to 270 ° depending on the performance at the time of exposure. is there.

【0112】更に屈折率1.5を下限と定めたが、これ
に限るものではなく1より大きい値であれば如何なる値
でも対応可能である。
Further, the refractive index of 1.5 is set as the lower limit, but the present invention is not limited to this, and any value larger than 1 can be used.

【0113】(実施例4)本実施例は、KrF半透明位
相シフト膜について、強度透過率6%,位相差180°
を満たす屈折率n,消衰係数k,膜厚dの関係を、請求
項2の発明により求めたものである。ここで、算出の形
態は図2に示す手法により行い、且つ消衰係数をk=
0.5から1.2までのそれぞれの値について求めたも
のである。
Example 4 In this example, the KrF semi-transparent phase shift film has an intensity transmittance of 6% and a phase difference of 180 °.
The relationship among the refractive index n, the extinction coefficient k, and the film thickness d satisfying the above is obtained by the invention of claim 2. Here, the form of calculation is performed by the method shown in FIG. 2, and the extinction coefficient is k =
It is obtained for each value from 0.5 to 1.2.

【0114】本実施例で得た結果を、図6に示す。図中
左の縦軸に屈折率n、右の縦軸に膜厚dを示す。図6の
如く各消衰係数kに対して屈折率n,膜厚dを一意的に
定めることができた。
The results obtained in this example are shown in FIG. In the figure, the left vertical axis shows the refractive index n, and the right vertical axis shows the film thickness d. As shown in FIG. 6, the refractive index n and the film thickness d could be uniquely determined for each extinction coefficient k.

【0115】本実施例では、断続的に消衰係数kを変化
させて屈折率n及び膜厚dを求めたが、連続的にkを変
化させて求めることがより好ましい。
In the present embodiment, the extinction coefficient k is intermittently changed to obtain the refractive index n and the film thickness d, but it is more preferable to continuously change k.

【0116】また、請求項1の発明及び請求項3の発明
を用いて解析を行った場合においても、本実施例と全く
同一の屈折率n,消衰係数k,膜厚dの組み合わせを得
ることができた。
Also, when the analysis is performed using the inventions of claim 1 and claim 3, the same combination of the refractive index n, the extinction coefficient k, and the film thickness d as in the present embodiment is obtained. I was able to.

【0117】本実施例では露光波長をKrF(248n
m)としたが、これに限るものではなくg線(436n
m),i線(365nm),ArF(193nm)等の
波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is set to KrF (248n
m), but it is not limited to this and g line (436n
m), i-line (365 nm), ArF (193 nm) and other wavelengths do not pose any problem.

【0118】また、本実施例では所望の強度透過率を6
%、位相差を180°としたが、これに限るものでな
く、露光時の性能にもよるが強度透過率1%〜20%又
は位相差90〜270°の範囲においても十分適用可能
である。
In this embodiment, the desired intensity transmittance is set to 6
%, The phase difference is 180 °, but the present invention is not limited to this, but it can be sufficiently applied even in the range of the intensity transmittance of 1% to 20% or the phase difference of 90 to 270 ° depending on the performance at the time of exposure. .

【0119】更に、消衰係数0.5を下限と定めたが、
これに限るものではなく0より大きい値であれば如何な
る値でも対応可能である。
Further, although the extinction coefficient of 0.5 is set as the lower limit,
The value is not limited to this, and any value larger than 0 can be used.

【0120】(実施例5)実施例4で得た屈折率n,消
衰係数k,膜厚dの関係が得られるようSiをターゲッ
トとしアルゴン雰囲気中で窒素流量を調整することで強
度透過率6%、位相差180°のSiN単層半透明位相
シフト膜を形成した。このとき、 (屈折率,消衰係数,膜厚)=(2.14,0.48
1,110.9nm) であった。
(Embodiment 5) The intensity transmittance is adjusted by adjusting the nitrogen flow rate in an argon atmosphere with Si as a target so that the relationship among the refractive index n, the extinction coefficient k, and the film thickness d obtained in Embodiment 4 can be obtained. A 6% SiN single layer semitransparent phase shift film having a phase difference of 180 ° was formed. At this time, (refractive index, extinction coefficient, film thickness) = (2.14, 0.48
1,110.9 nm).

【0121】この半透明位相シフト膜が形成された透光
性基板を加工し、透光性基板上1.2μm角の半透明位
相シフト膜が除去された領域と、透光性基板上1μmの
半透明位相シフト部と透光性基板露出部が交互に配設さ
れたライン&スペースパターンを形成した。
The transparent substrate on which the semitransparent phase shift film is formed is processed to form a 1.2 μm square area on the transparent substrate where the semitransparent phase shift film is removed, and a region on the transparent substrate for 1 μm. A line & space pattern was formed in which translucent phase shift parts and translucent substrate exposed parts were alternately arranged.

【0122】この透光性基板を用いコヒーレントファク
ターσ=0.4のKrF(248nm)照明系を用い、
開口数0.5の1/4縮小投影露光光学系により被転写
基板上に形成されたレジスト層に像を形成し、これを露
光することで0.3μmのホールパターンを形成するこ
とができた。このパターンの焦点深度は約1.2μmで
あった。
Using this translucent substrate, a KrF (248 nm) illumination system with a coherent factor σ = 0.4 is used.
An image was formed on the resist layer formed on the transfer substrate by a 1/4 reduction projection exposure optical system with a numerical aperture of 0.5, and by exposing this image, a 0.3 μm hole pattern could be formed. . The depth of focus of this pattern was about 1.2 μm.

【0123】同様に、この透光性基板を用いコヒーレン
トファクターσ=0.6、遮弊領域0.6σのKrF
(248nm)照明系を用い、開口数0.5の1/4縮
小投影露光光学系により被転写基板上に形成されたレジ
スト層に像を形成し、これを露光することで0.25μ
mのライン&スペースパターンを形成することができ
た。このパターンの焦点深度は約1.8μmであった。
Similarly, using this light-transmissive substrate, KrF having a coherent factor σ = 0.6 and an imperfection region of 0.6σ.
An image is formed on the resist layer formed on the transferred substrate by a 1/4 reduction projection exposure optical system with a numerical aperture of 0.5 using a (248 nm) illumination system, and this is exposed to 0.25 μm.
m line & space pattern could be formed. The depth of focus of this pattern was about 1.8 μm.

【0124】本実施例では、半透明膜としてSiNを組
成に持つ材料を用いたが、これに限るものではなく、S
iO,SiON,CrO,CrN,CrON,MoSi
O,MoSiN,MoSiON,TiO,TiN,Ti
ON,AlO,AlN,AlON,GaAsO,WSi
O,WSiN,WSiONなどを組成に或いは組成の一
部に持つものであっても良い。
In this example, a material having a composition of SiN was used as the semitransparent film, but the material is not limited to this, and S
iO, SiON, CrO, CrN, CrON, MoSi
O, MoSiN, MoSiON, TiO, TiN, Ti
ON, AlO, AlN, AlON, GaAsO, WSi
It may have O, WSiN, WSiON, or the like in the composition or a part of the composition.

【0125】また、適用パターンもホールパターン、ラ
イン&スペースパターンに限るものではなく、孤立残し
パターン,孤立抜きパターン及びこれらを組み合わせた
パターンに対しても適用可能である。さらに、適用寸法
も如何なる寸法であっても良い。
Further, the applied pattern is not limited to the hole pattern and the line & space pattern, but can be applied to an isolated remaining pattern, an isolated pattern, and a combination of these patterns. Further, the applicable size may be any size.

【0126】また、露光時の照明系もこれらに限るもの
ではなく、光軸に対し少なくとも4回対称位置に開孔部
が設けられた照明系、或いは光軸に対し少なくとも2回
対称位置に開孔部が設けられた照明系などを用いても良
い。
Also, the illumination system at the time of exposure is not limited to these, and an illumination system in which an aperture is provided at a position symmetrical at least four times with respect to the optical axis, or at a position symmetrical at least twice with respect to the optical axis. An illumination system provided with a hole may be used.

【0127】(実施例6)本実施例は、KrF半透明位
相シフト膜について、強度透過率6%,位相差180±
5°を満たす屈折率n,消衰係数k,膜厚dの関係を、
請求項2の発明により求めたものである。ここで、算出
の形態は図2に示す手法により行い、且つ消衰係数をk
=0.5から1.2までのそれぞれの値について求めた
のである。本実施例で得た結果を、図7に示す。図中左
の縦軸に屈折率n、右の縦軸に膜厚dを示す。図7の如
く屈折率n,消衰係数k,膜厚dを一意的に定めること
ができた。消衰係数kに対する屈折率nの範囲を網点
で、屈折率nに対する膜厚dの範囲を黒い領域で示す。
このように本実施例によれば、透過率に範囲を持たせた
場合でも屈折率n,消衰係数k,膜厚dの許容範囲を正
確に求めることができる。
Example 6 In this example, the KrF semi-transparent phase shift film has an intensity transmittance of 6% and a phase difference of 180 ±.
The relationship among the refractive index n, the extinction coefficient k, and the film thickness d satisfying 5 ° is
It is obtained by the invention of claim 2. Here, the form of calculation is performed by the method shown in FIG. 2, and the extinction coefficient is k
= 0.5 to 1.2 for each value. The results obtained in this example are shown in FIG. In the figure, the left vertical axis shows the refractive index n, and the right vertical axis shows the film thickness d. As shown in FIG. 7, the refractive index n, the extinction coefficient k, and the film thickness d could be uniquely determined. The range of the refractive index n with respect to the extinction coefficient k is shown with a halftone dot, and the range of the film thickness d with respect to the refractive index n is shown with a black region.
As described above, according to this embodiment, the allowable ranges of the refractive index n, the extinction coefficient k, and the film thickness d can be accurately obtained even when the transmittance has a range.

【0128】本実施例では、断続的に消衰係数kを変化
させて屈折率n及び膜厚dを求めたが、連続的にkを変
化させて求めることがより好ましい。
In the present embodiment, the extinction coefficient k is intermittently changed to obtain the refractive index n and the film thickness d, but it is more preferable to continuously change k to obtain the refractive index n and the film thickness d.

【0129】また、請求項1の発明及び請求項3の発明
を用いて解析を行った場合においても、本実施例と全く
同一の屈折率n,消衰係数k,膜厚dの範囲を得ること
ができた。
Also, when the analysis is performed using the inventions of claim 1 and claim 3, the same range of the refractive index n, the extinction coefficient k, and the film thickness d as in the present embodiment is obtained. I was able to.

【0130】本実施例では露光波長をKrF(248n
m)としたが、これに限るものではなく、g線(436
nm),i線(365nm),ArF(193nm)等
の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is set to KrF (248n
m), but the g-line (436
nm), i-line (365 nm), ArF (193 nm) and other wavelengths.

【0131】また、本実施例では所望の強度透過率を6
%、位相差を180±5°としたがこれに限るものでな
く、露光時の性能にもよるが強度透過率1%〜20%又
は位相差90〜270°の範囲においても十分適用可能
である。
In this embodiment, the desired intensity transmittance is set to 6
%, The phase difference is set to 180 ± 5 °, but the invention is not limited to this, and it can be sufficiently applied even in the range of intensity transmittance of 1% to 20% or phase difference of 90 to 270 ° depending on the performance at the time of exposure. is there.

【0132】更に、消衰係数0.5を下限と定めたが、
これに限るものではなく0より大きい値であれば如何な
る値でも対応可能である。
Furthermore, although the extinction coefficient of 0.5 is set as the lower limit,
The value is not limited to this, and any value larger than 0 can be used.

【0133】(実施例7)本実施例は、g線半透明位相
シフト膜について、強度透過率3%,位相差180°を
満たす屈折率n,消衰係数k,膜厚dの関係を、請求項
2の発明により求めたものである。ここで、算出の形態
は図3に示す手法により行い、且つ膜厚をd=40nm
から400nmまでのそれぞれの値について求めたので
ある。
(Embodiment 7) In this embodiment, regarding the g-line semitransparent phase shift film, the relationship between the intensity transmittance 3%, the refractive index n satisfying the phase difference 180 °, the extinction coefficient k, and the film thickness d is as follows. It is obtained by the invention of claim 2. Here, the calculation mode is the method shown in FIG. 3, and the film thickness is d = 40 nm.
It was calculated for each value from to 400 nm.

【0134】本実施例で得た結果を、図8に示す。図中
左の縦軸に屈折率k、右の縦軸に消衰係数kを示す。図
8の如く各膜厚dに対して屈折率n,消衰係数kを一意
的に定めることができた。
The results obtained in this example are shown in FIG. In the figure, the left vertical axis shows the refractive index k, and the right vertical axis shows the extinction coefficient k. As shown in FIG. 8, the refractive index n and the extinction coefficient k could be uniquely determined for each film thickness d.

【0135】本実施例では、断続的に膜厚dを変化させ
て屈折率n及び消衰係数kを求めたが、連続的にdを変
化させて求めることがより好ましい。
In this embodiment, the film thickness d is intermittently changed to obtain the refractive index n and the extinction coefficient k, but it is more preferable to continuously change d.

【0136】また、請求項1の発明及び請求項3の発明
を用いて解析を行った場合においても、本実施例と全く
同一の屈折率n,消衰係数k,膜厚dの組み合わせを得
ることができた。
Also, when the analysis is performed using the invention of claim 1 and the invention of claim 3, the same combination of the refractive index n, the extinction coefficient k, and the film thickness d as in the present embodiment is obtained. I was able to.

【0137】本実施例では露光波長をg線(436n
m)としたが、これに限るものではなく、i線(365
nm),KrF(248nm),ArF(193nm)
等の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is set to the g-line (436n).
m), but not limited to this, i line (365
nm), KrF (248 nm), ArF (193 nm)
There is no problem even if applied to such wavelengths.

【0138】また、本実施例では所望の強度透過率を3
%、位相差を180°としたが、これに限るものでな
く、露光時の性能にもよるが強度透過率1%〜20%又
は位相差120〜240°の範囲においても十分適用可
能である。
In this embodiment, the desired intensity transmittance is set to 3
%, The phase difference is 180 °, but the invention is not limited to this, and it can be sufficiently applied in the range of intensity transmittance of 1% to 20% or phase difference of 120 to 240 ° depending on the performance at the time of exposure. .

【0139】更に、消衰係数40nmを下限と定めた
が、これに限るものではなく0より大きい値であれば如
何なる値でも対応可能である。
Further, although the extinction coefficient of 40 nm is set as the lower limit, the present invention is not limited to this and any value larger than 0 can be used.

【0140】(実施例8)実施例7で得た屈折率n,消
衰係数k,膜厚dの関係が得られるようSiをターゲッ
トとし成膜時のパワーを調整することで、強度透過率3
%,位相差180°のSi単層半透明位相シフト膜を形
成した。このとき、 (屈折率,消衰係数,膜厚)=(4.65,1.44
8,62.9nm) であった。
(Embodiment 8) The intensity transmittance is adjusted by adjusting the power during film formation with Si as the target so that the relationship among the refractive index n, the extinction coefficient k, and the film thickness d obtained in Embodiment 7 can be obtained. Three
%, A Si single-layer semitransparent phase shift film having a phase difference of 180 ° was formed. At this time, (refractive index, extinction coefficient, film thickness) = (4.65, 1.44
8, 62.9 nm).

【0141】この半透明位相シフト膜が形成された透光
性基板を加工し、透光性基板上3μm角の半透明位相シ
フト膜が除去された領域と、透光性基板上2.5μmの
半透明位相シフト部と透光性基板露出部が交互に配設さ
れたライン&スペースパターンを形成した。
By processing the translucent substrate on which the semitransparent phase shift film is formed, a region of the translucent substrate from which the semitransparent phase shift film of 3 μm square is removed and a translucent substrate of 2.5 μm are processed. A line & space pattern was formed in which translucent phase shift parts and translucent substrate exposed parts were alternately arranged.

【0142】この透光性基板を用いコヒーレントファク
ターσ=0.3のg線(436nm)照明系を用い、開
口数0.55の1/5縮小投影露光光学系により被転写
基板上に形成されたレジスト層に像を形成し、これを露
光することで0.6μmのホールパターンを形成するこ
とができた。このパターンの焦点深度は約2.1μmで
あった。
Using this translucent substrate, a g-line (436 nm) illumination system with a coherent factor σ = 0.3 is used, and a 1/5 reduction projection exposure optical system with a numerical aperture of 0.55 is used to form it on the substrate to be transferred. An image was formed on the resist layer and exposed to light, whereby a hole pattern of 0.6 μm could be formed. The depth of focus of this pattern was about 2.1 μm.

【0143】同様に、この透光性基板を用いコヒーレン
トファクターσ=0.6、遮弊領域0.5σの照明系を
用い、開口数0.55の1/5縮小投影露光光学系によ
り被転写基板上に形成されたレジスト層に像を形成し、
これを露光することで0.5μmのライン&スペースパ
ターンを形成することができた。このパターンの焦点深
度は約2.8μmであった。
Similarly, using this translucent substrate, an illumination system having a coherent factor σ = 0.6 and an obstruction area of 0.5σ is used, and transferred by a ⅕ reduction projection exposure optical system with a numerical aperture of 0.55. Form an image on the resist layer formed on the substrate,
By exposing this, a line & space pattern of 0.5 μm could be formed. The depth of focus of this pattern was about 2.8 μm.

【0144】本実施例では、半透明膜としてSiを組成
に持つ材料を用いたが、これに限るものではなく、Si
O,SiON,CrO,CrN,CrON,MoSi
O,MoSiN,MoSiON,TiO,TiN,Ti
ON,AlO,AlN,AlON,GaAsO,WSi
O,WSiN,WSiONなどを組成に或いは組成の一
部に持つものであっても良い。
In this embodiment, a material having a composition of Si is used as the semi-transparent film, but the material is not limited to this.
O, SiON, CrO, CrN, CrON, MoSi
O, MoSiN, MoSiON, TiO, TiN, Ti
ON, AlO, AlN, AlON, GaAsO, WSi
It may have O, WSiN, WSiON, or the like in the composition or a part of the composition.

【0145】また、適用パターンもホールパターン,ラ
イン&スペースパターンに限るものではなく、孤立残し
パターン,孤立抜きパターン及びこれらを組み合わせた
パターンに対しても適用可能である。さらに、適用寸法
も如何なる寸法であっても良い。
Further, the applied pattern is not limited to the hole pattern and the line & space pattern, but can be applied to an isolated remaining pattern, an isolated pattern, and a combination of these patterns. Further, the applicable size may be any size.

【0146】また、露光時の照明系もこれらに限るもの
ではなく、光軸に対し少なくとも4回対称位置に開孔部
が設けられた照明系、或いは光軸に対し少なくとも2回
対称位置に開孔部が設けられた照明系などを用いても良
い。
Also, the illumination system at the time of exposure is not limited to these, and an illumination system in which an aperture is provided at a position symmetrical at least four times with respect to the optical axis, or at a position symmetrical at least twice with respect to the optical axis. An illumination system provided with a hole may be used.

【0147】(実施例9)本実施例は、g線半透明位相
シフト膜について、強度透過率3±1%,位相差180
±10°を満たす屈折率n,消衰係数k,膜厚dの関係
を、請求項2の発明により求めたものである。ここで、
算出の形態は図3に示す手法により行い、且つ膜厚をd
=40nmから400nmまでのそれぞれの値について
求めたのである。
Example 9 In this example, the g-line translucent phase shift film has an intensity transmittance of 3 ± 1% and a phase difference of 180.
The relationship among the refractive index n, the extinction coefficient k, and the film thickness d satisfying ± 10 ° is obtained by the invention of claim 2. here,
The calculation is performed by the method shown in FIG.
= 40 nm to 400 nm for each value.

【0148】本実施例で得た結果を、図9に示す。図中
左の縦軸に屈折率k、右の縦軸に消衰係数kを示す。図
9の如く各膜厚dに対して屈折率n,消衰係数kを一意
的に定めることができた。膜厚dに対する屈折率nの範
囲を網点で、膜厚dに対する消衰係数kの範囲を斜線領
域で示す。このように本手法によれば、透過率,位相差
に範囲を持たせた場合でも屈折率n,消衰係数k,膜厚
dの許容範囲を正確に求めることができる。
The results obtained in this example are shown in FIG. In the figure, the left vertical axis shows the refractive index k, and the right vertical axis shows the extinction coefficient k. As shown in FIG. 9, the refractive index n and the extinction coefficient k could be uniquely determined for each film thickness d. The range of the refractive index n with respect to the film thickness d is shown by a halftone dot, and the range of the extinction coefficient k with respect to the film thickness d is shown by a shaded area. As described above, according to this method, the allowable ranges of the refractive index n, the extinction coefficient k, and the film thickness d can be accurately obtained even when the transmittance and the phase difference have ranges.

【0149】本実施例では、断続的に膜厚dを変化させ
て屈折率n及び消衰係数kを求めたが、連続的にdを変
化させて求めることがより好ましい。
In this embodiment, the refractive index n and the extinction coefficient k are obtained by intermittently changing the film thickness d, but it is more preferable that the refractive index n and the extinction coefficient k are continuously changed.

【0150】また、請求項2の発明及び請求項3の発明
を用いて解析を行った場合においても、本実施例と全く
同一の屈折率n,消衰係数k,膜厚dの組み合わせを得
ることができた。
Further, even when the analysis is performed using the invention of claim 2 and the invention of claim 3, the same combination of the refractive index n, the extinction coefficient k, and the film thickness d as in the present embodiment is obtained. I was able to.

【0151】本実施例では露光波長をg線(436n
m)としたが、これに限るものではなくi線(365n
m),KrF(248nm),ArF(193nm)等
の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is set to the g-line (436n).
m), but not limited to this, i-line (365n
m), KrF (248 nm), ArF (193 nm), etc.

【0152】また、本実施例では所望の強度透過率を3
±1%、位相差を180±10°としたが、これに限る
ものでなく、露光時の性能にもよるが強度透過率1%〜
20%又は位相差90〜270°の範囲においても十分
適用可能である。
In this embodiment, the desired intensity transmittance is set to 3
± 1% and a phase difference of 180 ± 10 ° are set, but not limited to this, but the intensity transmittance is 1% or more depending on the performance during exposure.
It is sufficiently applicable even in the range of 20% or the phase difference of 90 to 270 °.

【0153】更に、消衰係数40nmを下限と定めた
が、これに限るものではなく0より大きい値であれば如
何なる値でも対応可能である。
Further, although the extinction coefficient of 40 nm is set as the lower limit, it is not limited to this and any value larger than 0 can be used.

【0154】(実施例10)本実施例は、i線半透明位
相シフト膜について、強度透過率5±1%,位相差18
0±5°を満たし且つ屈折率n=4に固定したときの消
衰係数k,膜厚dの関係を、請求項1の発明の応用法に
より求めたものである。ここで、算出の形態は図1に示
す手法により行った。
(Embodiment 10) In this embodiment, an i-line semitransparent phase shift film has an intensity transmittance of 5 ± 1% and a phase difference of 18%.
The relationship between the extinction coefficient k and the film thickness d when satisfying 0 ± 5 ° and fixing the refractive index n = 4 is obtained by the application method of the invention of claim 1. Here, the form of calculation was performed by the method shown in FIG.

【0155】本実施例で得た結果を、図10に示す。図
中横軸に消衰係数k、縦軸に膜厚dを示す。屈折率nを
固定して考えた場合、消衰係数k,膜厚dの組み合わせ
は図10に如く4本の曲線で囲まれた領域で表すことが
できる。この様に、図10の如く屈折率n=4で一定の
もと、消衰係数k,膜厚dの範囲を定めることができ
た。即ち、ここで得られる領域は(透過率,位相差)=
(上限透過率,不問)及び(下限透過率,不問)及び
(不問,上限位相差)及び(不問,下限位相差)を満足
する消衰係数と膜厚の組み合わせで与えられる座標を境
界とし、これらの座標で閉じた領域として与えられる。
The results obtained in this example are shown in FIG. In the figure, the extinction coefficient k is shown on the horizontal axis and the film thickness d is shown on the vertical axis. When the refractive index n is fixed, the combination of the extinction coefficient k and the film thickness d can be represented by a region surrounded by four curves as shown in FIG. Thus, as shown in FIG. 10, the range of the extinction coefficient k and the film thickness d could be determined under a constant refractive index n = 4. That is, the area obtained here is (transmittance, phase difference) =
With the coordinates given by the combination of the extinction coefficient and the film thickness satisfying (upper limit transmittance, no question) and (lower limit transmittance, no question) and (no question, upper limit phase difference) and (no question, lower limit phase difference) as a boundary, Given as a closed area at these coordinates.

【0156】本実施例では露光波長をi線(365n
m)としたが、これに限るものではなくg線(436n
m),KrF(248nm),ArF(193nm)等
の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is i-line (365n).
m), but it is not limited to this and g line (436n
m), KrF (248 nm), ArF (193 nm), etc.

【0157】また、本実施例では所望の強度透過率を5
±1%、位相差を180±10°としたが、これに限る
ものでなく、露光時の性能にもよるが所望値と所望範囲
を含んだものが強度透過率1%〜20%又は位相差90
〜270°の範囲であれば十分適用可能である。
In this embodiment, the desired intensity transmittance is 5
± 1% and the phase difference was 180 ± 10 °, but not limited to this, but the one including the desired value and the desired range depends on the performance at the time of exposure, and the intensity transmittance is 1% to 20% or Phase difference 90
It is sufficiently applicable within the range of ˜270 °.

【0158】更に、屈折率n=4と定めたが、これに限
るものではなく1より大きい値であれば如何なる値でも
対応可能である。
Further, the refractive index n = 4 is defined, but the invention is not limited to this, and any value larger than 1 can be used.

【0159】(実施例11)本実施例は、KrF半透明
位相シフト膜について、強度透過率6±1%,位相差1
80±5°を満たし且つ屈折率n=4に固定したときの
屈折率n,膜厚dの関係を、請求項2の発明の応用法に
より求めたものである。ここで、算出の形態は図2に示
す手法により行った。
(Embodiment 11) In this embodiment, the KrF semitransparent phase shift film has an intensity transmittance of 6 ± 1% and a phase difference of 1.
The relationship between the refractive index n and the film thickness d when 80 ± 5 ° is satisfied and the refractive index n is fixed to 4 is obtained by the application method of the invention of claim 2. Here, the form of calculation was performed by the method shown in FIG.

【0160】本実施例で得た結果を、図11に示す。図
中横軸に屈折率n、縦軸に膜厚dを示す。消衰係数kを
固定して考えた場合、屈折率n,膜厚dの組み合わせは
図11に如く4つの実曲線で囲まれた領域で表すことが
できる。この様に、図11の如く消衰係数k=0.4で
一定のもと、屈折率n,膜厚dの範囲を定めることがで
きた。即ち、ここで得られる領域は(透過率,位相差)
=(上限透過率,不問)及び(下限透過率,不問)及び
(不問,上限位相差)及び(不問,下限位相差)を満足
する屈折率と膜厚の組み合わせで与えられる座標を境界
とし、これらの座標で閉じた領域として与えられる。
The results obtained in this example are shown in FIG. In the figure, the horizontal axis represents the refractive index n and the vertical axis represents the film thickness d. When the extinction coefficient k is fixed, the combination of the refractive index n and the film thickness d can be represented by a region surrounded by four solid curves as shown in FIG. In this way, as shown in FIG. 11, the range of the refractive index n and the film thickness d could be determined under the constant extinction coefficient k = 0.4. That is, the area obtained here is (transmittance, phase difference)
= (Upper limit transmittance, no question) and (lower limit transmittance, no question) and (no question, upper limit phase difference) and (no question, lower limit phase difference) with coordinates given by a combination of refractive index and film thickness as boundaries, Given as a closed area at these coordinates.

【0161】本実施例では露光波長をKrF(248n
m)としたが、これに限るものではなくg線(436n
m),i線(365nm),ArF(193nm)等の
波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is set to KrF (248n
m), but it is not limited to this and g line (436n
m), i-line (365 nm), ArF (193 nm) and other wavelengths do not pose any problem.

【0162】また、本実施例では所望の強度透過率を5
±1%、位相差を180±10°としたが、これに限る
ものでなく、露光時の性能にもよるが所望値と所望範囲
を含んだものが強度透過率1%〜20%又は位相差90
〜270°の範囲であれば十分適用可能である。
In this embodiment, the desired intensity transmittance is 5
± 1% and the phase difference was 180 ± 10 °, but not limited to this, but the one including the desired value and the desired range depends on the performance at the time of exposure, and the intensity transmittance is 1% to 20% or Phase difference 90
It is sufficiently applicable within the range of ˜270 °.

【0163】更に、消衰係数k=0.4と定めたが、こ
れに限るものではなく0より大きい値であれば如何なる
値でも対応可能である。
Furthermore, although the extinction coefficient k is set to 0.4, it is not limited to this and any value larger than 0 can be used.

【0164】(実施例12)本実施例は、g線半透明位
相シフト膜について強度透過率3±1%,位相差180
±10°を満たし且つ膜厚d=80nmに固定したとき
の屈折率n,消衰係数kの関係を、請求項3の発明の応
用法により求めたものである。ここで、算出の形態は図
3に示す手法により行った。
Example 12 In this example, the g-line translucent phase shift film has an intensity transmittance of 3 ± 1% and a phase difference of 180.
The relationship between the refractive index n and the extinction coefficient k when satisfying ± 10 ° and fixing the film thickness d = 80 nm is obtained by the application method of the invention of claim 3. Here, the form of calculation was performed by the method shown in FIG.

【0165】本実施例で得た結果を、図12に示す。図
中横軸に屈折率n、縦軸に消衰係数kを示す。膜厚dを
固定して考えた場合、屈折率n,消衰係数kの組み合わ
せは図12に如く4つの実曲線で囲まれた領域で表すこ
とができる。この様に、図12の如く膜厚d=80nm
で一定のもと、屈折率n,消衰係数kの範囲を定めるこ
とができた。即ち、ここで得られる領域は(透過率,位
相差)=(上限透過率,不問)及び(下限透過率,不
問)及び(不問,上限位相差)及び(不問,下限位相
差)を満足する屈折率と消衰係数の組み合わせで与えら
れる座標を境界とし、これらの座標で閉じた領域として
与えられる。
The results obtained in this example are shown in FIG. In the figure, the horizontal axis shows the refractive index n and the vertical axis shows the extinction coefficient k. When the film thickness d is fixed and considered, the combination of the refractive index n and the extinction coefficient k can be represented by a region surrounded by four solid curves as shown in FIG. Thus, as shown in FIG. 12, the film thickness d = 80 nm
It was possible to define the range of the refractive index n and the extinction coefficient k under a constant condition. That is, the region obtained here satisfies (transmittance, phase difference) = (upper limit transmittance, no question) and (lower limit transmittance, no question) and (no question, upper limit phase difference) and (no question, lower limit phase difference). The coordinates given by the combination of the refractive index and the extinction coefficient are taken as boundaries, and these coordinates are given as a closed region.

【0166】本実施例では露光波長をg線(436n
m)としたが、これに限るものではなくi線(365n
m),KrF(248nm),ArF(193nm)等
の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is set to the g-line (436n).
m), but not limited to this, i-line (365n
m), KrF (248 nm), ArF (193 nm), etc.

【0167】また、本実施例では所望の強度透過率を3
±1%、位相差を180±10°としたが、これに限る
ものでなく、露光時の性能にもよるが所望値と所望範囲
を含んだものが強度透過率1%〜20%又は位相差12
0〜240°の範囲であれば十分適用可能である。
In this embodiment, the desired intensity transmittance is set to 3
± 1% and the phase difference was 180 ± 10 °, but not limited to this, but the one including the desired value and the desired range depends on the performance at the time of exposure, and the intensity transmittance is 1% to 20% or Phase difference 12
It is sufficiently applicable in the range of 0 to 240 °.

【0168】更に、膜厚d=80nmと定めたが、これ
に限るものではなく0より大きい値であれば如何なる値
でも対応可能である。
Further, although the film thickness d is set to 80 nm, the invention is not limited to this, and any value larger than 0 can be used.

【0169】(実施例13)本実施例は、i線半透明位
相シフト膜について、強度透過率4.9±0.5%,位
相差180±5°を満たし且つ膜厚d=99.8±1n
mの範囲としたときの屈折率n,消衰係数k,膜厚dの
範囲を、請求項3の発明の応用法により求めたものであ
る。ここで、算出の形態は図3に示す手法により行っ
た。
Example 13 In this example, the i-line translucent phase shift film satisfies the intensity transmittance of 4.9 ± 0.5%, the phase difference of 180 ± 5 ° and the film thickness d = 99.8. ± 1n
The range of the refractive index n, the extinction coefficient k, and the film thickness d when the range of m is determined by the application method of the invention of claim 3. Here, the form of calculation was performed by the method shown in FIG.

【0170】ここで、膜厚は99.8nmとした。9
9.8nmという膜厚値は、強度透過率4.9%,位相
差φ=180°で且つ屈折率n=2.9のときの消衰係
数k,膜厚dの組み合わせとして、請求項1の発明より
求めたものである。
Here, the film thickness was set to 99.8 nm. 9
The film thickness value of 9.8 nm is a combination of the extinction coefficient k and the film thickness d when the intensity transmittance is 4.9%, the phase difference φ is 180 °, and the refractive index n is 2.9. It was obtained from the invention of.

【0171】更に、適当な膜厚範囲に対する屈折率n,
消衰係数kの関係は以下のように定めると良い。まず、
適当な膜厚範囲としては99.8nmに対して±1nm
とした。ここで言う適当な膜厚範囲とは、成膜で用いる
装置の性能(成膜対象基板について面内で得られる膜厚
範囲、成膜対象基板について同一条件で複数の基板に対
して成膜したときに生じる膜厚範囲等)で決めている。
この膜厚範囲に対して膜厚dが単調に減少するとき、屈
折率n及び消衰係数kが単調に増加することを考え、算
出の手順を次のように定めた。
Furthermore, the refractive index n,
The relationship of the extinction coefficient k may be defined as follows. First,
Appropriate film thickness range is ± 1 nm for 99.8 nm
And The appropriate film thickness range referred to here is the performance of the apparatus used for film formation (the film thickness range obtained in-plane for the film formation target substrate, film formation target substrates were formed on a plurality of substrates under the same conditions). It is determined by the film thickness range that sometimes occurs).
Considering that the refractive index n and the extinction coefficient k monotonously increase when the film thickness d monotonously decreases with respect to this film thickness range, the calculation procedure was determined as follows.

【0172】(1)膜厚が最大値のときの屈折率n,消
衰係数kの組み合わせを決定する。
(1) The combination of the refractive index n and the extinction coefficient k when the film thickness is maximum is determined.

【0173】(2)膜厚が最小値のときの屈折率n,消
衰係数kの組み合わせを決定する。
(2) The combination of the refractive index n and the extinction coefficient k when the film thickness is the minimum value is determined.

【0174】(3)(1)、(2)で得た屈折率n,消
衰係数kの交わりを求める。
(3) The intersection of the refractive index n and the extinction coefficient k obtained in (1) and (2) is obtained.

【0175】以上の手順を踏むことで所望の透過率t,
位相差φの範囲を得て、且つ膜厚の適当な範囲を与えた
ときに満足される屈折率n,消衰係数kの範囲を図14
の斜線のごとく容易に且つ迅速に定めることができる。
By the above steps, the desired transmittance t,
FIG. 14 shows the ranges of the refractive index n and the extinction coefficient k that are satisfied when the range of the phase difference φ is obtained and an appropriate range of the film thickness is given.
It can be easily and quickly set as indicated by the diagonal lines.

【0176】本実施例では露光波長をi線(365n
m)としたが、これに限るものではなく、g線(436
nm),KrF(248nm),ArF(193nm)
等の波長に適用しても何等問題ない。
In this embodiment, the exposure wavelength is i-line (365n).
m), but the g-line (436
nm), KrF (248 nm), ArF (193 nm)
There is no problem even if applied to such wavelengths.

【0177】また、本実施例では所望の強度透過率を
4.9±0.5%、位相差を180±5°としたが、こ
れに限るものでなく、露光時の性能にもよるが所望値と
所望範囲を含んだものが強度透過率1〜20%又は位相
差120〜240°の範囲であれば十分適用可能であ
る。
In this embodiment, the desired intensity transmittance is 4.9 ± 0.5% and the phase difference is 180 ± 5 °. However, the present invention is not limited to this, and it depends on the performance during exposure. A material including a desired value and a desired range is sufficiently applicable as long as the intensity transmittance is 1 to 20% or the phase difference is 120 to 240 °.

【0178】更に、膜厚d=99.8nmと定めたが、
これに限るものではなく0より大きい値であれば如何な
る値でも対応可能である。
Further, although the film thickness d is set to be 99.8 nm,
The value is not limited to this, and any value larger than 0 can be used.

【0179】本実施例と同様に、請求項1の発明の応用
例を用いることで所望の位相差,透過率範囲について適
当な屈折率範囲を満足するような消衰係数k,膜厚dの
組み合わせを求めることができる。
Similar to the present embodiment, by using the application example of the invention of claim 1, the extinction coefficient k and the film thickness d are set so as to satisfy an appropriate refractive index range for a desired phase difference and transmittance range. You can ask for combinations.

【0180】また、本実施例と同様に、請求項2の発明
の応用例を用いることで所望の位相差,透過率範囲につ
いて適当な消衰係数範囲を満足するような屈折率n,膜
厚dの組み合わせを求めることができる。
Further, as in the case of this embodiment, by using the application example of the invention of claim 2, the refractive index n and the film thickness satisfying the appropriate extinction coefficient range for the desired phase difference and transmittance range. The combination of d can be obtained.

【0181】ここで適当な屈折率範囲又は適当な消衰係
数範囲は、成膜で用いる装置の性能(成膜対象基板につ
いて面内で得られる屈折率或いは消衰係数の範囲、成膜
対象基板について同一条件で複数の基板に対して成膜し
たときに生じる屈折率或いは消衰係数の範囲)により定
めると良い。
Here, the appropriate refractive index range or the appropriate extinction coefficient range is the performance of the apparatus used for film formation (the range of the refractive index or extinction coefficient obtained in the plane of the film formation target substrate, the film formation target substrate). Is preferably determined by the range of the refractive index or extinction coefficient generated when the film is formed on a plurality of substrates under the same conditions.

【0182】(実施例14)本実施例では、実施例13
の手法により得られる屈折率n及び消衰係数kの許容範
囲をより詳細に調べた。
(Embodiment 14) In this embodiment, Embodiment 13 will be described.
The permissible ranges of the refractive index n and the extinction coefficient k obtained by the above method were examined in more detail.

【0183】まず、図13に於ける所望の屈折率n及び
消衰係数kの範囲をそれぞれ任意の消衰係数における屈
折率の許容範囲とし、Δn及び任意の屈折率nに対する
消衰係数の許容範囲としΔkで現す。さらにΔn,Δk
をそれぞれ露光波長/露光波長で除した値dn,dkを
設定した。
First, let the ranges of the desired refractive index n and the extinction coefficient k in FIG. 13 be the allowable ranges of the refractive index at arbitrary extinction coefficients, and let the extinction coefficient be allowable for Δn and the arbitrary refractive index n. The range is represented by Δk. Furthermore, Δn and Δk
Was divided by the exposure wavelength / exposure wavelength to set values dn and dk.

【0184】図14に、露光波長=365nm(i線)
及び248nm(KrF)において位相差許容量180
±5度、強度透過率許容量5±0.5%を満足するd
n,dkの屈折率依存性を示す。ここで、i線に対する
ものを実線で、KrFに対するものを破線で現した。d
n,dkとも屈折率に依存せずほぼ一定の値を示すこと
が分かった。また、KrF波長におけるdn,dkはi
線と同一値で波長に依存しないことが分かった。
In FIG. 14, exposure wavelength = 365 nm (i line)
And allowable phase difference 180 at 248 nm (KrF)
Satisfies ± 5 degrees and allowable intensity transmittance of 5 ± 0.5% d
The refractive index dependence of n and dk is shown. Here, the one for the i line is shown by a solid line, and the one for KrF is shown by a broken line. d
It was found that both n and dk show almost constant values independent of the refractive index. Further, dn and dk at the KrF wavelength are i
It was found that the same value as the line was not dependent on the wavelength.

【0185】図15に、基準位相差180度としたとき
の位相差許容量Peに対するdn,dkを示す。ここ
で、基準透過率Tは5%とし、膜厚変動率Deは0.0
1とした。実線は透過率の変動量の所望透過率に対する
比Te=±0.1(強度透過率5±0.5%)、破線は
Te=±0.2(強度透過率5±1%)として求めた値
である。dn,dk共に、Peに対していずれも一次関
数として表すことができた。
FIG. 15 shows dn and dk with respect to the allowable phase difference amount Pe when the reference phase difference is 180 degrees. Here, the reference transmittance T is 5%, and the film thickness variation De is 0.0
It was set to 1. The solid line is the ratio of the variation of the transmittance to the desired transmittance Te = ± 0.1 (intensity transmittance 5 ± 0.5%), and the broken line is Te = ± 0.2 (intensity transmittance 5 ± 1%). It is a value. Both dn and dk could be expressed as a linear function with respect to Pe.

【0186】図16に、位相差180±5度で基準透過
率5%に対して透過率許容量Teに対するdn,dkを
示した。なお、膜厚変動率Deは0.01とした。Te
に対するdn,dk値は、Peに対する変化と同様にい
ずれもTeに対して一次関数で表すことができた。
FIG. 16 shows dn and dk with respect to the allowable transmittance Te for the standard transmittance of 5% with the phase difference of 180 ± 5 degrees. The film thickness variation De was set to 0.01. Te
The dn and dk values with respect to were both able to be expressed by a linear function with respect to Te, similarly to the change with respect to Pe.

【0187】図17に、基準透過率Tに対するdn,d
kを求めた。ここで、位相差許容量Peは180に対し
て±5度とした。膜厚変動率Deは0.01とした。な
お、透過率許容量Te=0.1について実線で、Te=
0.2について破線で示した。dn,dkのTに対する
変化についても一次関数で表すことができた。
FIG. 17 shows that dn, d with respect to the reference transmittance T.
I asked for k. Here, the allowable phase difference Pe is set to ± 5 degrees with respect to 180. The film thickness variation De was set to 0.01. The solid line for the allowable transmittance Te = 0.1 is Te =
0.2 is shown by a broken line. The change of dn and dk with respect to T could be expressed by a linear function.

【0188】図18に、位相差許容量Peと強度透過率
許容量Teを任意に選択した場合において、HT膜厚変
動率Wに対するdn,dkを示す。図18に示したいず
れのdn,dkも膜厚変動率wに対しても一次関数で表
すことが可能であった。更にそれらの傾きは位相差許容
量Pe及び強度透過率許容量Teには依存せず、各々の
dn及びdkで一定の傾きを示した。
FIG. 18 shows dn and dk with respect to the HT film thickness variation rate W when the phase difference allowable amount Pe and the intensity transmittance allowable amount Te are arbitrarily selected. Each of dn and dk shown in FIG. 18 can be expressed by a linear function with respect to the film thickness variation rate w. Further, those slopes do not depend on the phase difference allowable amount Pe and the intensity transmittance allowable amount Te, and show a constant slope at each dn and dk.

【0189】以上に示した図14乃至図18の結果か
ら、Δn,Δkは位相差許容量Pe,基準透過率T,透
過率許容量Te,最適膜厚D及び膜厚変動率Deの一次
多項式としてそれぞれ(式9)(式10)式の様に表す
ことができた。
From the results shown in FIGS. 14 to 18, Δn and Δk are first-order polynomials of the phase difference allowable amount Pe, the reference transmittance T, the transmittance allowable amount Te, the optimum film thickness D and the film thickness variation ratio De. Can be expressed as in (Equation 9) and (Equation 10).

【0190】 Δn=±λ(5.58Pe+0.167T- 12.7Te-982De- 0.68)/2000D (式9) Δk=±λ(-0.413Pe+0.417T+163Te-312De- 2.41)/2000D (式10) 更に(式9)、(式10)に対して位相変動量Pe=1
0度、強度透過率変動量の所望透過率に対する比Te=
0.2、半透明位相シフト膜厚の変動量の所望膜厚に対
する比De=0.01としたときに、(式9)及び(式
10)はそれぞれ(式11)及び(式12)として表す
ことができる。ここで、所望透過率TのΔn,Δkに対
する影響は非常に小さく強度透過率T=1乃至20%の
範囲においてΔn,Δkに殆ど差が生じない。即ち、
(式11)及び(式12)は所望透過率に依らず与えら
れる。
Δn = ± λ (5.58Pe + 0.167T-12.7Te-982De-0.68) / 2000D (Equation 9) Δk = ± λ (-0.413Pe + 0.417T + 163Te-312De-2.41) / 2000D (Equation 10) ) Further, with respect to (Equation 9) and (Equation 10), the phase fluctuation amount Pe = 1
0 degree, ratio of intensity transmittance variation to desired transmittance Te =
0.2 and a ratio of the variation of the semitransparent phase shift film thickness to the desired film thickness De = 0.01, (Equation 9) and (Equation 10) are changed to (Equation 11) and (Equation 12), respectively. Can be represented. Here, the influence of the desired transmittance T on Δn and Δk is very small, and there is almost no difference between Δn and Δk in the range of the intensity transmittance T = 1 to 20%. That is,
(Equation 11) and (Equation 12) are given regardless of the desired transmittance.

【0191】 Δn=±0.214λ/D (式11) Δk=±0.115λ/D (式12)Δn = ± 0.214λ / D (Equation 11) Δk = ± 0.115λ / D (Equation 12)

【0192】[0192]

【発明の効果】以上詳述したように本発明によれば、従
来の半透明位相シフト膜を位相差,透過率という間接的
な情報でとらえるのではなく、屈折率,消衰係数,膜厚
といったより具体的な情報で且つ性格に捕らえることが
可能となる。さらに、屈折率,消衰係数,膜厚の許容範
囲を明確にすることが可能となる。
As described above in detail, according to the present invention, the conventional semitransparent phase shift film is not grasped by the indirect information such as the phase difference and the transmittance but the refractive index, the extinction coefficient and the film thickness. It becomes possible to capture more specific information and personality. Furthermore, it becomes possible to clarify the allowable ranges of the refractive index, the extinction coefficient, and the film thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明に係わる計算アルゴリズムを示
す図。
FIG. 1 is a diagram showing a calculation algorithm according to the invention of claim 1;

【図2】請求項2の発明に係わる計算アルゴリズムを示
す図。
FIG. 2 is a diagram showing a calculation algorithm according to the invention of claim 2;

【図3】請求項3の発明に係わる計算アルゴリズムを示
す図。
FIG. 3 is a diagram showing a calculation algorithm according to the invention of claim 3;

【図4】第1の実施例を説明するためのもので、請求項
1の発明を用いて算出した屈折率に対する消衰係数,膜
厚の関係を示す図。
FIG. 4 is a diagram for explaining the first embodiment and showing the relationship between the extinction coefficient and the film thickness with respect to the refractive index calculated using the invention of claim 1.

【図5】第3の実施例を説明するためのもので、請求項
1の発明を用いて算出した屈折率に対する消衰係数,膜
厚の許容範囲を示す図。
FIG. 5 is a view for explaining the third embodiment and showing the extinction coefficient and the allowable range of the film thickness with respect to the refractive index calculated using the invention of claim 1.

【図6】第4の実施例を説明するためのもので、請求項
2の発明を用いて算出した消衰係数に対する屈折率,膜
厚の関係を示す図。
FIG. 6 is a graph for explaining the fourth embodiment and showing the relationship between the extinction coefficient calculated using the invention of claim 2 and the refractive index and film thickness.

【図7】第6の実施例を説明するためのもので、請求項
2の発明を用いて算出した消衰係数に対する屈折率,膜
厚の許容範囲を示す図。
FIG. 7 is a diagram for explaining the sixth embodiment and showing the allowable ranges of the refractive index and the film thickness with respect to the extinction coefficient calculated using the invention of claim 2;

【図8】第7の実施例を説明するためのもので、請求項
3の発明を用いて算出した膜厚に対する屈折率,消衰係
数の関係を示す図。
FIG. 8 is a graph for explaining the seventh embodiment and showing the relationship between the refractive index and the extinction coefficient with respect to the film thickness calculated using the invention of claim 3;

【図9】第9の実施例を説明するためのもので、請求項
3の発明を用いて算出した膜厚に対する屈折率,消衰係
数の許容範囲を示す図。
FIG. 9 is a diagram for explaining the ninth embodiment and showing the allowable ranges of the refractive index and the extinction coefficient with respect to the film thickness calculated using the invention of claim 3;

【図10】第10の実施例を説明するためのもので、請
求項1の発明の応用に係わる屈折率を固定した場合の消
衰係数,膜厚の許容範囲を示す図。
FIG. 10 is a view for explaining the tenth embodiment and showing the extinction coefficient and the allowable range of the film thickness when the refractive index is fixed according to the application of the invention of claim 1.

【図11】第11の実施例を説明するためのもので、請
求項2の発明の応用に係わる消衰係数を固定した場合の
屈折率,膜厚の許容範囲を示す図。
FIG. 11 is a diagram for explaining the eleventh embodiment and showing the allowable range of the refractive index and the film thickness when the extinction coefficient according to the application of the invention of claim 2 is fixed.

【図12】第12の実施例を説明するためのもので、請
求項3の発明の応用に係わる膜厚を固定した場合の屈折
率,消衰係数の許容範囲を示す図。
FIG. 12 is a view for explaining the twelfth embodiment and showing the allowable range of the refractive index and the extinction coefficient when the film thickness is fixed according to the application of the invention of claim 3;

【図13】第14の実施例を説明するためのもので、請
求項3の発明の応用に係わる膜厚に適当な範囲を設定し
たときの屈折率,消衰係数の許容範囲を示す図。
FIG. 13 is a view for explaining the fourteenth embodiment and showing the permissible ranges of the refractive index and the extinction coefficient when an appropriate range is set for the film thickness according to the application of the invention of claim 3;

【図14】第14の実施例におけるdn,dkの屈折率
nと露光波長λ依存性をせつめいするための図。
FIG. 14 is a graph showing the dependence of the refractive index n of dn and dk on the exposure wavelength λ in the fourteenth embodiment.

【図15】第14の実施例におけるdn,dkの位相差
変動量Peの依存性を説明するための図。
FIG. 15 is a diagram for explaining the dependence of the phase difference variation amount Pe on dn and dk in the fourteenth embodiment.

【図16】第14の実施例におけるdn,dkの透過率
変動量の基準透過率に対する比Teの依存性を説明する
ための図。
FIG. 16 is a diagram for explaining the dependence of the ratio Te on the reference transmittance of the transmittance fluctuation amounts of dn and dk in the fourteenth embodiment.

【図17】第14の実施例におけるdn,dkの基準透
過率Tの依存性を説明するための図。
FIG. 17 is a diagram for explaining the dependency of dn and dk on the reference transmittance T in the fourteenth embodiment.

【図18】第14の実施例におけるdn,dkの膜厚変
動量の基準膜厚に対する比Peの依存性を説明するため
の図。
FIG. 18 is a diagram for explaining the dependence of the ratio Pe of the variation in film thickness of dn and dk on the reference film thickness in the fourteenth embodiment.

【符号の説明】[Explanation of symbols]

11,12,13…初期設定手段 20…透過率tc ,位相差φc を算出する手段 30…算出値tc ,φc を理想値t,φと比較する手段 41,42,43…再設定手段 11, 12, 13 ... Initial setting means 20 ... Means for calculating transmittance tc and phase difference φc 30 ... Means for comparing calculated values tc, φc with ideal values t, φ 41, 42, 43 ... Resetting means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半透明膜の露光波長λにおける任意の屈折
率nに対し、該半透明膜の露光波長λにおける消衰係数
k及び膜厚dの初期値を与える工程と、前記半透明膜の
屈折率n,消衰係数k,膜厚d及び該半透明膜を形成し
た基板と空気の屈折率,消衰係数,膜厚から多重反射を
考慮し、前記半透明膜の透過率tc ,透明部分と半透明
膜を透過する光の位相差φc を算出する工程と、前記算
出した透過率tc ,位相差φc を所望の透過率t,位相
差φと比較する工程と、前記比較して得られた位相誤
差,透過率誤差からそれぞれ消衰係数k,膜厚dを再設
定する工程とを備え、 前記再設定された膜厚d,消衰係数kを基に、前記透過
率tc ,位相差φc の算出工程及び比較工程を行い、且
つ透過率tc ,位相差φc の両方が所望値φ,tと一致
するまで、前記再設定する工程、算出する工程、及び比
較する工程を繰り返すことを特徴とする半透明膜の設計
方法。
1. A step of giving an initial value of an extinction coefficient k and a film thickness d of the semitransparent film at the exposure wavelength λ to an arbitrary refractive index n of the semitransparent film at the exposure wavelength λ, and the semitransparent film. The refractive index n, extinction coefficient k, film thickness d, and the refractive index, extinction coefficient, and film thickness of the substrate on which the semitransparent film is formed, and multiple reflection are taken into consideration from the transmissivity tc of the semitransparent film, Comparing the steps of calculating the phase difference φc of light transmitted through the transparent portion and the semitransparent film, and the step of comparing the calculated transmittance tc and phase difference φc with the desired transmittance t and phase difference φ. Resetting the extinction coefficient k and the film thickness d from the obtained phase error and transmittance error, respectively, based on the reset film thickness d and extinction coefficient k, the transmittance tc, The calculation process and the comparison process of the phase difference φc are performed, and both the transmittance tc and the phase difference φc match the desired values φ, t. Design method translucent film and repeating the re-setting step of the steps of calculating and comparing steps.
【請求項2】半透明膜の露光波長λにおける任意の消衰
係数kに対し、該半透明膜の露光波長λにおける屈折率
n及び膜厚dの初期値を与える工程と、前記半透明膜の
屈折率n,消衰係数k,膜厚d及び該半透明膜を形成し
た基板と空気の屈折率,消衰係数,膜厚から多重反射を
考慮し、前記半透明膜の透過率tc ,透明部分と半透明
膜を透過する光の位相差φc を算出する工程と、前記算
出した透過率tc ,位相差φc を所望の透過率t,位相
差φと比較する工程と、前記比較して得られた位相誤
差,透過率誤差からそれぞれ屈折率n及び膜厚dを再設
定する工程とを備え、 前記再設定された屈折率n及び膜厚dを基に、前記透過
率tc ,位相差φc の算出工程及び比較工程を行い、且
つ透過率tc ,位相差φc の両方が所望値φ,tと一致
するまで、前記再設定する工程、算出する工程、及び比
較する工程を繰り返すことを特徴とする半透明膜の設計
方法。
2. A step of giving initial values of a refractive index n and a film thickness d of the semitransparent film at the exposure wavelength λ to an arbitrary extinction coefficient k of the semitransparent film at the exposure wavelength λ, and the semitransparent film. The refractive index n, extinction coefficient k, film thickness d, and the refractive index, extinction coefficient, and film thickness of the substrate on which the semitransparent film is formed, and multiple reflection are taken into consideration from the transmissivity tc of the semitransparent film, Comparing the steps of calculating the phase difference φc of light transmitted through the transparent portion and the semitransparent film, and the step of comparing the calculated transmittance tc and phase difference φc with the desired transmittance t and phase difference φ. Resetting the refractive index n and the film thickness d from the obtained phase error and the transmittance error, respectively, based on the reset refractive index n and the film thickness d, the transmittance tc and the phase difference. φc calculation step and comparison step are performed, and both the transmittance tc and the phase difference φc match the desired values φ and t. Design method translucent film and repeating the re-setting step of the steps of calculating and comparing steps.
【請求項3】半透明膜の露光波長λにおける任意の膜厚
dに対し、該半透明膜の露光波長λにおける屈折率n及
び消衰係数kの初期値を与える工程と、前記半透明膜の
屈折率n,消衰係数k,膜厚d及び該半透明膜を形成し
た基板と空気の屈折率,消衰係数,膜厚から多重反射を
考慮し、前記半透明膜の透過率tc ,透明部分と半透明
膜を透過する光の位相差φc を算出する工程と、前記算
出した透過率tc ,位相差φc を所望の透過率t,位相
差φを比較する工程と、前記比較して得られた位相誤
差,透過率誤差からそれぞれ屈折率n,消衰係数kを再
設定する工程とを備え、 前記再設定された屈折率n,消衰係数kを基に、前記透
過率tc ,位相差φcの算出工程及び比較工程を行い、
且つ透過率tc ,位相差φc の両方が所望値φ,tと一
致するまで、前記再設定する工程、算出する工程、及び
比較する工程を繰り返すことを特徴とする半透明膜の設
計方法。
3. A step of giving initial values of a refractive index n and an extinction coefficient k of the semitransparent film at the exposure wavelength λ to an arbitrary film thickness d of the semitransparent film at the exposure wavelength λ, and the semitransparent film. The refractive index n, extinction coefficient k, film thickness d, and the refractive index, extinction coefficient, and film thickness of the substrate on which the semitransparent film is formed, and multiple reflection are taken into consideration from the transmissivity tc of the semitransparent film, Comparing the step of calculating the phase difference φc of light transmitted through the transparent portion and the semi-transparent film and the step of comparing the calculated transmittance tc and phase difference φc with the desired transmittance t and phase difference φ Resetting the refractive index n and the extinction coefficient k from the obtained phase error and transmittance error, respectively, based on the reset refractive index n and extinction coefficient k, the transmittance tc, Perform the phase difference φc calculation step and comparison step,
A method for designing a semitransparent film, characterized in that the step of resetting, the step of calculating, and the step of comparing are repeated until both the transmittance tc and the phase difference φc match the desired values φ, t.
JP02859294A 1993-04-30 1994-02-25 Translucent film design method Expired - Fee Related JP3222678B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP02859294A JP3222678B2 (en) 1994-02-25 1994-02-25 Translucent film design method
US08/583,857 US5629115A (en) 1993-04-30 1996-01-11 Exposure mask and method and apparatus for manufacturing the same
US08/729,592 US5907393A (en) 1993-04-30 1996-10-11 Exposure mask and method and apparatus for manufacturing the same
US08/730,017 US5728494A (en) 1993-04-30 1996-10-11 Exposure mask and method and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02859294A JP3222678B2 (en) 1994-02-25 1994-02-25 Translucent film design method

Publications (2)

Publication Number Publication Date
JPH07239546A true JPH07239546A (en) 1995-09-12
JP3222678B2 JP3222678B2 (en) 2001-10-29

Family

ID=12252872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02859294A Expired - Fee Related JP3222678B2 (en) 1993-04-30 1994-02-25 Translucent film design method

Country Status (1)

Country Link
JP (1) JP3222678B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123696A (en) * 1996-10-16 1998-05-15 Samsung Electron Co Ltd Phase shift mask and its manufacture
JP2001027798A (en) * 1999-07-14 2001-01-30 Ulvac Seimaku Kk Phase shifter film and production of same
JP2002296756A (en) * 2001-03-30 2002-10-09 Hoya Corp Halftone type phase shift mask blank and halftone type phase shift mask
WO2005124454A1 (en) * 2004-06-16 2005-12-29 Hoya Corporation Semitransmitting film, photomask blank, photomask, and semitransmitting film designing method
JP2009053223A (en) * 2007-08-23 2009-03-12 Dainippon Printing Co Ltd Manufacturing method of color filter for liquid crystal display device
JP2010009038A (en) * 2008-06-25 2010-01-14 Hoya Corp Phase shift mask blank, phase shift mask and method for manufacturing phase shift mask blank
JP2011107735A (en) * 2011-03-11 2011-06-02 Hoya Corp Halftone type phase shift mask blank and manufacturing method of halftone type phase shift mask
JP2012181549A (en) * 2012-05-24 2012-09-20 Shin Etsu Chem Co Ltd Method for designing translucent laminated film, photomask blank, photomask, and method for manufacturing photomask blank
JP2020166114A (en) * 2019-03-29 2020-10-08 Hoya株式会社 Photomask blank, method for manufacturing photomask, and method for manufacturing display device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123696A (en) * 1996-10-16 1998-05-15 Samsung Electron Co Ltd Phase shift mask and its manufacture
JP2001027798A (en) * 1999-07-14 2001-01-30 Ulvac Seimaku Kk Phase shifter film and production of same
JP2002296756A (en) * 2001-03-30 2002-10-09 Hoya Corp Halftone type phase shift mask blank and halftone type phase shift mask
US8110323B2 (en) 2004-06-16 2012-02-07 Hoya Corporation Optically semitransmissive film, photomask blank and photomask, and method for designing optically semitransmissive film
WO2005124454A1 (en) * 2004-06-16 2005-12-29 Hoya Corporation Semitransmitting film, photomask blank, photomask, and semitransmitting film designing method
US8580466B1 (en) 2004-06-16 2013-11-12 Hoya Corporation Optically semitransmissive film, photomask blank and photomask, and method for designing optically semitransmissive film
US7651823B2 (en) 2004-06-16 2010-01-26 Hoya Corporation Optically semitransmissive film, photomask blank and photomask, and method for designing optically semitransmissive film
KR100967995B1 (en) * 2004-06-16 2010-07-07 호야 가부시키가이샤 Semitransmitting film, photomask blank, photomask, and semitransmitting film designing method
US8486588B2 (en) 2004-06-16 2013-07-16 Hoya Corporation Optically semitransmissive film, photomask blank and photomask, and method for designing optically semitransmissive film
US7955762B2 (en) 2004-06-16 2011-06-07 Hoya Corporation Optically semitransmissive film, photomask blank and photomask, and method for designing optically semitransmissive film
JP2009053223A (en) * 2007-08-23 2009-03-12 Dainippon Printing Co Ltd Manufacturing method of color filter for liquid crystal display device
JP2010009038A (en) * 2008-06-25 2010-01-14 Hoya Corp Phase shift mask blank, phase shift mask and method for manufacturing phase shift mask blank
JP2014130360A (en) * 2008-06-25 2014-07-10 Hoya Corp Phase shift mask blank, phase shift mask and method for manufacturing phase shift mask blank
JP2011107735A (en) * 2011-03-11 2011-06-02 Hoya Corp Halftone type phase shift mask blank and manufacturing method of halftone type phase shift mask
JP2012181549A (en) * 2012-05-24 2012-09-20 Shin Etsu Chem Co Ltd Method for designing translucent laminated film, photomask blank, photomask, and method for manufacturing photomask blank
JP2020166114A (en) * 2019-03-29 2020-10-08 Hoya株式会社 Photomask blank, method for manufacturing photomask, and method for manufacturing display device

Also Published As

Publication number Publication date
JP3222678B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
US5721075A (en) Blanks for halftone phase shift photomasks, halftone phase shift photomasks, and methods for fabricating them
KR101503932B1 (en) Photomask blank and process for producing the same, process for producing photomask, and process for producing semiconductor device
JP5602930B2 (en) Mask blank and transfer mask
TW591326B (en) Halftone type phase shift mask blank and halftone type phase shift mask
US9612527B2 (en) Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
TW201341945A (en) Photomask blank, photomask manufacturing method and semiconductor device manufacturing method
JP3993005B2 (en) Halftone phase shift mask blank, halftone phase shift mask, method of manufacturing the same, and pattern transfer method
JP5336226B2 (en) Multi-tone photomask manufacturing method
US11314161B2 (en) Mask blank, phase shift mask, and method of manufacturing semiconductor device
JPH10186632A (en) Blank for halftone type phase shift mask and halftone type phase shift mask
CN111742259B (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
JPH07239546A (en) Method for designing translucent film
JP2008203373A (en) Halftone blank and method for manufacturing halftone blank
US20140205937A1 (en) Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
JP2004004791A (en) Halftone phase shift mask blank and halftone phase shift mask
JPH08123008A (en) Phase shift mask and its production
JP2002040625A (en) Mask for exposure, resist pattern forming method and method for producing substrate for the mask
US6852455B1 (en) Amorphous carbon absorber/shifter film for attenuated phase shift mask
JPH1184624A (en) Blank for halftone type phase shift mask, halftone type phase shift mask and their production
JPH05257264A (en) Mask for exposing and production thereof
JPH1026820A (en) Halftone phase shift mask blank, and halftone phase shift mask
Carcia et al. Thin Films for Phase-shift masks
JPH10333318A (en) Phase shift photomask and its production
JP2004199089A (en) Halftone phase shift mask blank and halftone phase shift mask
JP2004085759A (en) Blank for halftone type phase shift mask and halftone type phase shift mask

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees