JPH07239287A - Method and apparatus for estimating life of gear - Google Patents

Method and apparatus for estimating life of gear

Info

Publication number
JPH07239287A
JPH07239287A JP6029592A JP2959294A JPH07239287A JP H07239287 A JPH07239287 A JP H07239287A JP 6029592 A JP6029592 A JP 6029592A JP 2959294 A JP2959294 A JP 2959294A JP H07239287 A JPH07239287 A JP H07239287A
Authority
JP
Japan
Prior art keywords
gear
tooth
detection sensor
meshing point
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6029592A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nishida
和志 西田
Masaharu Nakamura
正治 中村
Hiroyuki Yamamoto
博之 山本
Michio Nishimori
道男 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6029592A priority Critical patent/JPH07239287A/en
Publication of JPH07239287A publication Critical patent/JPH07239287A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an apparatus capable of estimating the residual life of each of teeth by quantitatively detecting the fatigue degrees of the individual teeth of a gear device. CONSTITUTION:The output signals of a torque detection sensor 2 and an angle- of-rotation detection sensor 3 are inputted to the gear meshing point operation means 5 of an operator 10 and the meshing point of a gear changing hourly during operation is operated. The output signal of the torque detection sensor 2 is inputted to a tooth base stress operation means 4 and the stresses generated in the tooth bases of meshed teeth are operated. The obtained meshing point and the stress values of the tooth bases are inputted to a gear fatigue degree operation means 6 and the cumulated fatigue degrees of the respective teeth are operated to be inputted to a residual life operation means 7 and the residual lives of the respective teeth are operated. Therefore, the cumulated fatigue degrees of individual teeth can be known and the replacement period thereof can be accurately estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、減速機等の歯車の歯
の残存寿命を予測する歯車の寿命予測方法および装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear life predicting method and device for predicting the remaining life of gear teeth of a speed reducer or the like.

【0002】[0002]

【従来の技術】歯車は、回転機械や圧延機等の動力伝
達、変速等に広く使用されており、その破損は経済上或
いは安全上大きな損失となる。従来、運転中の歯車の異
常を振動、音、潤滑油中の摩耗粉等から判断していた。
これらは、損傷がある程度進行した後でないと異常が捉
え難いという問題があった。
2. Description of the Related Art Gears are widely used for power transmission, speed change, etc. in rotating machines, rolling mills, etc., and their damage causes a great loss in economic and safety. Conventionally, abnormality of a gear during operation has been judged from vibration, noise, abrasion powder in lubricating oil, and the like.
These have a problem that it is difficult to detect an abnormality unless the damage progresses to some extent.

【0003】近年、アコーステックエッミション(Acou
stic emission sensor;以下AEセンサーと略称する)
を利用して歯車の歯の異常を早期に検出する装置が提案
されるようになった。例えば、特開平4−204230
号は、AEセンサーを利用して歯車の異常を検出する診
断装置を開示している。これは、以下のようなものであ
る。
In recent years, Acoustic Emission (Acou
stic emission sensor; hereinafter abbreviated as AE sensor)
A device for early detection of abnormality in the teeth of gears has been proposed. For example, JP-A-4-204230
Japanese Patent No. 3,058,058 discloses a diagnostic device that utilizes an AE sensor to detect gear anomalies. This is as follows.

【0004】歯車からのアコーステックエミッション
(以下、AEと呼称す)は、AEセンサーによって検出
され、また、歯車の回転周波数は回転周波数検出手段に
よって検出される。そして、周波数解析手段はAEセン
サーからのAE信号を周波数解析して周波数に対するパ
ワー値を算出する。比較手段が周波数解析手段で求めた
パワー値としきい値とを比較する。帯域検出手段は比較
手段の出力に基づき、パワー値がしきい値を越えた周波
数帯域を算出する。このパワー値がしきい値を越える周
波数帯域は、回転周波数検出手段により検出した回転周
波数の両側に広がる領域となる。次に、傷割合算出手段
は先に求めた回転周波数と周波数帯域に基づいて、傷割
合を算出する。これにより歯車の回転方向における傷の
長さのピッチ円に対する割合を算出する。
Acoustic emission (hereinafter referred to as AE) from the gear is detected by the AE sensor, and the rotation frequency of the gear is detected by the rotation frequency detecting means. Then, the frequency analysis means frequency-analyzes the AE signal from the AE sensor to calculate a power value with respect to the frequency. The comparison means compares the power value obtained by the frequency analysis means with the threshold value. The band detection means calculates the frequency band in which the power value exceeds the threshold value based on the output of the comparison means. The frequency band in which the power value exceeds the threshold value is a region that spreads to both sides of the rotation frequency detected by the rotation frequency detection means. Next, the scratch rate calculating means calculates the scratch rate based on the rotational frequency and the frequency band obtained previously. Thus, the ratio of the length of the scratch in the rotation direction of the gear to the pitch circle is calculated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
歯車の異常診断装置は、傷長さの割合を定量的に求める
ことはできるが、これは歯車の歯面の摩耗や傷がある程
度進行しなければ検出できない。また歯車の異常が発生
していても、どの部位で発生しているかを特定するのが
困難であり、一か所に集中して発生する程度の高い異常
と、複数箇所に分散して発生する程度の低い異常とを区
別できないという問題点がある。
However, the above gear abnormality diagnosing device can quantitatively determine the ratio of the scratch length, but this is because the tooth flank of the gear must be worn or damaged to some extent. It cannot be detected. In addition, even if a gear abnormality occurs, it is difficult to identify in which part it is occurring, and there are high anomalies that are concentrated in one place and are distributed in multiple places. There is a problem in that it cannot be distinguished from a lesser degree of abnormality.

【0006】本発明は歯車の個々の歯の疲労度を定量的
に検出することにより、上記の問題点を解消できる装置
を提供することを目的とする。
An object of the present invention is to provide a device capable of solving the above problems by quantitatively detecting the fatigue level of each tooth of a gear.

【0007】[0007]

【課題を解決するための手段】上記課題は、歯車軸に負
荷するトルクと、歯車の回転角度から求めた歯車の噛合
点とによって、当該歯車の各歯ごとに掛かる応力を計算
し、当該応力を累積することによって、各歯単位の寿命
を予測することを特徴とする歯車の寿命予測方法、とす
ることによって解決される。また、この方法に係る装置
は、減速機の歯車に負荷するトルクを検出するトルク検
出センサーと、歯車の回転角度を検出する回転角度検出
センサーと、トルク検出センサーの出力信号と回転角度
検出センサーの出力信号に基づいて噛合点を計算する歯
車噛合点の演算手段と、トルク検出センサーの出力信号
に基づいて対象歯車の歯元応力を計算する歯元応力演算
手段と、得られた歯車噛合点と歯元応力に基づいて歯車
の歯の疲労度を計算する歯車疲労度演算手段と、で構成
する。さらに、予め入力された歯車の歯の限界疲労度と
得られた各歯の疲労度から該当歯の残存寿命を計算する
残存寿命演算手段とする。
The above problem is to calculate the stress applied to each tooth of the gear by the torque applied to the gear shaft and the meshing point of the gear calculated from the rotation angle of the gear, and calculate the stress. The present invention provides a gear life prediction method characterized by predicting the life of each tooth unit by accumulating. Further, the device according to this method, a torque detection sensor for detecting the torque applied to the gear of the reduction gear, a rotation angle detection sensor for detecting the rotation angle of the gear, an output signal of the torque detection sensor and the rotation angle detection sensor. Gear meshing point calculating means for calculating meshing point based on output signal, tooth root stress calculating means for calculating tooth root stress of target gear based on output signal of torque detection sensor, and gear meshing point obtained Gear fatigue degree calculation means for calculating the tooth fatigue degree of the gear based on the tooth root stress. Further, the remaining life calculation means calculates the remaining life of the corresponding tooth from the fatigue limit of each tooth obtained in advance and the fatigue limit of each tooth.

【0008】[0008]

【作用】トルク検出センサーと回転角度検出センサーの
出力信号が、演算器の歯車噛合点演算手段に入力され、
運転中、時々刻々と変化する歯車の噛合点が演算され
る。一方、トルク検出センサーの出力信号が演算器の歯
元応力演算手段に入力され、噛合歯の歯元に生じる応力
が演算される。歯車噛合点検出手段で求められた歯車の
噛合点と歯元応力演算手段で求められた歯元の応力値
が、演算器の歯車疲労度演算手段に入力され、個々の歯
の累積疲労度が演算される。歯車疲労度演算手段で得ら
れた歯の累積疲労度が演算器の残存寿命演算手段に入力
され、個々の歯の残存寿命が演算される。
The output signals of the torque detection sensor and the rotation angle detection sensor are input to the gear meshing point calculation means of the calculator,
During operation, the meshing points of the gears that change from moment to moment are calculated. On the other hand, the output signal of the torque detection sensor is input to the tooth root stress computing means of the computing unit to compute the stress generated at the tooth root of the meshing tooth. The gear meshing point obtained by the gear meshing point detection means and the tooth root stress value obtained by the tooth root stress calculating means are input to the gear fatigue degree calculating means of the calculator, and the cumulative fatigue degree of each tooth is calculated. Is calculated. The cumulative fatigue degree of the teeth obtained by the gear fatigue degree calculating means is input to the remaining life calculating means of the calculator, and the remaining life of each tooth is calculated.

【0009】[0009]

【実施例】本発明の実施例を以下に図面に基づいて説明
する。図1は、本発明装置のブロック図、図2は、演算
器内での演算処理のブロック図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of the device of the present invention, and FIG. 2 is a block diagram of arithmetic processing in an arithmetic unit.

【0010】図1は、本発明装置を鋼板の圧延機の駆動
系の減速機の歯車に適用した例を示している。31a,
32bは、それぞれ上バックアップロールおよび下バッ
クアップロール、32a,32bは、それぞれ上ワーク
ロールおよび下ワークロール、33は圧延されている鋼
板である。上下ワークロール32a,32bは、モータ
37の駆動力は、減速機1、出力軸36、ピニオンスタ
ンド35を介して二本のスピンドル34a,34bに分
力され、上下ワークロール32aおよび32bを回転駆
動する。
FIG. 1 shows an example in which the device of the present invention is applied to a gear of a speed reducer of a drive system of a steel plate rolling mill. 31a,
32b is an upper backup roll and a lower backup roll, 32a and 32b are an upper work roll and a lower work roll, respectively, and 33 is a rolled steel plate. The driving force of the motor 37 of the upper and lower work rolls 32a and 32b is divided by the two spindles 34a and 34b through the speed reducer 1, the output shaft 36, and the pinion stand 35 to rotationally drive the upper and lower work rolls 32a and 32b. To do.

【0011】このような圧延機の駆動系において、トル
ク検出センサー2は診断対象の減速機1の出力軸36に
歪みゲージを貼付け、その出力信号を電波で発信し、そ
の発信信号を受信して演算器10に入力する構成として
いる。勿論、歪みゲージ式のトルク検出センサーに替
え、磁歪式トルク検出センサーとしてもよい。
In the drive system of such a rolling mill, the torque detection sensor 2 attaches a strain gauge to the output shaft 36 of the reduction gear 1 to be diagnosed, transmits the output signal by radio waves, and receives the transmission signal. The configuration is such that it is input to the arithmetic unit 10. Of course, a magnetostrictive torque detection sensor may be used instead of the strain gauge type torque detection sensor.

【0012】また、光学式(または、磁気式)の回転角
度検出センサー3が、前記出力軸36に取付けられてお
り、センサーの出力信号が演算器10に入力される。
An optical (or magnetic) rotation angle detection sensor 3 is attached to the output shaft 36, and an output signal of the sensor is input to the arithmetic unit 10.

【0013】演算器10は、トルク検出センサー2の出
力信号に基づいて歯車の歯元応力を演算する歯元応力演
算手段4、回転角度検出センサー3の出力信号に基づい
て噛合点を演算する歯車噛合点演算手段5、得られた歯
車噛合点と各歯元応力に基づいて各歯の疲労度を演算す
る歯車疲労度演算手段6および予め入力された歯車の歯
の限界疲労度(例えば、設計疲労度、経験則による限界
疲労度等)と得られた各歯の疲労度から各歯の残存寿命
を演算する残存寿命演算手段7を有している。
The calculator 10 calculates the tooth root stress of the gear based on the output signal of the torque detection sensor 2, and the tooth root stress calculation means 4 calculates the meshing point based on the output signal of the rotation angle detection sensor 3. Engagement point calculation means 5, gear fatigue degree calculation means 6 for calculating the fatigue degree of each tooth based on the obtained gear engagement point and each tooth root stress, and the limit fatigue degree of a tooth of a gear that is input in advance (for example, design It has a remaining life calculation means 7 for calculating the remaining life of each tooth from the fatigue degree, the limit fatigue degree according to the empirical rule, etc.) and the obtained fatigue degree of each tooth.

【0014】これらの演算手段4〜7の処理内容の例を
以下に説明する。まず、処理内容の説明をする前に、鋼
板の圧延による出力軸36に加わるトルクの変化特性に
ついて説明する。図3に示すように、ワークロール32
aと32bの間に圧延開始以降n本目の鋼板が噛込む
と、モータの回転能率のためにトルクは急激に立ち上が
りピークトルク Tpn になり、 tcn 後に急減少して一
定レベルのトルク値(これを平均トルクと呼称する) T
Ln が鋼板の尻抜け時まで tLn 秒間続く。
An example of the processing contents of these arithmetic means 4 to 7 will be described below. First, before describing the processing content, the change characteristics of the torque applied to the output shaft 36 due to the rolling of the steel sheet will be described. As shown in FIG. 3, the work roll 32
When the n-th steel plate bites between a and 32b after the start of rolling, the torque rapidly rises to the peak torque T pn due to the rotation efficiency of the motor, and after t cn , the torque suddenly decreases and the torque value at a constant level (this Is called the average torque) T
Ln lasts t Ln seconds until the bottom edge of the steel sheet slips out.

【0015】図2において、歯元応力演算手段4には、
歯車軸芯と歯接触面間の距離Lが予め入力されている。
トルク検出センサー2からn本目の出力信号(噛込み〜
尻抜け)が入力される。まず噛込み時に、歯の歯元に生
じる応力(歯元衝撃応力という)σpn が数1により計
算され、続いて平均トルク時に歯元に生じる応力(平均
応力という)σNn が数2により計算される。
In FIG. 2, the tooth root stress calculating means 4 includes:
The distance L between the gear shaft core and the tooth contact surface is input in advance.
Output signal of the nth line from the torque detection sensor 2 (bite-
Missing) is entered. First, the stress that occurs at the root of the tooth during biting (called root impact stress) σ pn is calculated by Equation 1, and then the stress that occurs at the root at average torque (called average stress) σ Nn is calculated by Equation 2. To be done.

【0016】[0016]

【数1】 [Equation 1]

【0017】[0017]

【数2】 [Equation 2]

【0018】回転角度検出センサー3は、歯車の基準位
置が来たことを示す基準信号と、歯車が一定角度回転す
るごとに回転パルス信号を発生する。以下は、回転パル
スの発生する角度が歯のピッチ角度より大きい場合の構
成を示す。この場合、回転角度検出センサーからの基準
信号と回転パルス信号によって、噛込み時のピークトル
クがかかる位置(歯車の基準となる歯からの角度)θが
数3により計算される。
The rotation angle detection sensor 3 generates a reference signal indicating that the reference position of the gear has arrived and a rotation pulse signal each time the gear rotates a certain angle. The following shows the configuration when the angle generated by the rotation pulse is larger than the tooth pitch angle. In this case, the position (angle from the tooth serving as the reference tooth of the gear) θ is calculated by Equation 3 using the reference signal and the rotation pulse signal from the rotation angle detection sensor.

【0019】[0019]

【数3】 [Equation 3]

【0020】そして、θによって噛込み時のピークトル
クがかかる歯車の基準位置からの歯数がわかる。これを
m番目とする。同様にして、平均トルクがかかる時間t
Lnによって平均トルクがかかる歯の数S(m番目から連
続する歯の数)が分かる。
Then, the number of teeth from the reference position of the gear on which the peak torque at the time of meshing is applied can be found from θ. Let this be the mth. Similarly, the time t that the average torque takes
From Ln , the number S of teeth to which the average torque is applied (the number of consecutive teeth from the m-th) can be known.

【0021】歯車疲労度演算手段6に噛合点の歯数m、
S、および σpn 、σNn が入力されると、m番目の
歯の累積衝撃疲労度Wpm が、数4により、平均疲労度
Nmが、数5により計算される。ここに言う疲労度と
は、歯元応力とその応力の継続時間の積である。またΣ
はその歯車による圧延開始以降からn本めの圧延材まで
の疲労度を各回の歯位置にわたって積算することを示
す。
The gear fatigue degree calculating means 6 has a number of teeth m at the meshing point,
When S, σ pn , and σ Nn are input, the cumulative impact fatigue degree W pm of the m-th tooth is calculated by Equation 4, and the average fatigue degree W Nm is calculated by Equation 5. The fatigue level mentioned here is the product of the root stress and the duration of the stress. Also Σ
Indicates that the fatigue degree from the start of rolling by the gear to the nth rolled material is integrated over each tooth position.

【0022】[0022]

【数4】 [Equation 4]

【0023】[0023]

【数5】 [Equation 5]

【0024】そして、m番目の歯の総合疲労度Fm が、
数6で計算される。
Then, the total fatigue degree F m of the m-th tooth is
It is calculated by Equation 6.

【0025】[0025]

【数6】 [Equation 6]

【0026】ここでwは衝撃応力の平均応力に対する重
み係数を現し、w≧1である。
Here, w represents a weighting coefficient for the average stress of impact stress, and w ≧ 1.

【0027】残存寿命演算手段7に、各歯の総合疲労度
Fと圧延スケジュールRx (本/日が入力されると、数
7により最大累積疲労度の歯の残存寿命Dl (日)が計
算される。
When the total fatigue degree F of each tooth and the rolling schedule R x (books / day are input to the remaining life calculation means 7, the remaining life D l (days) of the tooth with the maximum cumulative fatigue degree is calculated by the equation 7. Calculated.

【0028】[0028]

【数7】 [Equation 7]

【0029】以上の演算結果は、適宜にデスプレイ装置
(CRT,LCD等)11に表示したり、プリンター装
置(図示せず)でアウトプットすることができる。図4
は、各歯の累積疲労度Fm をヒストグラムに表したもの
である。演算器10にさらに、各歯の累積疲労度を予め
入力してあるその注意レベル値(0.8・FC )および
/または、危険レベル値(FC )と比較して各レベル値
を越えるとき、アラームを出す累積疲労度の評価手段を
設けるとよい。
The above calculation results can be appropriately displayed on the display device (CRT, LCD, etc.) 11 or can be output by a printer device (not shown). Figure 4
Is a histogram showing the cumulative fatigue level F m of each tooth. Further, the cumulative fatigue level of each tooth is inputted to the calculator 10 in advance, and the caution level value (0.8 · F C ) and / or the dangerous level value (F C ) are compared with each other to exceed each level value. At this time, it is advisable to provide a means for evaluating the cumulative fatigue level that issues an alarm.

【0030】[0030]

【発明の効果】本発明装置は、歯車に負荷するトルクを
検出するトルク検出センサーと歯車の回転数検出センサ
ーの出力信号を演算器で処理することによって歯車の個
々の歯の累積疲労度を知ることができ、その取替時期を
精度良く予測することができる。これにより、減速機を
含めた歯車装置の開放点検費用の節減や突発的な設備損
傷を防止することができる。
The device of the present invention knows the cumulative fatigue level of each tooth of a gear by processing the output signals of the torque detection sensor for detecting the torque applied to the gear and the rotation speed detection sensor of the gear by an arithmetic unit. It is possible to accurately predict the replacement time. As a result, it is possible to reduce the cost of overhauling the gear system including the reduction gear and prevent accidental equipment damage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置のブロック図である。FIG. 1 is a block diagram of a device of the present invention.

【図2】演算器内での演算処理のブロック図である。FIG. 2 is a block diagram of arithmetic processing in an arithmetic unit.

【図3】鋼板圧延におけるセンサーで得られたトルクお
よび回転パルスの時間推移を示すグラフである。
FIG. 3 is a graph showing a time transition of a torque and a rotation pulse obtained by a sensor in rolling a steel sheet.

【図4】歯車の各歯の累積疲労度のヒストグラムであ
る。
FIG. 4 is a histogram of the cumulative fatigue level of each tooth of the gear.

【符号の説明】[Explanation of symbols]

1 減速機 2 トルク検出センサー 3 回転角度検出センサー 4 歯車応力演算手段 5 歯車噛合点演算手段 6 歯車疲労度演算手段 7 残存寿命演算手段 8 θと被衝撃歯との対応表 10 演算器 36 出力軸 37 モータ DESCRIPTION OF SYMBOLS 1 Reducer 2 Torque detection sensor 3 Rotation angle detection sensor 4 Gear stress calculation means 5 Gear meshing point calculation means 6 Gear fatigue degree calculation means 7 Remaining life calculation means 8 Correspondence table between θ and impacted tooth 10 Calculation unit 36 Output shaft 37 motor

フロントページの続き (72)発明者 西森 道男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Front Page Continuation (72) Inventor Michio Nishimori 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 歯車軸に負荷するトルクと、歯車の回転
角度から求めた歯車の噛合点とによって、当該歯車の各
歯ごとに掛かる応力を計算し、当該応力を累積すること
によって、各歯単位の寿命を予測することを特徴とする
歯車の寿命予測方法。
1. The torque applied to each tooth of the gear is calculated from the torque applied to the gear shaft and the meshing point of the gear determined from the rotation angle of the gear, and the stress is accumulated to accumulate each tooth. A method for predicting the life of gears, characterized by predicting the life of a unit.
【請求項2】 減速機の歯車軸に負荷するトルクを検出
するトルク検出センサーと、歯車の回転角度を検出する
回転角度検出センサーと、トルク検出センサーの出力信
号と回転角度検出センサーの出力信号に基づいて噛合点
を計算する歯車噛合点の演算手段と、トルク検出センサ
ーの出力信号に基づいて対象歯車の歯元応力を計算する
歯元応力演算手段と、得られた歯車噛合点と歯元応力に
基づいて歯車の歯の疲労度を計算する歯車疲労度演算手
段と、を具備した歯車の寿命予測装置。
2. A torque detection sensor for detecting a torque applied to a gear shaft of a reduction gear, a rotation angle detection sensor for detecting a rotation angle of a gear, an output signal of the torque detection sensor and an output signal of the rotation angle detection sensor. Gear meshing point calculating means for calculating meshing point based on, gear root stress calculating means for calculating tooth root stress of target gear based on output signal of torque detection sensor, obtained gear meshing point and root stress A gear life prediction device comprising: a gear fatigue degree calculating means for calculating the tooth fatigue degree of a gear based on the above.
【請求項3】 予め入力された歯車の歯の限界疲労度
と、上記請求項2によって得られた各歯の疲労度から、
該当歯の残存寿命を計算する残存寿命演算手段を具備し
た歯車の寿命予測装置。
3. From the fatigue limit of each tooth of the gear that is input in advance and the fatigue factor of each tooth obtained according to claim 2,
A gear life prediction device comprising a remaining life calculation means for calculating the remaining life of a corresponding tooth.
JP6029592A 1994-02-28 1994-02-28 Method and apparatus for estimating life of gear Withdrawn JPH07239287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6029592A JPH07239287A (en) 1994-02-28 1994-02-28 Method and apparatus for estimating life of gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6029592A JPH07239287A (en) 1994-02-28 1994-02-28 Method and apparatus for estimating life of gear

Publications (1)

Publication Number Publication Date
JPH07239287A true JPH07239287A (en) 1995-09-12

Family

ID=12280351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6029592A Withdrawn JPH07239287A (en) 1994-02-28 1994-02-28 Method and apparatus for estimating life of gear

Country Status (1)

Country Link
JP (1) JPH07239287A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518520A (en) * 2000-07-20 2005-06-23 ボルボ アーティキュレイテッド ホーラーズ アーベー Procedures for estimating object damage and procedures and systems for controlling the use of objects
WO2011114419A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Deterioration detection device for vehicle component device
WO2013162039A1 (en) * 2012-04-27 2013-10-31 日立建機株式会社 Life prediction system for dump truck speed reducer gear and life prediction method for dump truck speed reducer gear
JP2013545081A (en) * 2010-10-08 2013-12-19 ロールス−ロイス・コーポレーション System and method for detecting fault conditions in a drive train using torque vibration data
CN104101380A (en) * 2014-07-02 2014-10-15 西安交通大学 Method for measuring stress and strain of gear root of fixed center gear of planetary gear train
JP6104421B1 (en) * 2016-03-29 2017-03-29 株式会社牧野フライス製作所 Machine feed shaft life management method and life management device
CN106959211A (en) * 2017-03-15 2017-07-18 清华大学 The fatigue test device and its method of testing of a kind of gear engagement
JP2018116020A (en) * 2017-01-20 2018-07-26 いすゞ自動車株式会社 Estimation device and estimation method
JP2019086447A (en) * 2017-11-09 2019-06-06 住友重機械工業株式会社 Life prediction system
JP2019162949A (en) * 2018-03-20 2019-09-26 いすゞ自動車株式会社 Device for estimating degree of fatigue of power transmitting components, and method for estimating degree of fatigue of power transmitting components
CN113203562A (en) * 2021-04-19 2021-08-03 中国航发湖南动力机械研究所 Gear dynamic stress measuring system
CN113623142A (en) * 2021-09-15 2021-11-09 中国船舶重工集团海装风电股份有限公司 Method for evaluating service life of variable-pitch bearing teeth of wind generating set
CN114033844A (en) * 2021-11-04 2022-02-11 凯临钒机械(杭州)有限公司 Gear box management system based on data acquisition

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518520A (en) * 2000-07-20 2005-06-23 ボルボ アーティキュレイテッド ホーラーズ アーベー Procedures for estimating object damage and procedures and systems for controlling the use of objects
WO2011114419A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Deterioration detection device for vehicle component device
JP2013545081A (en) * 2010-10-08 2013-12-19 ロールス−ロイス・コーポレーション System and method for detecting fault conditions in a drive train using torque vibration data
WO2013162039A1 (en) * 2012-04-27 2013-10-31 日立建機株式会社 Life prediction system for dump truck speed reducer gear and life prediction method for dump truck speed reducer gear
CN104101380A (en) * 2014-07-02 2014-10-15 西安交通大学 Method for measuring stress and strain of gear root of fixed center gear of planetary gear train
JP6104421B1 (en) * 2016-03-29 2017-03-29 株式会社牧野フライス製作所 Machine feed shaft life management method and life management device
JP2017181180A (en) * 2016-03-29 2017-10-05 株式会社牧野フライス製作所 Method and device for managing life of feed shaft of machine
JP2018116020A (en) * 2017-01-20 2018-07-26 いすゞ自動車株式会社 Estimation device and estimation method
CN106959211A (en) * 2017-03-15 2017-07-18 清华大学 The fatigue test device and its method of testing of a kind of gear engagement
JP2019086447A (en) * 2017-11-09 2019-06-06 住友重機械工業株式会社 Life prediction system
JP2019162949A (en) * 2018-03-20 2019-09-26 いすゞ自動車株式会社 Device for estimating degree of fatigue of power transmitting components, and method for estimating degree of fatigue of power transmitting components
WO2019182023A1 (en) * 2018-03-20 2019-09-26 いすゞ自動車株式会社 Device for estimating degree of fatigue of motive force transmitting component, and method for estimating degree of fatigue of motive force transmitting component
CN111868416A (en) * 2018-03-20 2020-10-30 五十铃自动车株式会社 Device for estimating fatigue degree of power transmission member and method for estimating fatigue degree of power transmission member
US20210010581A1 (en) * 2018-03-20 2021-01-14 Isuzu Motors Limited Device for Estimating Degree of Fatigue of Motive Force Transmitting Component, and Method for Estimating Degree of Fatigue of Motive Force Transmitting Component
CN111868416B (en) * 2018-03-20 2023-09-15 五十铃自动车株式会社 Fatigue degree estimating device for power transmission member and fatigue degree estimating method for power transmission member
CN113203562A (en) * 2021-04-19 2021-08-03 中国航发湖南动力机械研究所 Gear dynamic stress measuring system
CN113623142A (en) * 2021-09-15 2021-11-09 中国船舶重工集团海装风电股份有限公司 Method for evaluating service life of variable-pitch bearing teeth of wind generating set
CN113623142B (en) * 2021-09-15 2023-01-24 中国船舶重工集团海装风电股份有限公司 Method for evaluating service life of variable-pitch bearing teeth of wind generating set
CN114033844A (en) * 2021-11-04 2022-02-11 凯临钒机械(杭州)有限公司 Gear box management system based on data acquisition
CN114033844B (en) * 2021-11-04 2022-05-27 凯临钒机械(杭州)有限公司 Gear box management system based on data acquisition

Similar Documents

Publication Publication Date Title
JPH07239287A (en) Method and apparatus for estimating life of gear
US7206719B2 (en) Diagnostic method for predicting maintenance requirements in rotating equipment
Yesilyurt et al. Gear tooth stiffness reduction measurement using modal analysis and its use in wear fault severity assessment of spur gears
JP2964887B2 (en) Method for detecting chattering in rolling mills
US20010037180A1 (en) Fault diagnosis method and apparatus
WO2009057820A1 (en) Strip rolling mill and its control method
US11333577B2 (en) Method and device for diagnosing abnormality in rolling bearing
JP6841264B2 (en) Abnormal vibration detection method in cold rolling
WO2022214527A1 (en) Apparatus for continuous monitoring of a metallic material in a rolling process, and related method for continuous monitoring of a metallic material in a rolling process
KR100780423B1 (en) Tension operation control system of hot strip mill and its control method
JP4210481B2 (en) Tandem rolling mill tension control device
JP4391926B2 (en) Handrail drive device, handrail travel resistance value calculation device, monitoring device
JP3546803B2 (en) Slipper metal condition monitoring method and rolling method using the same
JPH0527486B2 (en)
JP2005205424A (en) Fatigue evaluation device for middle roll of rolling mill
KR100929017B1 (en) Plate Break Prediction Method and Apparatus Using Plate Break Prediction Parameters in Cold Rolling Mill
JP2663395B2 (en) Method of preventing secondary breakage of strip in process line of metal strip
JPH0796308A (en) Device for preventing chatter mark in temper rolling mill
SU1228981A1 (en) Method and apparatus for control dimensional cutting
JP4351598B2 (en) Steel sheet elongation rate measuring apparatus and elongation rate measuring method
JPH045518A (en) Abnormality diagnostic system for rolling facility
Dragomir et al. Control process for a cold rolling mill by vibrations and torque
JP2540165B2 (en) Front and back color tone control device for rolled material
JPH07270228A (en) Anomaly diagnosis method for low speed rotary machine
JP3242803B2 (en) Rolling mill

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508