JPH07239440A - Magnifying lens for microscope - Google Patents

Magnifying lens for microscope

Info

Publication number
JPH07239440A
JPH07239440A JP6029433A JP2943394A JPH07239440A JP H07239440 A JPH07239440 A JP H07239440A JP 6029433 A JP6029433 A JP 6029433A JP 2943394 A JP2943394 A JP 2943394A JP H07239440 A JPH07239440 A JP H07239440A
Authority
JP
Japan
Prior art keywords
lens
magnification
microscope
magnifying
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6029433A
Other languages
Japanese (ja)
Other versions
JP3365026B2 (en
Inventor
Tatsuro Otaki
達朗 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP02943394A priority Critical patent/JP3365026B2/en
Publication of JPH07239440A publication Critical patent/JPH07239440A/en
Application granted granted Critical
Publication of JP3365026B2 publication Critical patent/JP3365026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnifying lens capable of increasing an magnification of a microscope having a high performance with simple and compact optical constitution by arranging plural lens groups into the convergent luminous flux formed by an objective optical system for the microscope and converting a space image to a prescribed magnification. CONSTITUTION:The microscope is provided with the magnifying lens 7 which converts the luminous flux from an object 5 to be observed to the convergent luminous flux and increases the magnification of the objective optical system 6 for the microscope forming the space image I0 of an object 5 to be observed to the prescribed magnification. This magnifying lens 7 has the plural lens groups of negative refracting powers which are independently corrected in aberrations. The space image I0 is converted to the prescribed magnification by arranging the plural lens groups G1, G2 in the convergent luminous flux formed by the objective optical system 6 for the microscope. As a result, there is no more need for providing the objective optical system with many relay systems for obtaining the large magnification in series and the large magnification is obtd. while the size of the optical system constituting the microscope is reduced and the performance thereof is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡の倍率を所定の
拡大倍率に変換する光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system for converting the magnification of a microscope into a predetermined magnification.

【0002】[0002]

【従来の技術】この種の顕微鏡は、図11に示す如く、
まず、不図示のステージ上に載置された標本5は、不図
示の照明系により透過照明もしくは落射照明される。そ
して、照明された標本5からの光は、対物レンズ6によ
り収斂作用を受けて、標本5の拡大像I0 (空間像)が
形成された後、この拡大像I0 を所定の倍率に拡大する
リレー系11によって第2の拡大像I10が再形成され
る。この拡大像I10上には撮像素子としてのCCD等が
配置されており、このCCD等からの出力を不図示の画
像処理系にて画像処理し、この画像処理系と電気的に接
続された表示部(CRTモニタ)等を介して拡大像I10
の画像が表示される。なお、撮像素子としてのCCD等
の代わりに接眼レンズを拡大像I10の後方に配置し、こ
の接眼レンズを通して拡大像I10を拡大観察する顕微鏡
もある。
2. Description of the Related Art A microscope of this type is as shown in FIG.
First, the sample 5 placed on a stage (not shown) is subjected to transmitted illumination or epi-illumination by an illumination system (not shown). The light from the illuminated sample 5 is subjected to converging action by the objective lens 6, after the enlarged image I 0 of the sample 5 (aerial image) is formed, which magnified image I 0 at a predetermined ratio larger The second magnified image I 10 is re-formed by the relay system 11 that operates. A CCD or the like as an image pickup element is arranged on the enlarged image I 10. The output from the CCD or the like is image-processed by an image processing system (not shown) and electrically connected to the image processing system. Enlarged image I 10 via the display (CRT monitor), etc.
Image is displayed. There is also a microscope in which an eyepiece lens is arranged behind the magnified image I 10 instead of a CCD or the like as an image pickup element, and the magnified image I 10 is magnified and observed through this eyepiece lens.

【0003】上記の図11の如き顕微鏡では、拡大倍率
を上げるために、対物レンズ6により結像された像を、
リレー系11にて拡大して再結像している。
In the microscope as shown in FIG. 11, the image formed by the objective lens 6 is changed in order to increase the magnification.
The image is enlarged and re-imaged by the relay system 11.

【0004】[0004]

【発明が解決しようとする課題】ここで、図11の顕微
鏡よりも拡大倍率を上げたい場合には、図12に示す如
く、リレー系11の後方において、拡大像I10を所定の
倍率に拡大して第3の拡大像I20を形成するための第2
のリレー系12を配置し、この第3の拡大像I20の位置
にCCD等を配置することが考えられる。さらに、図1
2の顕微鏡よりも拡大倍率を上げたい場合には、第2の
リレー系12と後方において、不図示ではあるが、第3
の拡大像I20を所定の倍率に拡大し、第4の拡大像を形
成する第3のリレー系を配置し、この第4の拡大像の位
置にCCD等を配置することが考えられる。
Here, when it is desired to increase the magnifying power higher than that of the microscope of FIG. 11, the magnified image I 10 is magnified to a predetermined magnification behind the relay system 11 as shown in FIG. To form a third magnified image I 20
It is conceivable that the relay system 12 is arranged and the CCD or the like is arranged at the position of the third enlarged image I 20 . Furthermore, FIG.
If it is desired to increase the enlargement ratio higher than that of the second microscope, the third relay system 12 and the rear side of the third relay system 12 are not shown.
It is conceivable to magnify the magnified image I 20 of No. 1 to a predetermined magnification, arrange a third relay system that forms a fourth magnified image, and arrange a CCD or the like at the position of the fourth magnified image.

【0005】しかしながら、この様に、拡大倍率を上げ
るために、複数のリレー系を直列的に配置することが考
えられるが、複数のリレー系を直列的に配置するに伴い
どうしても顕微鏡の全長が大幅に長くなってしまい装置
が大がかりになってしまうという問題がある。また、個
々のリレー系自体の全長を短くしつつ良好なる結像性能
を得るためには、個々のリレー系でのレンズ構成が複雑
になり、高価なものとなってしまう。
However, it is conceivable to arrange a plurality of relay systems in series in order to increase the magnifying power as described above, but with the arrangement of a plurality of relay systems in series, the total length of the microscope is inevitably large. There is a problem that the device becomes large in size because it becomes very long. Further, in order to obtain good image forming performance while shortening the total length of each relay system itself, the lens configuration in each relay system becomes complicated and expensive.

【0006】さらに、複数のリレー系を直列的に配置す
ると、顕微鏡全体がますます長くなり装置がさらに大が
かりになるのみならず、強度の点並びに装置全体での小
型化の点で鏡筒構造を十分に工夫する必要がある。さら
には、近年においては、CCD等の撮像素子並びに画像
処理系の技術的進歩に伴い撮像素子及び画像処理系を含
む撮像装置が格段に小さくなっているため、撮像装置で
の小型化は可能である。しかし、拡大倍率を上げるため
に、複数のリレー系を用いると、光学系での小型化は原
理的にかなりの困難が伴うという問題がある。
Further, when a plurality of relay systems are arranged in series, not only the entire microscope becomes longer and the apparatus becomes larger, but also the lens barrel structure is formed in terms of strength and miniaturization of the entire apparatus. It is necessary to devise it enough. Furthermore, in recent years, the image pickup device including the image pickup device and the image processing system has become remarkably small in accordance with the technical progress of the image pickup device such as CCD and the image processing system, so that the image pickup device can be downsized. is there. However, if a plurality of relay systems are used in order to increase the magnification, there is a problem in that miniaturization of the optical system involves a considerable difficulty in principle.

【0007】そこで、本発明は上記の課題に鑑みてなさ
れたものであり、極めて簡素かつコンパクトな光学構成
により、顕微鏡での拡大倍率を上げ得る高性能な顕微鏡
用拡大レンズを提供することを目的とする。
Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a high-performance microscope magnifying lens capable of increasing the magnifying power of a microscope with an extremely simple and compact optical structure. And

【0008】[0008]

【課題を解決する為の手段】上記の目的を達成するため
に、本発明は、被観察物体5からの光束を収斂光束に変
換し、該被観察物体5の空間像(I0 、I10)を形成す
る顕微鏡用対物光学系(6、又は6と11)の倍率を所
定の倍率に拡大する拡大レンズ7において、前記拡大レ
ンズ7は、独立に収差補正された負の屈折力のレンズ群
を複数有し、前記顕微鏡用対物光学系7により形成され
る収斂光束中に前記複数のレンズ群(G1 、G2 )を配
置することにより、前記空間像(I0 、I10)を所定の
倍率に変換するように構成したものである。
To achieve the above object, the present invention converts a light beam from an object 5 to be observed into a convergent light beam and aerial images (I 0 , I 10) of the object 5 to be observed. In the magnifying lens 7 for magnifying the magnification of the objective optical system for a microscope (6, or 6 and 11) to a predetermined magnification, the magnifying lens 7 is a lens group of negative refracting power whose aberrations are independently corrected. By arranging the plurality of lens groups (G 1 , G 2 ) in the convergent light beam formed by the microscope objective optical system 7, the aerial image (I 0 , I 10 ) is predetermined. It is configured to be converted into a magnification of.

【0009】そして、上記の基本構成に基づいて、前記
各レンズ群(G1 、G2 )は、正レンズと負レンズとか
ら構成されることが好ましい。また、前記正レンズは物
体側に凹面を向けたメニスカスレンズで構成され、前記
負レンズは両凹形状のレンズで構成され、さらに、前記
各レンズ群中の正レンズの屈折率をnP とし、前記各レ
ンズ群中の正レンズのアッベ数をνP 、前記各レンズ群
中の正レンズの焦点距離をfP 、前記各レンズ中の負レ
ンズの屈折率をnN 、前記各レンズ群中の負レンズのア
ッベ数をνN 、前記各レンズ群中の負レンズの焦点距離
をfN とするとき、 (1) 1.1 <nP /nN <1.4 (2) 2.0 <νN /νP <3.5 (3) −0.95<(nN ×νN ×fN )/(nP ×νP
×fP )<−0.8 を満足することがより望ましい。
Based on the above basic structure, each lens group (G 1 , G 2 ) preferably comprises a positive lens and a negative lens. The positive lens is composed of a meniscus lens having a concave surface facing the object side, the negative lens is composed of a biconcave lens, and the refractive index of the positive lens in each lens group is n P , The Abbe number of the positive lens in each lens group is ν P , the focal length of the positive lens in each lens group is f P , the refractive index of the negative lens in each lens is n N , and When the Abbe number of the negative lens is ν N and the focal length of the negative lens in each of the lens groups is f N , (1) 1.1 <n P / n N <1.4 (2) 2.0 <ν N / ν P < 3.5 (3) −0.95 <(n N × ν N × f N ) / (n P × ν P
It is more desirable that xf P ) <− 0.8 is satisfied.

【0010】[0010]

【作 用】本発明は、顕微鏡の光学構成の大型化を招く
ことなく大きな拡大倍率を得るために、対物光学系によ
り形成される収斂光束中に、独立に収差補正された負の
屈折力のレンズ群を複数有する拡大レンズを配置するこ
とにより、原理的には、大きな拡大倍率を得るために多
数のリレー系を直列的に設ける必要がなくなり、顕微鏡
の光学構成の小型化並び高性能化を図りながら、大きな
拡大倍率を得ることを可能としている。
[Operation] In order to obtain a large magnifying power without increasing the size of the optical configuration of the microscope, the present invention is such that, in the convergent light beam formed by the objective optical system, the negative refracting power of independently corrected aberration By arranging a magnifying lens having a plurality of lens groups, in principle, it is not necessary to provide a large number of relay systems in series in order to obtain a large magnifying power, and the optical configuration of the microscope can be made compact and high performance can be achieved. While trying, it is possible to obtain a large magnification.

【0011】なぜなら、顕微鏡の対物光学系では倍率が
掛けられており、この対物光学系の像側(空間像側)に
おける開口数NAが小さく、しかも画角が極めて狭い。
このため、軸外光束による収差(非点収差、コマ収差)
の補正及び軸上光線による収差(球面収差)の補正に対
する負荷が少ないので、拡大レンズ中の各レンズ群を極
めて少ないレンズ枚数で構成しても原理的には良好なる
結像性能を確保しながらも大きな拡大倍率を得ることが
できる。
This is because the objective optical system of the microscope is multiplied by the magnification, the numerical aperture NA on the image side (aerial image side) of this objective optical system is small, and the angle of view is extremely narrow.
Therefore, aberrations due to off-axis light flux (astigmatism, coma)
Since there is little load on the correction of (1) and the correction of the aberration (spherical aberration) due to the axial ray, even if each lens group in the magnifying lens is configured with an extremely small number of lenses, in principle good imaging performance is ensured. Can also obtain a large magnification.

【0012】ここで、図3を参照しながら本発明の原理
について簡単に説明する。図3に示す如く、本発明の拡
大レンズ7は、不図示の対物光学系により収斂された光
束中に配置されており、負の屈折力の第1レンズ群G1
と同じく負の屈折力を持つ第2レンズ群G1 とを有して
いる。不図示の対物光学系により形成される本来の空間
像I0 は位置P0 に形成され、第1レンズ群G1 の発散
作用により空間像I0 の拡大像I1 は位置P1 に形成さ
れる。次に、第1レンズ群G1 から光軸方向に沿って所
定距離だけ隔てた位置に配置された第2レンズ群G2
発散作用により拡大像I1 の拡大像I2 は位置P2 に形
成される。従って、第1レンズ群G1と第2レンズ群G
2の倍率をそれぞれβ1 ,β2 とすると、位置P2 に形
成される拡大像I2 は、対物光学系により形成される本
来の空間像I0 に対してβ1 ×β2 倍に拡大され、本発
明の拡大レンズ7を対物光学系の収斂光束中に付加して
所定の拡大倍率にする手法の方が、顕微鏡にリレー系を
1つ付加して所定の拡大倍率にする手法よりも、簡素な
構成でコンパクトにできることが理解できる。
The principle of the present invention will be briefly described with reference to FIG. As shown in FIG. 3, the magnifying lens 7 of the present invention is arranged in a light beam converged by an objective optical system (not shown), and has a negative refractive power of the first lens group G 1
And a second lens group G 1 having a negative refracting power. The original aerial image I 0 formed by the objective optical system (not shown) is formed at the position P 0, and the enlarged image I 1 of the aerial image I 0 is formed at the position P 1 by the diverging action of the first lens group G 1. It Then, the magnified image I 2 of the magnified image I 1 is moved to the position P 2 by the diverging action of the second lens group G 2 which is arranged at a position separated from the first lens group G 1 by a predetermined distance in the optical axis direction. It is formed. Therefore, the first lens group G1 and the second lens group G
If the magnification of 2 is β 1 and β 2 , respectively, the magnified image I 2 formed at the position P 2 is magnified β 1 × β 2 times as much as the original aerial image I 0 formed by the objective optical system. Thus, the method of adding the magnifying lens 7 of the present invention to the convergent light flux of the objective optical system to obtain a predetermined magnification is more preferable than the method of adding one relay system to the microscope to obtain a predetermined magnification. It can be understood that it can be made compact with a simple structure.

【0013】図3では、本発明の拡大レンズ7の原理に
ついての説明を簡単にするために、拡大レンズ7を2群
構成とした場合について説明したが、独立に収差補正さ
れた負の屈折力のレンズ群を3つ以上有する拡大レンズ
を対物光学系により形成される収斂光束中に配置しても
良い。なお、コンパクト化を図りつつ色収差に対する補
正を十分に達成するには、各レンズ群を負レンズと正レ
ンズとからなるレンズ構成とすることが望ましい。ま
た、拡大レンズ中における各レンズ群を構成する正レン
ズと負レンズとは互いに接合される構成とすることがよ
り好ましく、この場合には、拡大レンズを製造する上で
の偏心誤差に有利となる利点がある。
In FIG. 3, in order to simplify the explanation of the principle of the magnifying lens 7 of the present invention, the case where the magnifying lens 7 has a two-group structure has been described. A magnifying lens having three or more lens groups may be arranged in the convergent light beam formed by the objective optical system. In order to achieve a sufficient correction for chromatic aberration while achieving compactness, it is desirable that each lens group has a lens configuration including a negative lens and a positive lens. Further, it is more preferable that the positive lens and the negative lens forming each lens group in the magnifying lens are cemented to each other. In this case, it is advantageous for the eccentricity error in manufacturing the magnifying lens. There are advantages.

【0014】さらに、本発明の拡大レンズ中における各
レンズ群にそれぞれ十分なる収差補正機能を持たせるに
は、拡大レンズ中の各レンズ群は、物体側に凹面を向け
たメニスカス形状の正レンズと両凹形状の負レンズと
し、各レンズ群中の正レンズの屈折率をnP とし、各レ
ンズ群中の正レンズのアッベ数をνP 、各レンズ群中の
正レンズの焦点距離をfP 、各レンズ中の負レンズの屈
折率をnN 、各レンズ群中の負レンズのアッベ数を
νN 、各レンズ群中の負レンズの焦点距離をfN とする
とき、 (1) 1.1<nP /nN <1.4 (2) 2.0<νN /νP <3.5 (3) −0.95<(nN ×νN ×fN )/(nP ×νP
×fP )<−0.8 を満足することが望ましい。
Further, in order to give each lens group in the magnifying lens of the present invention a sufficient aberration correction function, each lens group in the magnifying lens should be a positive meniscus lens with a concave surface facing the object side. A biconcave negative lens is used, the refractive index of the positive lens in each lens group is n P , the Abbe number of the positive lens in each lens group is ν P , and the focal length of the positive lens in each lens group is f P , Where the refractive index of the negative lens in each lens is n N , the Abbe number of the negative lens in each lens group is ν N , and the focal length of the negative lens in each lens group is f N , (1) 1.1 < n P / n N <1.4 (2) 2.0 <ν N / ν P <3.5 (3) −0.95 <(n N × ν N × f N ) / (n P × ν P
It is desirable that xf P ) <− 0.8 is satisfied.

【0015】この条件式(1)の上限値を越えると、現
存する硝材がなく、実現できなくなる。逆に、条件式
(1)の下限値を越えると、屈折率差が小さくなり過
ぎ、球面収差が補正過剰となるのみならず、コマ収差の
補正が困難となる。なお、さらに好ましくは条件式
(1)の上限値を1.25、すなわちnP /nN <1.25とす
ることが良い。この場合には、球面収差と像面弯曲との
補正のバランスをさらに良好にし得るという利点があ
る。
If the upper limit of conditional expression (1) is exceeded, there is no existing glass material and it cannot be realized. On the contrary, if the lower limit value of the conditional expression (1) is exceeded, the difference in refractive index becomes too small, the spherical aberration is overcorrected, and it becomes difficult to correct coma aberration. It is more preferable to set the upper limit of conditional expression (1) to 1.25, that is, n P / n N <1.25. In this case, there is an advantage that the balance of correction of spherical aberration and curvature of field can be further improved.

【0016】条件式(2)の上限値を越えると、軸上色
収差が補正不足となり、仮に各レンズ群中の正レンズと
負レンズとに軸上色収差補正機能を十分に持たせたとし
ても、この場合には、球面収差が補正過剰となり好まし
くない。逆に条件式(2)の下限値を越えると、軸上色
収差が補正過剰となり、仮に各レンズ群中の正レンズと
負レンズとに軸上色収差補正機能を十分に持たせたとし
ても、この場合には、球面収差が補正不足となり好まし
くない。なお、さらに好ましくは条件式(2)の上限値
を3.2 、すなわちνN /νP <3.2 とすることが良い。
この場合には、球面収差と色収差との補正のバランスを
さらに良好にし得るという利点がある。
When the upper limit of conditional expression (2) is exceeded, axial chromatic aberration is insufficiently corrected, and even if the positive lens and the negative lens in each lens group have a sufficient axial chromatic aberration correction function, In this case, spherical aberration is overcorrected, which is not preferable. On the other hand, if the lower limit of conditional expression (2) is exceeded, axial chromatic aberration will be overcorrected, and even if the positive lens and the negative lens in each lens group have a sufficient axial chromatic aberration correction function, In this case, spherical aberration is insufficiently corrected, which is not preferable. It is more preferable to set the upper limit of conditional expression (2) to 3.2, that is, ν N / ν P <3.2.
In this case, there is an advantage that the correction balance between spherical aberration and chromatic aberration can be further improved.

【0017】条件式(3)の上限値を越えると、軸上色
収差及び倍率色収差とが共に補正過剰となり、逆に条件
式(3)の下限値を越えると、軸上色収差及び倍率色収
差とが共に補正不足となる。さらに好ましくは条件式
(3)の下限値を-0.9、すなわち−0.9 <(nN ×νN
×fN )/(nP ×νP ×fP )することが良い。この
場合には、軸上色収差と倍率色収差との補正のバランス
をさらに良好にし得るという利点がある。
If the upper limit of conditional expression (3) is exceeded, both axial chromatic aberration and lateral chromatic aberration will be overcorrected. Conversely, if the lower limit of conditional expression (3) is exceeded, axial chromatic aberration and lateral chromatic aberration will be excessive. Both are undercorrected. More preferably, the lower limit of conditional expression (3) is -0.9, that is, -0.9 <(n N × ν N
Xf N ) / (n P × ν P × f P ). In this case, there is an advantage that the balance of correction of axial chromatic aberration and lateral chromatic aberration can be further improved.

【0018】[0018]

【実施例】図1には本発明の拡大レンズを顕微鏡に組み
込んだ時の概略的な構成を示しており、この図1を参照
しながら本発明の実施例について説明する。図1に示す
如く、ステージ4に保持された被観察物体として標本5
は、透過照明系(1〜3)によって透過照明される。こ
の透過照明系は、光源としてのハロゲンランプ1からの
光束はコレクターレンズ2によって集光され、コンデン
サーレンズ3を介して標本5を均一照明する。
FIG. 1 shows a schematic structure of a magnifying lens of the present invention incorporated in a microscope. An embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the specimen 5 as the observed object held on the stage 4
Are transilluminated by the transillumination system (1-3). In this transmission illumination system, a light flux from a halogen lamp 1 as a light source is condensed by a collector lens 2 and uniformly illuminates a sample 5 via a condenser lens 3.

【0019】このように透過照明系(1〜3)によって
透過照明された標本5からの光束は対物レンズ6によっ
て収斂光束に変換され、空間像I0 が形成される。ここ
で、対物レンズ6により形成される収斂光束中には、全
体として負の屈折力を持つ拡大レンズ7が配置されてい
る。この拡大レンズ7は、物体側から順に、負の屈折力
を持つ第1レンズ群G1 、及び同じく負の屈折力を持つ
第2レンズ群G2 を有している。この第1レンズ群G1
は、図3に基づいて前述した如く、空間像I0 を物体と
して、拡大された像I1 を形成し、この第2レンズ群G
2 は、空間像I1 を物体として、拡大された像I2 を形
成する。なお、各レンズ群とも独立に収差補正がされて
いるため、各拡大像(I1 ,I2 )は良好である。
The light flux from the sample 5 which is transmitted and illuminated by the transmissive illumination systems (1 to 3) in this way is converted into a convergent light flux by the objective lens 6 to form a spatial image I 0 . Here, in the convergent light flux formed by the objective lens 6, the magnifying lens 7 having a negative refracting power as a whole is arranged. The magnifying lens 7 has, in order from the object side, a first lens group G 1 having a negative refractive power and a second lens group G 2 having a negative refractive power as well. This first lens group G 1
As described above with reference to FIG. 3, the aerial image I 0 is used as an object to form a magnified image I 1, and the second lens group G
2, an aerial image I 1 as an object to form a magnified image I 2. Since each lens group has its aberration corrected independently, each magnified image (I 1 , I 2 ) is good.

【0020】この拡大像I2 の位置には、撮像素子の1
種であるCCD8が配置されており、このCCD8にて
光電変換された出力は画像処理系9にて画像処理され
る。この画像処理信号は表示部としてのCRTモニタ1
0に出力され、最終的に拡大像I2 がCRTモニタ10
にて表示される。図2には図1に組み込んだ拡大レンズ
の断面構成の様子を示しいる。図2に示す如く、拡大レ
ンズ7を構成する第1レンズ群G1 及び第2レンズ群G
2 は、共に、物体側に凹面を向けたメニスカス形状の正
レンズと、これに接合された両凹形状の負レンズとから
構成されており、各レンズ群とも独立に収差が良好に補
正されている。そして、第1レンズ群G1 は第1の鏡筒
71に保持されて第1のユニットを形成し、第2レンズ
群G2 は第2の鏡筒72に保持されて第2のユニットを
形成している。この第1の鏡筒71の外側突出部と第2
の鏡筒72の内側突出部とが嵌合することにより、第1
レンズ群G1 と第2レンズ群G2 とが光軸に沿って直列
的に保持される。なお、各レンズ群の貼合せ面は像側に
凸面を向けているため、コマ収差の発生が小さく抑えら
れている。
At the position of this magnified image I 2
A CCD 8 as a seed is arranged, and an output photoelectrically converted by the CCD 8 is image-processed by an image processing system 9. This image processing signal is displayed on the CRT monitor 1 as a display unit.
0, and finally the enlarged image I 2 is displayed on the CRT monitor 10.
Is displayed at. FIG. 2 shows a cross-sectional structure of the magnifying lens incorporated in FIG. As shown in FIG. 2, the first lens group G 1 and the second lens group G that constitute the magnifying lens 7
2 is composed of a meniscus-shaped positive lens with a concave surface facing the object side, and a biconcave-shaped negative lens cemented to this, and aberrations are well corrected independently for each lens group. There is. The first lens group G 1 is held by the first barrel 71 to form a first unit, and the second lens group G 2 is held by the second barrel 72 to form a second unit. is doing. The outer protruding portion of the first barrel 71 and the second protruding portion
The inner protrusion of the lens barrel 72 of
The lens group G 1 and the second lens group G 2 are held in series along the optical axis. Since the cemented surface of each lens group has a convex surface facing the image side, the occurrence of coma is suppressed.

【0021】以上のユニット構成によって、任意の結像
倍率を有するレンズ群とこのレンズ群を保持する鏡筒と
からなるユニットの複数を任意に直列的に配置すれば、
コンパクトな構成な割りには大きな拡大倍率の像を得る
ことができる。次に、図1及び図3に示した拡大レンズ
についての諸元を以下の表1〜表6に掲げる。各諸元表
中において、fP はレンズ群の1部を構成する正レンズ
の焦点距離、fN はレンズ群の1部を構成する負レンズ
の焦点距離、fはレンズ群の焦点距離、mはレンズ群の
結像倍率、d0は物体(物点)からレンズ群の第1面まで
の距離、d3はレンズ群の最終面から像(像点)までの距
離、rは曲率半径、dはレンズ面間隔、νはアッベ数、
nはd線(587.6nm) に対する屈折率を示している。表1(2.5 倍の倍率を持つレンズ群の例1)P =86.8、fN =−30.3、f=−45.5、m=2.5 、d0= −28.0 r d n ν r1= −49.5 d1=2.0 n1=1.8052 ν1=25.4 r2= −29.5 d2=1.0 n2=1.5186 ν2=70.0 r3= 34.0 d3=67.0 nP /nN =n1/n2=1.19、νN /νP =ν2 /ν1 =2.99 (nN ×νN ×fN )/(nP ×νP ×fP )=0.88表2(2.5 倍の倍率を持つレンズ群の例2)P =71.3、fN =−27.9、f=−45.1、m=2.5 、d0= −28.0 r d n ν r1= −56.5 d1=2.0 n1=1.7552 ν1=27.6 r2= −28.0 d2=1.0 n2=1.5186 ν2=70.0 r3= 30.4 d3=67.0 nP /nN =n1/n2=1.15、νN /νP =ν2 /ν1 =2.54 (nN ×νN ×fN )/(nP ×νP ×fP )=0.86表3(2.5 倍の倍率を持つレンズ群の例3)P =83.3、fN =−29.8、f=−45.4、m=2.5 、d0= −28.0 r d n ν r1= −50.0 d1=2.0 n1=1.7950 ν1=28.6 r2= −29.0 d2=1.0 n2=1.4978 ν2=82.5 r3= 30.7 d3=67.0 nP /nN =n1/n2=1.20、νN /νP =ν2 /ν1 =2.88 (nN ×νN ×fN )/(nP ×νP ×fP )=0.86表4(4.0 倍の倍率を持つレンズ群の例1)P =43.9、fN =−20.2、f=−36.3、m=4.0 、d0= −28.0 r d n ν r1= −36.5 d1=2.0 n1=1.7408 ν1=27.6 r2= −17.6 d2=1.0 n2=1.5182 ν2=59.0 r3= 26.4 d3=108.0 nP /nN =n1/n2=1.15、νN /νP =ν2 /ν1 =2.14 (nN ×νN ×fN )/(nP ×νP ×fP )=0.86表5(4.0 倍の倍率を持つレンズ群の例2)P =45.5、fN =−20.6、f=−36.5、m=4.0 、d0= −28.0 r d n ν r1= −34.2 d1=2.0 n1=1.7569 ν1=31.6 r2= −17.6 d2=1.0 n2=1.5186 ν2=70.0 r3= 27.9 d3=108.0 nP /nN =n1/n2=1.16、νN /νP =ν2 /ν1 =2.22 (nN ×νN ×fN )/(nP ×νP ×fP )=0.87表6(4.0 倍の倍率を持つレンズ群の例3)P =44.0、fN =−20.5、f=−36.5、m=4.0 、d0= −28.0 r d n ν r1= −34.0 d1=2.0 n1=1.8052 ν1=25.3 r2= −17.8 d2=1.0 n2=1.5145 ν2=54.5 r3= 25.9 d3=108.0 nP /nN =n1/n2=1.19、νN /νP =ν2 /ν1 =2.15 (nN ×νN ×fN )/(nP ×νP ×fP )=0.84 以上の表1〜表6の内の1つを拡大レンズ中の第1レン
ズ群G1 とし、残りの1つを拡大レンズ中の第2レンズ
群G2 とすれば、任意の拡大倍率に設定することができ
る。表1〜表3に示したレンズ群の倍率は全て2.5倍
であり、また表4〜表6に示したレンズ群の倍率は全て
4.0倍である。このため、例えば、表1〜表3中の1
つを拡大レンズ中の第1レンズ群G1 とし、表4〜表6
中の1つを拡大レンズ中の第2レンズ群G2 とすれば、
拡大レンズ全体の倍率は10倍(2.5倍×4.0倍)
となる。また、表1〜表3中の任意の2つをそれぞれ第
1レンズ群G1 及び第2レンズ群G2 とすれば、拡大レ
ンズ全体の倍率は6.25倍(2.5倍×2.5倍)と
なる。また、表4〜表6中の任意の2つをそれぞれ第1
レンズ群G1 及び第2レンズ群G2 とすれば、拡大レン
ズ全体の倍率は16倍(4.0倍×4.0倍)となる。
さらには、第1及び第2レンズ群を全く同一のレンズと
しても良く、この場合にはコストの低減に有利である。
With the above unit configuration, if a plurality of units each including a lens group having an arbitrary imaging magnification and a lens barrel holding the lens group are arbitrarily arranged in series,
Despite its compact structure, it is possible to obtain an image with a large magnification. Next, the specifications of the magnifying lens shown in FIGS. 1 and 3 are listed in Tables 1 to 6 below. In each specification table, f P is the focal length of the positive lens forming part of the lens group, f N is the focal length of the negative lens forming part of the lens group, f is the focal length of the lens group, and m Is the imaging magnification of the lens group, d0 is the distance from the object (object point) to the first surface of the lens group, d3 is the distance from the final surface of the lens group to the image (image point), r is the radius of curvature, and d is Lens surface distance, ν is Abbe number,
n indicates the refractive index for the d line (587.6 nm). Table 1 (Example 1 of a lens group having a magnification of 2.5 times) f P = 86.8, f N = −30.3, f = −45.5, m = 2.5, d0 = −28.0 r d n ν r1 = −49.5 d1 = 2.0 n1 = 1.8052 ν1 = 25.4 r2 = -29.5 d2 = 1.0 n2 = 1.5186 ν2 = 70.0 r3 = 34.0 d3 = 67.0 n P / n n = n1 / n2 = 1.19, ν n / ν P = ν2 / ν1 = 2.99 (n N × ν N × f N ) / (n P × ν P × f P ) = 0.88 Table 2 (Example 2 of a lens group having a magnification of 2.5 times) f P = 71.3, f N = −27.9, f = − 45.1, m = 2.5, d0 = −28.0 r d n ν r1 = −56.5 d1 = 2.0 n1 = 1.7552 ν1 = 27.6 r2 = −28.0 d2 = 1.0 n2 = 1.5186 ν2 = 70.0 r3 = 30.4 d3 = 67.0 n P / n N = n1 / n2 = 1.15, ν N / ν P = ν2 / ν1 = 2.54 (n N × ν N × f N ) / (n P × ν P × f P ) = 0.86 Table 3 (2.5 times magnification Example of lens group 3) having f P = 83.3, f N = −29.8, f = −45.4, m = 2.5, d0 = −28.0 r d n ν r1 = −50.0 d1 = 2.0 n1 = 1.7950 ν1 = 28.6 r2 = −29.0 d2 = 1.0 n2 = 1.4978 ν2 = 82.5 r3 = 30.7 d3 = 67.0 n P / n N = n1 / n2 = 1.20, ν N / ν P = ν2 / ν1 = 2.88 (n N × ν N × f N) / (n P × ν P × f P) = 0.86 Table 4 (4.0-fold Example of a lens group having a magnification of 1) f P = 43.9, f N = −20.2, f = −36.3, m = 4.0, d0 = −28.0 r d n ν r1 = −36.5 d1 = 2.0 n1 = 1.7408 ν1 = 27.6 r2 = -17.6 d2 = 1.0 n2 = 1.5182 ν2 = 59.0 r3 = 26.4 d3 = 108.0 n P / n n = n1 / n2 = 1.15, ν n / ν P = ν2 / ν1 = 2.14 (n n × ν n × f N ) / (n P × ν P × f P ) = 0.86 Table 5 (Example 2 of a lens group having a magnification of 4.0) f P = 45.5, f N = −20.6, f = −36.5, m = 4.0 , D0 = −28.0 r d n ν r1 = −34.2 d1 = 2.0 n1 = 1.7569 ν1 = 31.6 r2 = −17.6 d2 = 1.0 n2 = 1.5186 ν2 = 70.0 r3 = 27.9 d3 = 108.0 n P / n N = n1 / n2 = 1.16, ν N / ν P = ν 2 / ν 1 = 2.22 (n N × ν N × f N ) / (n P × ν P × f P ) = 0.87 Table 6 (Example of lens group with 4.0 times magnification ) 3) f P = 44.0, f N = −20.5, f = −36.5, m = 4.0, d0 = −28.0 r d n ν r1 = −34.0 d1 = 2.0 n1 = 1.8052 ν1 = 25.3 r2 = −17.8 d2 = 1.0 n2 = 1.5145 ν2 = 54.5 r3 = 25.9 d3 = 108.0 n P / n N = n1 /N2=1.19, ν N / ν P = ν 2 / ν 1 = 2.15 (n N × ν N × f N ) / (n P × ν P × f P ) = 0.84 One of the above Tables 1 to 6 If one is the first lens group G 1 in the magnifying lens and the other one is the second lens group G 2 in the magnifying lens, an arbitrary magnifying power can be set. The magnifications of the lens groups shown in Tables 1 to 3 are all 2.5 times, and the magnifications of the lens groups shown in Tables 4 to 6 are all 4.0 times. Therefore, for example, 1 in Table 1 to Table 3
Is the first lens group G 1 in the magnifying lens, and Tables 4 to 6
If one of them is the second lens group G 2 in the magnifying lens,
Magnification of the entire magnifying lens is 10 times (2.5 times x 4.0 times)
Becomes Further, if any two in Tables 1 to 3 are the first lens group G 1 and the second lens group G 2 , the magnification of the entire magnifying lens is 6.25 times (2.5 times × 2. 5 times). In addition, any two of Tables 4 to 6 are first
With the lens group G 1 and the second lens group G 2 , the magnification of the entire magnifying lens is 16 times (4.0 times × 4.0 times).
Furthermore, the first and second lens groups may be the same lens, which is advantageous for cost reduction.

【0022】なお、拡大レンズを1群のみの構成するこ
とも可能ではあるが、十分なる拡大倍率が得られない。
次に、上記表1〜表6に掲げた各レンズ群の収差図をそ
れぞれ図5、図6、図7、図8、図9及び図10に示
す。なお、各収差図は、図1に示した対物レンズ6の射
出瞳位置と対物レンズ6により形成される像I0 との距
離が160であるものとし、この射出瞳位置に光源を配
置した時のものを示している。
Although it is possible to construct the magnifying lens with only one group, a sufficient magnifying power cannot be obtained.
Next, aberration diagrams of the lens groups listed in Tables 1 to 6 are shown in FIGS. 5, 6, 7, 8, 9, and 10, respectively. In each aberration diagram, the distance between the exit pupil position of the objective lens 6 shown in FIG. 1 and the image I 0 formed by the objective lens 6 is 160, and when the light source is arranged at this exit pupil position. Is shown.

【0023】図5〜図10の諸収差図に示される如く、
拡大レンズを構成する各レンズ群は2枚程度の極めて少
ないレンズ構成であっても、極めて良好なる結像性能を
有していることが理解される。以上の実施例において
は、対物レンズ6の像側に拡大レンズ7を配置した例を
示したがこれに限るものではない。例えば、図4に示す
如く、対物レンズ6により形成される像I0 を再結像す
るリレー系11の像側、すなわちリレー系11により形
成される収斂光束中に拡大レンズ7を配置しても良い。
この場合、対物レンズ6及びリレー系11は、被観察物
体からの光束を収斂光束に変換する対物光学系として機
能する。
As shown in the aberration diagrams of FIGS.
It is understood that each lens group forming the magnifying lens has an extremely good image forming performance even if the lens group has an extremely small number of lenses such as two lenses. In the above embodiments, the example in which the magnifying lens 7 is arranged on the image side of the objective lens 6 has been shown, but the present invention is not limited to this. For example, as shown in FIG. 4, even if the magnifying lens 7 is arranged on the image side of the relay system 11 that re-images the image I 0 formed by the objective lens 6, that is, in the convergent light flux formed by the relay system 11. good.
In this case, the objective lens 6 and the relay system 11 function as an objective optical system that converts the light flux from the observed object into a convergent light flux.

【0024】[0024]

【発明の効果】以上のように本発明によれば、極めて簡
素な構成であるにもかかわらず、コンパクトで大きな拡
大倍率が得られる高性能な拡大レンズが達成できる。し
かも、従来の顕微鏡に殆ど改良を加えることなく、本発
明を適用できるという利点がある。
As described above, according to the present invention, it is possible to achieve a high-performance magnifying lens which is compact and has a large magnifying power, although it has an extremely simple structure. Moreover, there is an advantage that the present invention can be applied to the conventional microscope with almost no improvement.

【0025】また、拡大レンズを複数のレンズ群で構成
すれば、従来よりも格段にコンパクト化を図りつつも大
幅な拡大倍率が得られる。さらに、互いに異なる倍率を
有する複数のレンズ群を任意に組み合わせれば、拡大レ
ンズの倍率としては、任意に設定できるという利点があ
る。また、本発明の拡大レンズを構成する各レンズ群は
原理的に2枚程度の極めて少ないレンズ構成枚数で実現
できるため、大幅なコンパクト化並びにコストダウン化
が期待できる。
Further, if the magnifying lens is composed of a plurality of lens groups, it is possible to obtain a large magnifying power while achieving a more compact size than ever before. Further, by arbitrarily combining a plurality of lens groups having different magnifications, there is an advantage that the magnification of the magnifying lens can be set arbitrarily. In addition, since each lens group constituting the magnifying lens of the present invention can be realized with an extremely small number of lens components, such as two in principle, it is expected that the size and cost will be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の拡大レンズを顕微鏡に組み込んだ時の
概略的な構成図。
FIG. 1 is a schematic configuration diagram when a magnifying lens of the present invention is incorporated in a microscope.

【図2】図1に組み込んだ拡大レンズの断面構成の様子
を示す図。
FIG. 2 is a diagram showing a cross-sectional configuration of a magnifying lens incorporated in FIG.

【図3】本発明の原理を説明するための図。FIG. 3 is a diagram for explaining the principle of the present invention.

【図4】図1に示した実施例の変形例を示す図。FIG. 4 is a diagram showing a modification of the embodiment shown in FIG.

【図5】表1に示した2.5 倍の倍率を持つレンズ群の諸
収差図。
FIG. 5 is a diagram showing various aberrations of the lens group having a magnification of 2.5 times shown in Table 1.

【図6】表2に示した2.5 倍の倍率を持つレンズ群の諸
収差図。
FIG. 6 is a diagram showing various aberrations of the lens group having a magnification of 2.5 times shown in Table 2.

【図7】表3に示した2.5 倍の倍率を持つレンズ群の諸
収差図。
FIG. 7 is a diagram showing various aberrations of the lens group having a magnification of 2.5 times shown in Table 3.

【図8】表4に示した4.0 倍の倍率を持つレンズ群の諸
収差図。
FIG. 8 is a diagram of various types of aberration of a lens unit having a magnification of 4.0 times shown in Table 4.

【図9】表5に示した4.0 倍の倍率を持つレンズ群の諸
収差図。
9 is a graph showing various aberrations of the lens unit having a magnification of 4.0 times shown in Table 5. FIG.

【図10】表6に示した4.0 倍の倍率を持つレンズ群の
諸収差図。
FIG. 10 is a diagram of various types of aberration of a lens unit having a magnification of 4.0 times shown in Table 6.

【図11】従来の顕微鏡の概略的な構成を示す図。FIG. 11 is a diagram showing a schematic configuration of a conventional microscope.

【図12】図11に示した顕微鏡の拡大倍率をさらに上
げた例を示す図。
12 is a diagram showing an example in which the magnification of the microscope shown in FIG. 11 is further increased.

【主要部分の符号の説明】[Explanation of symbols for main parts]

5・・・・・・・・・ 標本 6・・・・・・・・・ 対物レンズ 7・・・・・・・・・ 拡大レンズ 11・・・・・・・・・ リレー系 G1 ・・・・・・・・第1レンズ群 G2 ・・・・・・・・第2レンズ群5 ・ ・ ・ ・ ・ ・ Sample 6 ・ ・ ・ ・ ・ ・ ・ ・ Objective lens 7 ・ ・ ・ ・ ・ ・ ・ Magnifying lens 11 ・ ・ ・ ・ ・ ・ ・ Relay system G 1・..... 1st lens group G 2 ..... 2nd lens group

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被観察物体からの光束を収斂光束に変換
し、該被観察物体の空間像を形成する顕微鏡用対物光学
系の倍率を所定の倍率に拡大する拡大レンズにおいて、 前記拡大レンズは、独立に収差補正された負の屈折力の
レンズ群を複数有し、前記顕微鏡用対物光学系により形
成される収斂光束中に前記複数のレンズ群を配置するこ
とにより、前記空間像を所定の倍率に変換することを特
徴とする顕微鏡用拡大レンズ。
1. A magnifying lens for converting a light beam from an object to be observed into a convergent light beam, and enlarging a magnification of an objective optical system for a microscope forming a spatial image of the object to be observed to a predetermined magnification, wherein the magnifying lens is A plurality of lens groups having negative refracting powers that are independently aberration-corrected, and by arranging the plurality of lens groups in a convergent light beam formed by the objective optical system for a microscope, the aerial image can be formed in a predetermined manner. A magnifying lens for microscopes, which converts to magnification.
【請求項2】前記各レンズ群は、正レンズと負レンズと
からなることを特徴とする請求項1記載の顕微鏡用拡大
レンズ。
2. The magnifying lens for a microscope according to claim 1, wherein each of the lens groups includes a positive lens and a negative lens.
【請求項3】前記正レンズは物体側に凹面を向けたメニ
スカスレンズで構成され、 前記負レンズは両凹形状のレンズで構成され、 前記各レンズ群中の正レンズの屈折率をnP とし、前記
各レンズ群中の正レンズのアッベ数をνP 、前記各レン
ズ群中の正レンズの焦点距離をfP 、前記各レンズ中の
負レンズの屈折率をnN 、前記各レンズ群中の負レンズ
のアッベ数をν N 、前記各レンズ群中の負レンズの焦点
距離をfN とするとき、 (1) 1.1 <nP /nN <1.4 (2) 2.0 <νN /νP <3.5 (3) −0.95<(nN ×νN ×fN )/(nP ×νP
×fP )<−0.8 を満足することを特徴とする請求項1又は2記載の顕微
鏡用拡大レンズ。
3. The positive lens has a concave surface facing the object side.
The negative lens is a biconcave lens, and the positive lens in each lens group has a refractive index of n.PAnd the above
The Abbe number of the positive lens in each lens group is νP, Each of the above
The focal length of the positive lens in the lens group is fP, In each lens
The refractive index of the negative lens is nN, Negative lens in each lens group
Abbe number of ν N, The focus of the negative lens in each lens group
Distance fNThen, (1) 1.1 <nP/ NN<1.4 (2) 2.0 <νN/ ΝP<3.5 (3) −0.95 <(nN× νNXfN) / (NP× νP
XfP) <-0.8 is satisfied, The microscope according to claim 1 or 2, characterized in that
Magnifying lens for mirror.
【請求項4】前記正レンズと前記負レンズは互いに接合
されることを特徴とする請求項2又は3記載の顕微鏡用
拡大レンズ。
4. The magnifying lens for a microscope according to claim 2, wherein the positive lens and the negative lens are cemented to each other.
JP02943394A 1994-02-28 1994-02-28 Microscope magnifying lens Expired - Lifetime JP3365026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02943394A JP3365026B2 (en) 1994-02-28 1994-02-28 Microscope magnifying lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02943394A JP3365026B2 (en) 1994-02-28 1994-02-28 Microscope magnifying lens

Publications (2)

Publication Number Publication Date
JPH07239440A true JPH07239440A (en) 1995-09-12
JP3365026B2 JP3365026B2 (en) 2003-01-08

Family

ID=12276009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02943394A Expired - Lifetime JP3365026B2 (en) 1994-02-28 1994-02-28 Microscope magnifying lens

Country Status (1)

Country Link
JP (1) JP3365026B2 (en)

Also Published As

Publication number Publication date
JP3365026B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US6674582B2 (en) Microscope zoom objective lens
US7982961B2 (en) Dry-type microscope objective lens
JPH05142473A (en) Rear conversion lens
JP4061152B2 (en) Zoom photography optics
JPH0634885A (en) Zoom lens
JP2582435B2 (en) Imaging optical system
US6271971B1 (en) Microscope objective, and single objective type binocular stereomicroscope system cross
JP3735909B2 (en) Retro focus lens
KR101387823B1 (en) Catadioptric system and image pickup apparatus
KR100340018B1 (en) Zoom lens and video camera using the same
JPH05297275A (en) Aspherical zoom lens and video camera using same
JP2019191274A (en) Image capturing optical system and microscope system
JPH10268188A (en) Large-aperture lens for photographic at low illuminance
JP4068765B2 (en) Zoom lens
US6995923B2 (en) Small lightweight zoom lens
US6208462B1 (en) Conversion optical system
JP3365026B2 (en) Microscope magnifying lens
JPH0664234B2 (en) Low magnification projection objective
JP2002267936A (en) Photographic optical system and lens barrel
JPH0821952A (en) Zoom lens for finite distance
JP3525599B2 (en) Low magnification microscope objective
JPH08278446A (en) Zoom lens
JPH07270679A (en) High performance wide angle lens
JPH07325253A (en) Zoom lens
JPH09222562A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141101

Year of fee payment: 12

EXPY Cancellation because of completion of term