JPH07238926A - Ball bearing device - Google Patents

Ball bearing device

Info

Publication number
JPH07238926A
JPH07238926A JP6029403A JP2940394A JPH07238926A JP H07238926 A JPH07238926 A JP H07238926A JP 6029403 A JP6029403 A JP 6029403A JP 2940394 A JP2940394 A JP 2940394A JP H07238926 A JPH07238926 A JP H07238926A
Authority
JP
Japan
Prior art keywords
ball bearing
ball
ring raceway
life
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6029403A
Other languages
Japanese (ja)
Other versions
JP3252587B2 (en
Inventor
Susumu Takano
晋 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP02940394A priority Critical patent/JP3252587B2/en
Publication of JPH07238926A publication Critical patent/JPH07238926A/en
Application granted granted Critical
Publication of JP3252587B2 publication Critical patent/JP3252587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To improve durability by supporting an axial load by the first ball bearing which is larger than a second ball bearing and whose contact angle direction is different from the second ball bearing, providing plus space by face assembly in a bearing, and specifying the outer wheel of the second ball bearing, the cross sectional curvature radius of an inner wheel track, and ball outer diameter. CONSTITUTION:A ball bearing device is provided with first and second ball bearings 5a, 6a of an angular, which is provided between a shaft 2 outer circumferential surface and a housing 3 inner circumferential surface, and whose contact angle directions are different from each other, and an axial load applied from an outside to constant direction is supported between the shaft 2 and the housing 3 at the time of using by the first ball bearing 5a having the contact angle larger than that of the second ball bearing 6a. Relation of the cross sectional curvature radius re2 of the outer wheel track 14 of the second ball bearing 6a, the cross sectional curvature radius ri2 of an inner wheel track 15, and the outer diameter (d) of a ball 12 is set to 0.53d<=ref<=0.56d, 0.505d<=ri2<=0.52d. It is thus possible to ensure the load capacity of the first ball bearing 5a, an reduce axial direction component force applied on the second ball bearing 6a. Therefore, it is possible to reduce contact surface pressure between the balls 11, 12 of the ball bearings 5a, 6a and the outer wheel and inner wheel tracks 14, 15 so as to prevent reduction of the life.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明に係る玉軸受装置は、ス
クリューコンプレッサの回転軸を回転自在に支持する為
に利用する。
BACKGROUND OF THE INVENTION The ball bearing device according to the present invention is used to rotatably support a rotary shaft of a screw compressor.

【0002】[0002]

【従来の技術】スクリューコンプレッサの回転軸等、高
速で回転する軸を支承する為、図1に示す様な玉軸受装
置が、従来から使用されている。この玉軸受装置は、ス
クリューコンプレッサを構成するロータ1を固定した回
転軸2の外周面と、ハウジング3の内周面との間に設け
られる。尚、図1で4は、ラジアル方向の荷重Fr を支
承する為のころ軸受である。
2. Description of the Related Art A ball bearing device as shown in FIG. 1 has been conventionally used to support a shaft that rotates at a high speed, such as a rotary shaft of a screw compressor. This ball bearing device is provided between the outer peripheral surface of a rotating shaft 2 to which a rotor 1 constituting a screw compressor is fixed and the inner peripheral surface of a housing 3. Incidentally, reference numeral 4 in FIG. 1 denotes a roller bearing for supporting the radial load F r .

【0003】本発明の対象である玉軸受装置は、上記回
転軸2の軸方向(図1の左右方向)に亙るアキシャル荷
重Fa を支承する為のもので、それぞれがアンギュラ型
である第一、第二の玉軸受5、6を組み合わせる事で構
成される。これら第一、第二の玉軸受5、6の接触角α
(後述する図2参照)の方向は、互いに逆方向で、且つ
互いの正面同士を対向させる正面組み合わせ(以下『D
F』とする。)としている。この為、上記回転軸2が図
1の左方に変位しようとする時は、同図で左方の第一の
玉軸受5がアキシャル荷重を支承し、同じく右方に変位
しようとする時は、右方の第二の玉軸受6がアキシャル
荷重を支承して、回転軸2及びロータ1が、ハウジング
3に対し変位する事を防止する。
The ball bearing device which is the object of the present invention is for supporting an axial load F a in the axial direction of the rotary shaft 2 (left and right direction in FIG. 1), and each is an angular type first. , The second ball bearings 5, 6 are combined. Contact angle α between the first and second ball bearings 5 and 6
The directions of (see FIG. 2 to be described later) are opposite to each other, and front combinations (hereinafter, referred to as “D
F ”. ). Therefore, when the rotary shaft 2 is to be displaced to the left in FIG. 1, when the first ball bearing 5 on the left side in FIG. , The second ball bearing 6 on the right side supports the axial load to prevent the rotary shaft 2 and the rotor 1 from being displaced with respect to the housing 3.

【0004】尚、アンギュラ型の玉軸受を1対組み合わ
せる事で何れの方向のアキシャル荷重も支承できる様に
する組み合わせの型としては、図1に示した構造とは逆
に、第一、第二の玉軸受の背面同士を対向させて組み合
わせる、所謂背面組み合わせがある。しかしながら、こ
の様な背面組み合わせの構造を採用した場合には、上記
第一、第二の玉軸受の内輪側の作用点の間隔が大きくな
って、回転軸が傾斜する事に対する曲げ剛性が大きくな
る。従って、スクリューコンプレッサの回転軸2の様
に、傾斜が比較的大きくなる部材の支持に上記背面組み
合わせを使用すると、上記作用点部分に過大な面圧が作
用し易くなる。過大な面圧は、異常発熱や玉の転動面並
びに軌道面の疲れ寿命が低下する原因となる為、好まし
くない。従って、本発明の対象となる玉軸受装置は、図
1に示す様なDFである。
As a combination type which can support an axial load in any direction by combining a pair of angular type ball bearings, contrary to the structure shown in FIG. There is a so-called back surface combination in which the back surfaces of the ball bearings are combined so as to face each other. However, when such a back surface combination structure is adopted, the interval between the action points on the inner ring side of the first and second ball bearings becomes large, and the bending rigidity with respect to the inclination of the rotating shaft becomes large. . Therefore, when the back surface combination is used to support a member having a relatively large inclination, such as the rotary shaft 2 of the screw compressor, an excessive surface pressure tends to act on the action point portion. Excessive surface pressure is not preferable because it causes abnormal heat generation and shortens the fatigue life of the ball rolling surface and raceway surface. Therefore, the ball bearing device to which the present invention is applied is a DF as shown in FIG.

【0005】又、本発明の対象となる玉軸受装置は、第
一、第二の玉軸受5、6を構成する玉11、12の転動
面と、内輪10、10外周面の内輪軌道15、15、外
輪13、13内周面の外輪軌道14、14との間にプラ
ス隙間(実際に存在する隙間)を残した状態で運転され
るものである。この理由は、やはり発熱や剥離寿命の低
下を防止する為である。本発明の対象となる玉軸受装置
が組み込まれるスクリューコンプレッサは、超高速(例
えばdmn が70万〜200万mm・rpm)で回転する。この
為、上記各玉11、12に予圧付与を行ない、所謂マイ
ナスの隙間を持った第一 第二の玉軸受5、6を使用し
た場合には、予圧に基づいてこれら第一、第二の玉軸受
5、6の内部荷重が増加し、やはり異常発熱や疲れ寿命
の低下の原因となる。
The ball bearing device to which the present invention is applied has the rolling surfaces of the balls 11 and 12 constituting the first and second ball bearings 5 and 6 and the inner ring raceway 15 of the inner ring 10 and the outer peripheral surface. , 15, and the outer races 13 and 13 and the outer raceways 14 and 14 on the inner peripheral surfaces thereof, a positive clearance (actually existing clearance) is left. The reason for this is to prevent heat generation and reduction of the peeling life. The screw compressor in which the ball bearing device which is the subject of the present invention is incorporated rotates at an extremely high speed (for example, d m n is 700,000 to 2,000,000 mm · rpm). Therefore, when preload is applied to each of the balls 11 and 12 and the first and second ball bearings 5 and 6 having a so-called negative gap are used, these first and second ball bearings are pre-loaded. The internal load of the ball bearings 5 and 6 increases, which also causes abnormal heat generation and shortened fatigue life.

【0006】従って、本発明の対象となる玉軸受装置
は、それぞれがプラス隙間を持ったアンギュラ型の第
一、第二の玉軸受5、6を、DFで使用する。又、この
玉軸受装置により支持される回転軸2には、上記スクリ
ューコンプレッサの使用時に、前記ロータ1の回転に伴
なってほぼ一定方向(図1では右から左方向へ)のアキ
シャル荷重Fa が加わる。これは、ロータ1に加わる圧
力の方向が決まっている為である。尚、図1で7、8は
間座、9は抑え金である。
Therefore, in the ball bearing device of the present invention, the angular type first and second ball bearings 5 and 6 each having a positive gap are used in the DF. The rotary shaft 2 supported by this ball bearing device has an axial load F a in a substantially constant direction (from right to left in FIG. 1) accompanying the rotation of the rotor 1 when the screw compressor is used. Is added. This is because the direction of pressure applied to the rotor 1 is fixed. In FIG. 1, 7 and 8 are spacers, and 9 is a presser foot.

【0007】ところで、上述の様に、それぞれがアンギ
ュラ型である第一、第二の玉軸受5、6をDFで組み合
わせて成る玉軸受装置は、回転軸2が高速で回転した場
合には、必ずしも十分な軸受寿命を得られない。この様
に高速回転に伴って軸受寿命が低下する原因に就いて、
図2により説明する。
By the way, as described above, in the ball bearing device formed by combining the first and second ball bearings 5 and 6 each of which is an angular type with DF, when the rotary shaft 2 rotates at a high speed, It is not always possible to obtain a sufficient bearing life. Regarding the cause of the shortening of bearing life with high-speed rotation,
This will be described with reference to FIG.

【0008】図2は、高速回転で生じる遠心力に基づい
て、第一、第二の玉軸受5、6に加わる力を説明する為
の図である。上記回転軸2(図1)を高速で回転させた
場合、第一、第二の玉軸受5、6を構成する玉11、1
2に遠心力Fc1が加わる。そして、これら第一、第二の
玉軸受5、6を構成する玉11、12は、この遠心力F
c1に基づいて外輪軌道14、14に、Qin1 の力で、接
触角α方向から押し付けられる。そして、これら第一、
第二の玉軸受5、6を構成する玉11、12は、この力
in1 のアキシャル方向の分力Fain1で各外輪軌道1
4、14に、アキシャル方向に亙り押し付けられる。
FIG. 2 is a diagram for explaining the forces applied to the first and second ball bearings 5 and 6 based on the centrifugal force generated at high speed rotation. When the rotary shaft 2 (FIG. 1) is rotated at a high speed, the balls 11 and 1 that form the first and second ball bearings 5 and 6
A centrifugal force F c1 is applied to 2. And, the balls 11 and 12 constituting these first and second ball bearings 5 and 6 have the centrifugal force F.
The force of Q in1 is applied to the outer ring raceways 14, 14 based on c1 from the contact angle α direction. And these first,
The balls 11 and 12 which form the second ball bearings 5 and 6 are each outer ring raceway 1 by the component force F ain1 of this force Q in1 in the axial direction.
It is pressed against 4, 4 in the axial direction.

【0009】そして、この分力によりFain1+Fain1
相当する内部アキシャル荷重が、互いに直列に組み合わ
された第一、第二の玉軸受5、6内で発生し、上記外輪
軌道14、14と玉11、12との接触面圧を増大させ
て、これら第一、第二の玉軸受5、6の疲れ寿命を低下
させてしまう。尚、高速回転時に於ける玉の遠心力を考
慮した玉軸受の疲れ寿命の計算は、1952年7月発行
のTrans. ASME 中に記載された論文である『The Life o
f High-Speed Ball Bearings』に示された理論に基づい
て行える。
Due to this component force, an internal axial load corresponding to F ain1 + F ain1 is generated in the first and second ball bearings 5 and 6 which are combined in series with each other, and the outer ring raceways 14 and 14 are formed. The contact surface pressure with the balls 11 and 12 is increased, and the fatigue life of these first and second ball bearings 5 and 6 is reduced. The calculation of the fatigue life of the ball bearing considering the centrifugal force of the ball at high speed is described in "The Life o", which was published in Trans. ASME published in July 1952.
f High-Speed Ball Bearings ”.

【0010】上述の様な原因による寿命低下を防止すべ
く、第一、第二の玉軸受5、6を構成する玉11、12
を、軽量なセラミック材により造ったり、或は玉11、
12として小径のものを使用し、遠心力Fc1を小さくす
る試みもなされている。更には、上記第一、第二の玉軸
受5、6の接触角αを何れも小さくする事で、上記遠心
力Fc1に基づくアキシャル方向の分力Fain1を小さくす
る試みも行なわれている。
Balls 11 and 12 constituting the first and second ball bearings 5 and 6 in order to prevent a decrease in life due to the above-mentioned causes.
Made of lightweight ceramic material, or balls 11,
Attempts have also been made to reduce the centrifugal force F c1 by using a small diameter as 12. Furthermore, attempts have been made to reduce the component force F ain1 in the axial direction based on the centrifugal force F c1 by reducing the contact angle α between the first and second ball bearings 5 and 6. .

【0011】ところが、玉11、12を、縦弾性係数の
大きなセラミック材により造ると、特に外部荷重(例え
ば上記アキシャル荷重Fa )を支承する側の第一の玉軸
受5に於いて、外輪軌道14と玉11との接触面圧が、
軸受鋼製の玉を使用した場合よりも増大する。この結
果、第一の玉軸受5の疲れ寿命が低下し、第一、第二の
玉軸受5、6を組み合わせて成る玉軸受装置全体の疲れ
寿命が低下してしまう。又、玉11、12として小径の
ものを使用したり接触角αを小さくすると、第一、第二
の玉軸受5、6のアキシャル方向の負荷容量(基本動定
格荷重)が小さくなり、やはり疲れ寿命が低下してしま
う。
[0011] However, the balls 11 and 12, when made by a large ceramic material modulus, in the first ball bearing 5 side in particular supporting the external loads (e.g. the axial load F a), the outer ring raceway The contact surface pressure between 14 and the ball 11 is
Increased compared to using balls made of bearing steel. As a result, the fatigue life of the first ball bearing 5 is reduced, and the fatigue life of the entire ball bearing device formed by combining the first and second ball bearings 5 and 6 is reduced. Further, if balls 11 and 12 having a small diameter are used or the contact angle α is reduced, the load capacity in the axial direction of the first and second ball bearings 5 and 6 (basic dynamic load rating) becomes small, which also causes fatigue. The life will be shortened.

【0012】この様な遠心力に基づく内部アキシャル荷
重を低減し、上記第一、第二の玉軸受5、6の疲れ寿命
を延長すべく、特開平5−248431号公報、同5−
280482号公報には、図3〜4に示す様な玉軸受装
置が記載されている。この玉軸受装置の場合には、使用
時に外部から回転軸2に加わるアキシャル荷重Fa を支
承する負荷側(図3〜4の左側)に設けられた、第一の
玉軸受5aの接触角α1 よりも、使用時に上記アキシャ
ル荷重Fa を支承しない反負荷側(図3〜4の右側)に
設けられた第二の玉軸受6aの接触角α2 を小さく(α
2 <α1 )している。
In order to reduce the internal axial load due to such centrifugal force and prolong the fatigue life of the first and second ball bearings 5 and 6, there are disclosed in Japanese Unexamined Patent Publication Nos. 5-248431 and 5-248431.
Japanese Patent No. 280482 describes a ball bearing device as shown in FIGS. In the case of the ball bearing apparatus is provided in axial load F a the bears load applied from the outside to the rotary shaft 2 (left side in FIGS. 3-4) at the time of use, the contact angle of the first ball bearing 5a alpha than 1, the axial load F anti-load side without supporting the a small contact angle alpha 2 of the second ball bearing 6a provided (right side in FIGS. 3-4) at the time of use (alpha
21 ).

【0013】上述の様に、第一の玉軸受5aの接触角α
1 を第二の玉軸受6aの接触角α2よりも大きくする事
で、上記第一の玉軸受5aの負荷容量を十分に確保でき
る。この場合に於いて、上記接触角α1 を、前記従来か
ら一般的に知られた玉軸受装置に組み込まれた第一、第
二の玉軸受5、6の接触角αと同じ(α=α1 )とすれ
ば、遠心力に基づいてこの第一の玉軸受5aに作用する
アキシャル方向分力は、Fain1となる。又、第二の玉軸
受6aに加わるアキシャル方向分力はFain2となる。こ
の場合に於いて、この第二の玉軸受6aの接触角α2
は、上記第一の玉軸受5aの接触角α1 よりも小さい。
この為、上記第二の玉軸受6aに加わるアキシャル方向
分力Fain2は、前記従来装置の第二の玉軸受6に作用す
るアキシャル方向分力Fain1よりも小さく(Fain2<F
ain1)なる。この結果、第一、第二の玉軸受5a、6a
を組み合わせて成る玉軸受装置に発生する、遠心力に基
づく内部アキシャル荷重は、Fain1+Fain2となり、前
記従来装置に生じる内部アキシャル荷重Fain1+Fain1
よりも小さくなる。
As described above, the contact angle α of the first ball bearing 5a
By setting 1 to be larger than the contact angle α 2 of the second ball bearing 6a, the load capacity of the first ball bearing 5a can be sufficiently secured. In this case, the contact angle α 1 is the same as the contact angle α of the first and second ball bearings 5 and 6 incorporated in the ball bearing device generally known from the prior art (α = α). 1 ), the axial component force acting on the first ball bearing 5a based on the centrifugal force is F ain1 . The axial component force applied to the second ball bearing 6a is F ain2 . In this case, the contact angle α 2 of this second ball bearing 6a
Is smaller than the contact angle α 1 of the first ball bearing 5a.
Therefore, the axial component force F ain2 applied to the second ball bearing 6a is smaller than the axial component force F ain1 acting on the second ball bearing 6 of the conventional device (F ain2 <F
ain1 ) As a result, the first and second ball bearings 5a, 6a
The internal axial load due to the centrifugal force generated in the ball bearing device formed by combining the above is F ain1 + F ain2 , and the internal axial load F ain1 + F ain1 generated in the conventional device is generated.
Will be smaller than.

【0014】この為、上記第一、第二の玉軸受5a、6
aを構成する玉11、12と外輪軌道14、14との接
触面圧が低下する。そして、第一、第二の玉軸受5a、
6aの転がり疲れ寿命の低下が抑えられ、これら第一、
第二の玉軸受5a、6aを組み合わせて成る玉軸受装置
の寿命低下を抑える事ができる。接触角α2 を小さくし
た第二の玉軸受6aのアキシャル方向の負荷容量は小さ
くなるが、この第二の玉軸受6aは稀に加わる軽荷重を
支承する、一種のバックアップ軸受としての機能しか持
たないので、負荷容量の減少は特に問題とはならない。
For this reason, the first and second ball bearings 5a and 6 are provided.
The contact surface pressure between the balls 11 and 12 forming a and the outer ring raceways 14 and 14 decreases. Then, the first and second ball bearings 5a,
The rolling fatigue life of 6a is suppressed from being shortened.
The life of the ball bearing device formed by combining the second ball bearings 5a and 6a can be prevented from being shortened. Although the load capacity in the axial direction of the second ball bearing 6a having a small contact angle α 2 is small, the second ball bearing 6a has a function as a kind of backup bearing that bears a rare light load. Since it is not, the reduction of load capacity is not a problem.

【0015】[0015]

【発明が解決しようとする課題】ところが、上述の様な
各公報に記載された玉軸受装置の場合、反負荷側の第二
の玉軸受6aの接触角α2 を小さくした事に伴い、この
第二の玉軸受6aの耐久性が不足しがちになる。この様
に、小さな接触角α2 を有する第二の玉軸受6aの耐久
性が不足する理由は次の通りである。
However, in the case of the ball bearing device described in each of the above publications, the contact angle α 2 of the second ball bearing 6a on the anti-load side is reduced, The durability of the second ball bearing 6a tends to be insufficient. The reason why the durability of the second ball bearing 6a having a small contact angle α 2 is insufficient is as follows.

【0016】前述した通り本発明の対象となる玉軸受装
置を構成する第一、第二の玉軸受5a、6aは、プラス
隙間を持っている。そして、スクリューコンプレッサの
運転時に反負荷側の第二の玉軸受6aには、アキシャル
荷重が殆ど加わらない(ラジアル荷重もころ軸受4によ
り支持されるので殆ど加わらない)。従って、この第二
の玉軸受6aを構成する玉12は、遠心力Fc2(図4)
に基づいて直径方向外方に変位する傾向となり、図5に
示す様に、各玉12が外輪13内周面の外輪軌道14の
大径側端部(図5の左端部)に移動する。又、この状態
では、回転軸2(図3参照)から上記第第一の玉軸受5
aの内輪10に加わるアキシャル荷重Fa (図4)によ
り、内輪10外周面の内輪軌道15が、上記玉12から
遠ざかる傾向となる。
As described above, the first and second ball bearings 5a, 6a constituting the ball bearing device of the present invention have a positive clearance. Then, during operation of the screw compressor, almost no axial load is applied to the second ball bearing 6a on the non-load side (the radial load is also supported by the roller bearing 4 so that it is hardly applied). Therefore, the balls 12 that compose the second ball bearing 6a have a centrifugal force F c2 (FIG. 4).
5, the balls 12 tend to be displaced outward in the diametrical direction, and as shown in FIG. 5, each ball 12 moves to the large diameter side end portion (the left end portion in FIG. 5) of the outer ring raceway 14 on the inner peripheral surface of the outer ring 13. Further, in this state, the rotation shaft 2 (see FIG. 3) to the first ball bearing 5
Due to the axial load F a (FIG. 4) applied to the inner ring 10 a, the inner ring raceway 15 on the outer peripheral surface of the inner ring 10 tends to move away from the balls 12.

【0017】この結果、図5に示す様に、上記各玉12
と外輪軌道14との接触角が0度になり、しかも各玉1
2の転動面と上記内輪軌道15とが離れる傾向となる。
この状態では、上記各玉12が転動しにくい為、各玉1
2の転動面と上記内輪軌道15との接触部に滑りが生じ
る。そして、この滑りにより接触部が摩耗し、上記第二
の玉軸受6aが早期に破損する。この為、図3〜4に示
す様に反負荷側の第二の玉軸受6aの接触角α2 を小さ
くした構造を採用した場合には、上記滑りに基づく早期
破損を防止する為、この第二の玉軸受6a、並びにこの
第二の玉軸受6aと組み合わされた負荷側の第一の玉軸
受5aにも予圧を付与した状態(マイナス隙間を持たせ
た状態)で使用せざるを得なかった。
As a result, as shown in FIG.
The contact angle between the outer ring raceway 14 and the outer ring raceway becomes 0 degrees, and each ball 1
The second rolling surface and the inner ring raceway 15 tend to separate from each other.
In this state, since each ball 12 is hard to roll, each ball 1
Slip occurs at the contact portion between the rolling surface 2 and the inner ring raceway 15. Then, the contact portion is abraded by the slip, and the second ball bearing 6a is damaged early. Therefore, when a structure in which the contact angle α 2 of the second ball bearing 6a on the anti-load side is reduced as shown in FIGS. 3 to 4 is adopted, in order to prevent early damage due to the slip, The second ball bearing 6a and the load-side first ball bearing 5a combined with the second ball bearing 6a must be used in a state in which a preload is applied (a state in which a minus clearance is provided). It was

【0018】ところが、この様に第一、第二の玉軸受5
a、6aに予圧を付与した状態で、スクリューコンプレ
ッサの回転軸2を支持すると、予圧に基づいてこれら第
一、第二の玉軸受5a、6aの内部荷重が増加し、異常
発熱や疲れ寿命の低下の原因となる事は、前述の通りで
ある。本発明の玉軸受装置は、上述の様な事情に鑑みて
発明したものである。
However, as described above, the first and second ball bearings 5 are
If the rotating shaft 2 of the screw compressor is supported in a state in which a preload is applied to a and 6a, the internal load of these first and second ball bearings 5a and 6a increases based on the preload, resulting in abnormal heat generation and fatigue life. The cause of the decrease is as described above. The ball bearing device of the present invention has been invented in view of the above circumstances.

【0019】尚、前述の論文『The Life of High-Speed
Ball Bearings』に示された理論は、本明細書中に記載
した計算寿命を求める場合の基礎となるものである。し
かしながら、この論文中には、玉軸受に予圧を付与せ
ず、プラス隙間を設けた状態で運転する場合の理論は開
示されていない。又、組み合わされた複数の玉軸受の接
触角等の条件を変えて遠心力の影響を減ずる方法も書か
れておらず、勿論、この様な方法による利害とその解決
方法も記載されていない。
The above-mentioned paper "The Life of High-Speed"
The theory presented in "Ball Bearings" is the basis for obtaining the calculated life described in this specification. However, this paper does not disclose the theory of the case where the ball bearing is operated without a preload and with a positive clearance. Further, there is no description of a method of reducing the influence of centrifugal force by changing the conditions such as contact angles of a plurality of combined ball bearings, and, of course, neither the interests of such a method nor its solution are described.

【0020】更に、接触角、玉径等が互いに異なる複数
の玉軸受を組み合わせた構造としては、前述した各公報
の他、MRC Bearing Services発行の『PUMPAC The MRC B
earing System 』、1985年のFAG のカタログ02105/
2EA の第93頁、実開昭53−97701号公報、John
Wiley&Sons,Inc.,発行の『Rolling Bearing Analysi
s』、綿林英一編著の『転がり軸受の選び方・使い方』
等に記載されたものも、従来から知られている。しかし
ながら、これら各刊行物に記載された構造は、本発明の
玉軸受装置と用途を異にするものである。従って、これ
ら何れの刊行物にも、上述の様な滑りに基づく摩耗、並
びにその解決方法に関する記載はない。
Further, as a structure in which a plurality of ball bearings having different contact angles, ball diameters, etc. are combined, in addition to the respective publications mentioned above, "PUMPAC The MRC B" issued by MRC Bearing Services
earing System ”, 1985 FAG Catalog 02105 /
2EA, page 93, Japanese Utility Model Publication No. 53-97701, John
Rolling Bearing Analysi, published by Wiley & Sons, Inc.,
s ”by Eiichi Watabayashi,“ How to choose and use rolling bearings ”
Those described in, etc. are conventionally known. However, the structures described in each of these publications have different uses from the ball bearing device of the present invention. Therefore, there is no description in any of these publications about the above-mentioned wear due to slip and its solution.

【0021】[0021]

【課題を解決するための手段】本発明の玉軸受装置は何
れも、前述の各公報等に記載された従来の玉軸受装置と
同様に、軸の外周面とハウジングの内周面との間に設け
られた、接触角の方向が互いに異なるアンギュラ型の第
一、第二の玉軸受を備え、使用時に上記軸とハウジング
との間に外部からほぼ一定方向に加わるアキシャル荷重
を、第二の玉軸受の接触角に比べて大きな接触角を有す
る第一の玉軸受により支承する。
All of the ball bearing devices of the present invention are provided between the outer peripheral surface of the shaft and the inner peripheral surface of the housing in the same manner as the conventional ball bearing devices described in the above-mentioned respective publications. It is equipped with angular type first and second ball bearings having different contact angles from each other, and the axial load applied from the outside in a substantially constant direction between the shaft and the housing during use is The bearing is supported by a first ball bearing having a contact angle larger than that of the ball bearing.

【0022】特に、本発明の玉軸受装置に於いては、上
記第一、第二の玉軸受はDFで配列されて、それぞれプ
ラスの隙間を持っている。又、上記第二の玉軸受の外輪
軌道の断面形状の曲率半径をre2とし、この第二の玉軸
受を構成する玉の外径をdとした場合に、 0.53d≦re2≦0.56dを満たし、上記第二の玉
軸受の内輪軌道の断面形状の曲率半径をri2とし、この
第二の玉軸受を構成する玉の外径をdとした場合に、 0.505d≦ri2≦0.52dを満たす事を特徴とし
ている。
Particularly, in the ball bearing device of the present invention, the first and second ball bearings are arranged in a DF and each have a positive clearance. When the radius of curvature of the cross-sectional shape of the outer ring raceway of the second ball bearing is r e2 and the outer diameter of the balls forming the second ball bearing is d, 0.53 d ≦ r e2 ≦ 0 0.55d ≦ r, where r i2 is the radius of curvature of the cross-sectional shape of the inner ring raceway of the second ball bearing, and d is the outer diameter of the balls that make up the second ball bearing. It is characterized by satisfying i2 ≤ 0.52d.

【0023】[0023]

【作用】上述の様に構成される本発明の玉軸受装置は、
前述の各公報に記載された玉軸受装置と同様に、使用時
に外部から加わるアキシャル荷重を支承する第一の玉軸
受の接触角が大きく、この第一の玉軸受の負荷容量が大
きい為、十分に大きなアキシャル荷重を支承できる。
又、使用時にこのアキシャル荷重を支承しない第二の玉
軸受は、遠心力に基づく内部アキシャル荷重の増大を抑
える。この為、1対のアンギュラ型の玉軸受を組み合わ
せて成る玉軸受装置全体としての、疲れ寿命の低下を抑
える事ができる。
The ball bearing device of the present invention configured as described above is
Similar to the ball bearing device described in each of the above publications, the contact angle of the first ball bearing that bears an axial load applied from the outside during use is large, and the load capacity of this first ball bearing is large, so it is sufficient. Can support large axial loads.
In addition, the second ball bearing that does not support this axial load during use suppresses an increase in the internal axial load due to centrifugal force. Therefore, it is possible to prevent the fatigue life of the ball bearing device as a whole by combining a pair of angular type ball bearings from decreasing.

【0024】特に、本発明の玉軸受装置の場合には、第
一、第二の玉軸受がDFで配列されており、しかもプラ
スの隙間を持っている為、この玉軸受装置の運転時にも
予圧が加わる事がなく、予圧に基づく発熱や疲れ寿命の
低下を来す事がない。しかも、第二の玉軸受の外輪軌道
及び内輪軌道の曲率半径を規制した為、使用時に殆ど荷
重が加わらない第二の玉軸受の玉と軌道との間で滑りが
生じる事がない。
Particularly, in the case of the ball bearing device of the present invention, since the first and second ball bearings are arranged in the DF and have a positive gap, the ball bearing device is also operated. No preload is applied, and heat generation and fatigue life reduction due to preload do not occur. Moreover, since the radii of curvature of the outer ring raceway and the inner ring raceway of the second ball bearing are regulated, slippage does not occur between the ball and the raceway of the second ball bearing to which little load is applied during use.

【0025】即ち、上記第二の玉軸受の外輪軌道の断面
形状の曲率半径を大きくした事に伴い、遠心力に基づい
て玉が直径方向外方に変位した場合でも、この玉と外輪
軌道との接触角が0度とはならない。言い換えれば、玉
と外輪軌道とは常に接触角を持って接触する。従って、
玉の転動面と外輪軌道及び内輪軌道は常に接触したまま
となり、第二の玉軸受の回転時には、玉が確実に転動す
る。この結果、上記転動面と外輪軌道及び内輪軌道との
間に異常な滑りが発生する事がなくなり、この滑りに基
づく異常摩耗を防止できる。
That is, since the radius of curvature of the cross-sectional shape of the outer ring raceway of the second ball bearing is increased, even if the ball is displaced radially outward due to centrifugal force, this ball and the outer ring raceway The contact angle of is not 0 degree. In other words, the ball and the outer ring raceway are always in contact with each other with a contact angle. Therefore,
The rolling surface of the ball is kept in contact with the outer ring raceway and the inner ring raceway at all times, and the ball surely rolls when the second ball bearing rotates. As a result, abnormal slippage does not occur between the rolling surface and the outer ring raceway and the inner ring raceway, and abnormal wear due to this slippage can be prevented.

【0026】[0026]

【実施例】本発明の玉軸受装置は、前述の各公報に記載
された玉軸受装置と同様、図3〜4に示す様に、使用時
に外部から回転軸2に加わるアキシャル荷重Fa を支承
する、負荷側(図3〜4の左側)に設けられた第一の玉
軸受5aの接触角α1 よりも、使用時に上記アキシャル
荷重Fa を支承しない、反負荷側(図3〜4の右側)に
設けられた第二の玉軸受6aの接触角α2 を小さく(α
2 <α1 )している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The ball bearing device of the present invention, like the ball bearing devices described in the above-mentioned respective publications, bears an axial load F a applied to the rotary shaft 2 from the outside during use, as shown in FIGS. to, than the contact angle alpha 1 of the first ball bearing 5a provided on the load side (left side in FIGS. 3-4), no support the axial load F a at the time of use, the anti-load side (in FIGS. 3-4 The contact angle α 2 of the second ball bearing 6a provided on the right side is made small (α
21 ).

【0027】この様に、第一の玉軸受5aの接触角α1
を第二の玉軸受6aの接触角α2 よりも大きくする事
で、上記第一の玉軸受5aの負荷容量を十分に確保でき
る。又、第二の玉軸受6aの接触角α2 は、上記第一の
玉軸受5aの接触角α1 よりも小さい為、上記第二の玉
軸受6aに加わる軸方向分力Fain2は、前記従来装置の
第二の玉軸受6(図1〜2)に作用する軸方向分力F
ain1よりも小さく(Fain2<Fain1)なる。この結果、
第一、第二の玉軸受5a、6aを組み合わせて成る玉軸
受装置に発生する、遠心力に基づく内部アキシャル荷重
が、前記図1〜2に示した従来装置に比べて小さくな
る。
Thus, the contact angle α 1 of the first ball bearing 5a is
Is larger than the contact angle α 2 of the second ball bearing 6a, the load capacity of the first ball bearing 5a can be sufficiently secured. Since the contact angle α 2 of the second ball bearing 6a is smaller than the contact angle α 1 of the first ball bearing 5a, the axial component force F ain2 applied to the second ball bearing 6a is Axial component force F acting on the second ball bearing 6 (FIGS. 1-2) of the conventional device
It is smaller than ain1 (F ain2 <F ain1 ). As a result,
The internal axial load due to the centrifugal force generated in the ball bearing device formed by combining the first and second ball bearings 5a and 6a is smaller than that in the conventional device shown in FIGS.

【0028】この為、上記各第一の玉軸受5a、6aを
構成する玉11、12と外輪軌道14、14及び内輪軌
道15、15との接触面圧が低下する。そして、第一、
第二の玉軸受5a、6aの転がり疲れ寿命が低下する事
が防止され、それぞれがアンギュラ型である第一、第二
の玉軸受5a、6aを組み合わせて成る玉軸受装置の寿
命低下を抑える事ができる。
For this reason, the contact surface pressure between the balls 11 and 12 forming the first ball bearings 5a and 6a and the outer ring raceways 14 and 14 and the inner ring raceways 15 and 15 decreases. And first,
It is possible to prevent the rolling fatigue life of the second ball bearings 5a and 6a from being shortened, and to suppress the life reduction of the ball bearing device formed by combining the first and second ball bearings 5a and 6a, each of which is an angular type. You can

【0029】例えば、本発明者が内径25mm、外径62
mm、幅17mmのアンギュラ型玉軸受(7305型)を2
個、製作時の測定アキシャル隙間が0.030mmとなる
様にして、DFで組み合わせ、67kgf のアキシャル荷
重を受けつつ、回転数23000r.p.m.で回転する回転
軸に装着した場合に於ける、第一、第二の玉軸受の転が
り疲れ寿命を計算した結果を、下記の第1表に示す。
尚、アキシャル荷重を受ける第一の玉軸受(負荷側軸
受)の接触角は総て30度とし、第二の玉軸受(反負荷
側軸受)の接触角は、15度、30度、40度の3種類
に就いて計算した。
For example, the inventor of the present invention has an inner diameter of 25 mm and an outer diameter of 62
2 mm-width, 17 mm-width angular contact ball bearings (Type 7305)
First, in the case where it is mounted on a rotary shaft that rotates at a rotation speed of 23000 rpm while receiving an axial load of 67 kgf so that the measured axial gap during manufacture will be 0.030 mm Table 1 below shows the results of calculating the rolling fatigue life of the second ball bearing.
The contact angles of the first ball bearings (load-side bearings) that receive an axial load are all 30 degrees, and the contact angles of the second ball bearings (anti-load-side bearings) are 15, 30, and 40 degrees. Calculated for three types.

【0030】尚、この計算中、回転軸2の外周面と内輪
10、10の内周面との間の締め代を0.012mm、ハ
ウジング3の内周面と外輪13、13の外周面との間の
締め代を0mm、外輪13、13の温度を80℃、内輪1
0、10の温度を85℃、回転軸2の材質を鋼、ハウジ
ング3の材質を鋳鉄とした。尚、dmn (玉11、12の
ピッチ円の直径dm(mm)と回転数n (r.p.m.)との積)
は約100万となる。又、ラジアル方向の荷重Fr は0
とした。これらの条件は、スクリューコンプレッサ用玉
軸受装置として一般的な条件である。そして、この様な
条件によれば、第一、第二の玉軸受5a、6aに適正な
プラス隙間を付与する事で、dmn が70〜200万、更
にはdmn が80〜300万と言った様な、超高速回転を
連続して行なわせる事が可能となる。
During this calculation, the tightening margin between the outer peripheral surface of the rotary shaft 2 and the inner peripheral surfaces of the inner rings 10, 10 is 0.012 mm, and the inner peripheral surface of the housing 3 and the outer peripheral surfaces of the outer rings 13, 13 are the same. Between the outer ring 13, the temperature of 80 ℃, the inner ring 1
The temperature of 0 and 10 was 85 ° C., the material of the rotary shaft 2 was steel, and the material of the housing 3 was cast iron. Note that d m n (product of pitch circle diameter d m (mm) of balls 11 and 12 and rotation speed n (rpm))
Is about 1 million. Also, the radial load F r is 0
And These conditions are general conditions as a ball bearing device for a screw compressor. Then, according to such conditions, by providing a proper plus clearance to the first and second ball bearings 5a and 6a, d m n is 70 to 2,000,000, and further d m n is 80 to 300. It is possible to continuously perform ultra-high speed rotation, as was said.

【0031】第1表Table 1

【表1】 [Table 1]

【0032】又、上記した各条件のうち、回転速度(dm
n )及びラジアル荷重Fr とアキシャル荷重Fa との比
(Fr /Fa )を変えて、これら各要素(dmn 、Fr
a)が玉軸受装置の疲れ寿命に及ぼす影響に就いて計
算したところ、図6に示す様な結果が得られた。尚、こ
の計算の前提条件として、負荷側の第一の玉軸受5aの
接触角は30度、反負荷側の第二の玉軸受6aの接触角
は15度とした。この図6で、X軸は上記ラジアル荷重
r とアキシャル荷重Fa との比(Fr /Fa)を、Y
軸は回転速度(dmn )を、Z軸は前記図1〜2に示した
従来構造の寿命L0 に対する寿命の比(L/L0 )を、
それぞれ表している。この図6の記載から明らかな通
り、本発明の玉軸受装置によれば、回転速度(dmn )が
70〜200万、荷重比(Fr /Fa )が2以下(Fr
≦2Fa )の範囲で顕著な効果を発揮する。
Among the above conditions, the rotation speed (d m
n) and the ratio of the radial load F r to the axial load F a (F r / F a ), these elements (d m n, F r /
When the effect of F a ) on the fatigue life of the ball bearing device was calculated, the results shown in FIG. 6 were obtained. As a precondition for this calculation, the contact angle of the first ball bearing 5a on the load side was 30 degrees, and the contact angle of the second ball bearing 6a on the anti-load side was 15 degrees. In FIG. 6, the X-axis represents the ratio (F r / F a ) of the radial load F r and the axial load F a to the Y-axis.
The axis represents the rotation speed (d m n), the Z axis represents the ratio of the life (L / L 0 ) to the life L 0 of the conventional structure shown in FIGS.
Each represents. As is evident from FIG. 6, according to the ball bearing apparatus of the present invention, the rotational speed (d m n) is from 70 to 2,000,000, a load ratio (F r / F a) is 2 or less (F r
A remarkable effect is exhibited in the range of ≤2F a ).

【0033】上述の計算結果から明らかな通り、反負荷
側の第二の玉軸受6aの接触角α2を小さくした玉軸受
装置は、玉12と外輪軌道14及び内輪軌道15との間
に滑りが生じない限り、従来の玉軸受装置に比べて大幅
に寿命が長くなる。但し、上記表並びに図6に記載した
寿命は、反負荷側の第二の玉軸受6aを構成する玉12
の転動面と外輪軌道14及び内輪軌道15との間に滑り
が発生しない場合の数値を示している。この滑りが発生
しない限り、上記反負荷側の第二の玉軸受6aの接触角
α2 を小さくし、且つ第一、第二の玉軸受5a、6aに
プラス隙間を付与する事で、図1〜2に示した従来装置
に比べて大幅な寿命延長を図れる。ところが、この様な
小さな接触角α2 とプラス隙間とを組み合わせた場合に
は、しばしば玉12の転動面と外輪軌道14及び内輪軌
道15との間に滑りが発生し、かえって玉軸受装置の寿
命を著しく短くする場合がある事は、前述の通りであ
る。
As is clear from the above calculation results, in the ball bearing device in which the contact angle α 2 of the second ball bearing 6a on the anti-load side is small, there is a slip between the ball 12 and the outer ring raceway 14 and the inner ring raceway 15. Unless it occurs, the life of the bearing is significantly longer than that of the conventional ball bearing device. However, the life shown in the above table and FIG. 6 is the same as that of the ball 12 which constitutes the second ball bearing 6a on the anti-load side.
The numerical values in the case where no slippage occurs between the rolling surface and the outer ring raceway 14 and the inner ring raceway 15 are shown. As long as this slippage does not occur, the contact angle α 2 of the second ball bearing 6a on the counter-load side is made small, and a positive clearance is given to the first and second ball bearings 5a, 6a. It is possible to significantly extend the life as compared with the conventional device shown in FIGS. However, when such a small contact angle α 2 and a positive clearance are combined, a slip often occurs between the rolling surface of the ball 12 and the outer ring raceway 14 and the inner ring raceway 15, and rather the ball bearing device is rather slipped. As described above, the life may be significantly shortened.

【0034】この為、本発明の玉軸受装置の場合には、
上記第二の玉軸受6aの外輪軌道14の曲率半径re2
び内輪軌道15の曲率半径ri2を、玉12の外径dとの
関係で規制する事により、上記寿命の短縮に結び付く様
な滑りの発生を防止している。即ち、本発明の玉軸受装
置の場合には、図7に示す様に、第二の玉軸受6aを構
成する外輪13の外輪軌道14の断面形状の曲率半径r
e2と、上記第二の玉軸受6aを構成する内輪10の内輪
軌道15の断面形状の曲率半径ri2と、この第二の玉軸
受6aを構成する玉12の外径dとの関係を、 0.53d≦re2≦0.56dであり、且つ 0.505d≦ri2≦0.52d としている。
Therefore, in the case of the ball bearing device of the present invention,
By limiting the radius of curvature r e2 of the outer ring raceway 14 of the second ball bearing 6a and the radius of curvature r i2 of the inner ring raceway 15 in relation to the outer diameter d of the ball 12, it is possible to shorten the life. Prevents slippage. That is, in the case of the ball bearing device of the present invention, as shown in FIG. 7, the radius of curvature r of the cross-sectional shape of the outer ring raceway 14 of the outer ring 13 forming the second ball bearing 6a.
The relationship between e2 , the radius of curvature r i2 of the cross-sectional shape of the inner ring raceway 15 of the inner ring 10 that constitutes the second ball bearing 6a, and the outer diameter d of the ball 12 that constitutes this second ball bearing 6a, 0.53d ≦ r e2 ≦ 0.56d and 0.505d ≦ r i2 ≦ 0.52d.

【0035】上記各軌道14、15の断面形状の曲率半
径re2、ri2を上述の範囲に規制する事により、これら
各軌道14、15と玉12の転動面との滑りを防止でき
る理由に就いて、図7により説明する。この図7の鎖線
は、従来から一般的に知られたアンギュラ型玉軸受の外
輪軌道14aの断面形状を表している。この一般的な玉
軸受の場合、外輪軌道14aの断面形状の曲率半径re2
´は、同図に実線で示した、本発明に於ける外輪軌道1
4の断面形状の曲率半径re2よりも小さい(re2´<r
e2)。
By controlling the radius of curvature r e2 , r i2 of the cross-sectional shape of each of the raceways 14, 15 within the above range, it is possible to prevent slippage between these raceways 14, 15 and the rolling surface of the ball 12. This will be described with reference to FIG. The chain line in FIG. 7 shows the cross-sectional shape of the outer ring raceway 14a of a conventionally known angular type ball bearing. In the case of this general ball bearing, the radius of curvature r e2 of the cross-sectional shape of the outer ring raceway 14a
′ Is the outer ring raceway 1 according to the present invention shown by the solid line in FIG.
4 is smaller than the radius of curvature r e2 of the sectional shape (r e2 ′ <r
e2 ).

【0036】一方、玉12の転動面と上記各軌道14
a、15との間にプラスの隙間を設けた場合には、遠心
力に基づいて玉12が直径方向外方(図7の上方)に変
位する。そしてこの変位に基づいて、上記玉12の転動
面と外輪軌道14aとの接触点Pが、この外輪軌道14
aの外方(内径が大きくなった部分)に移動する。そし
て、上記鎖線で示した従来形状の場合には、この接触点
Pが正規の位置からlだけ変位した時点で、上記玉2と
外輪軌道14aとの接触角が0度になる。この様に接触
角が0度になった状態では、この外輪軌道14aが上記
玉12を内輪軌道15に向けて押圧する力が殆どなくな
る。従って、玉12の転動面と内輪軌道15との接触圧
が殆どなくなり、この玉12は遠心力に基づいて上記外
輪軌道14aに押し付けられたまま、殆ど転動しなくな
る。この結果、この玉12の転動面と内輪軌道15との
間で異常な滑りが発生し、これら転動面及び内輪軌道1
5に著しい摩耗を発生する。
On the other hand, the rolling surface of the ball 12 and each of the orbits 14 described above.
When a positive gap is provided between a and 15, the balls 12 are displaced diametrically outward (upward in FIG. 7) due to centrifugal force. Then, based on this displacement, the contact point P between the rolling surface of the ball 12 and the outer ring raceway 14a becomes
It moves to the outside of a (the part where the inside diameter becomes large). In the case of the conventional shape shown by the chain line, the contact angle between the ball 2 and the outer raceway 14a becomes 0 degree when the contact point P is displaced from the normal position by l. In such a state where the contact angle is 0 degree, the outer ring raceway 14a has almost no force for pressing the balls 12 toward the inner ring raceway 15. Therefore, the contact pressure between the rolling surface of the ball 12 and the inner ring raceway 15 is almost eliminated, and the ball 12 is hardly pressed while being pressed against the outer ring raceway 14a by the centrifugal force. As a result, abnormal sliding occurs between the rolling surface of the ball 12 and the inner ring raceway 15, and the rolling surface and the inner ring raceway 1
5 produces significant wear.

【0037】これに対して本発明の場合には、第二の玉
軸受6aを構成する外輪13内周面の外輪軌道14の断
面形状の曲率半径re2を0.53d〜0.56dと、内
輪軌道15の断面形状の曲率半径ri2(=0.505d
〜0.52d)よりも大きくしている(re2>ri2
為、上述の様な滑りに基づく著しい摩耗が発生しない。
即ち、上記曲率半径re2を大きくした事に伴い、玉12
の接触角が0度になる為には、上記接触点Pが正規の位
置からL(>l)だけ変位しなければならなくなる。こ
れに対して内輪軌道15の断面形状の曲率半径ri2は比
較的小さい為、上記玉12がL分変位する以前に、この
玉12の転動面と上記内輪軌道15とが当接する。この
結果、上記玉12が遠心力に基づいて直径方向外方に変
位した場合でも、この玉12の転動面と外輪軌道14及
び内輪軌道15との当接状態が確保され、且つ、当接部
に十分な面圧が作用する。従って、上記玉12は玉軸受
装置の運転に伴って転動する。この結果、この玉12の
転動面と内輪軌道15との間に滑りが発生する事を防止
できて、前述した様な著しい摩耗の発生を確実に防止で
きる。
On the other hand, in the case of the present invention, the radius of curvature r e2 of the sectional shape of the outer ring raceway 14 on the inner peripheral surface of the outer ring 13 which constitutes the second ball bearing 6a is 0.53d to 0.56d. The radius of curvature r i2 of the cross-sectional shape of the inner ring raceway 15 (= 0.505d
.About.0.52d) (r e2 > r i2 ).
Therefore, the above-mentioned remarkable wear due to slippage does not occur.
That is, as the radius of curvature re2 is increased, the balls 12
For the contact angle of 0 to become 0 degree, the contact point P must be displaced from the normal position by L (> l). On the other hand, since the radius of curvature r i2 of the sectional shape of the inner ring raceway 15 is relatively small, the rolling surface of the ball 12 and the inner ring raceway 15 contact each other before the ball 12 is displaced by L. As a result, even when the balls 12 are displaced outward in the diametrical direction by centrifugal force, the contact state between the rolling surface of the balls 12 and the outer ring raceway 14 and the inner ring raceway 15 is ensured, and the contact is made. A sufficient surface pressure acts on the part. Therefore, the balls 12 roll with the operation of the ball bearing device. As a result, it is possible to prevent the occurrence of slippage between the rolling surface of the ball 12 and the inner ring raceway 15, and it is possible to reliably prevent the occurrence of remarkable wear as described above.

【0038】上述の説明から明らかな通り、プラス隙間
を付与して無負荷状態で運転される第二の玉軸受6a
に、著しい摩耗に結び付く様な滑りが発生するのを防止
する為には、内輪軌道15の断面の曲率半径ri2を小さ
く、外輪軌道14の断面の曲率半径re2を大きくすれば
良い。但し、軌道面の曲率半径は、玉12の転動を円滑
に行なわせる必要上、玉12の外径dとの関係で、或る
程度以上(0.505d以上)確保する必要がある。従
って、内輪軌道15の断面の曲率半径ri2も、0.50
5d以上としなければならない。一方、軌道面の曲率半
径を大きくし過ぎると、当該軌道面と玉12の転動面と
の接触面積が狭くなり、上記第二の玉軸受6aに負荷が
加わった場合、或は遠心力に基づいて玉12が外輪軌道
14に押し付けられた場合に、当該接触部に加わる面圧
が大きくなり過ぎて、この第二の玉軸受6aの寿命を短
くする原因となる。従って、上記外輪軌道14の断面の
曲率半径re2を0.56dを越えて大きくする事は好ま
しくない。
As is apparent from the above description, the second ball bearing 6a which is operated in an unloaded state with a positive clearance provided.
Further, in order to prevent the occurrence of slippage that may lead to remarkable wear, the radius of curvature r i2 of the cross section of the inner ring raceway 15 may be made small and the radius of curvature r e2 of the cross section of the outer ring raceway 14 may be made large. However, the radius of curvature of the raceway surface must be secured to some extent (0.505d or more) in relation to the outer diameter d of the ball 12 in order to smoothly roll the ball 12. Therefore, the radius of curvature r i2 of the cross section of the inner ring raceway 15 is also 0.50.
It must be 5d or more. On the other hand, if the radius of curvature of the raceway surface is made too large, the contact area between the raceway surface and the rolling surface of the ball 12 becomes narrow, and when a load is applied to the second ball bearing 6a or centrifugal force is applied. When the ball 12 is pressed against the outer ring raceway 14 on the basis of this, the surface pressure applied to the contact portion becomes too large, which causes the life of the second ball bearing 6a to be shortened. Therefore, by increasing the curvature radius r e2 of the cross section of the outer ring raceway 14 beyond 0.56d it is not preferable.

【0039】以上の説明から、内輪軌道15の断面形状
の曲率半径ri2は0.505d以上(ri2≧0.505
d)とし、外輪軌道14の断面の曲率半径re2は0.5
6d以下(re2≦0.56d)としなければならない事
が解る。更に、上記滑りの発生を防止する為には、内輪
軌道15の断面の曲率半径ri2を外輪軌道14の断面の
曲率半径re2よりも十分に小さくする(ri2<re2)必
要がある事は、やはり前述の説明から明らかである。こ
れらの理由から上記各曲率半径ri2、re2は、次の範囲
に規制しなければならない。
From the above description, the radius of curvature r i2 of the sectional shape of the inner ring raceway 15 is 0.505 d or more (r i2 ≧ 0.505).
d) and the radius of curvature r e2 of the cross section of the outer ring raceway 14 is 0.5.
6d below (r e2 ≦ 0.56d) and it can be seen that must be. Further, in order to prevent the occurrence of slippage, it is necessary to make the radius of curvature r i2 of the cross section of the inner ring raceway 15 sufficiently smaller than the radius of curvature r e2 of the cross section of the outer ring raceway 14 (r i2 <r e2 ). Things are also clear from the above description. For these reasons, the respective radii of curvature r i2 and r e2 must be restricted within the following range.

【0040】0.505d≦ri2≦0.52d 0.53d≦re2≦0.56d 更に好ましくは、 0.505d≦ri2<0.51d 0.53d<re2≦0.56d とする。そして、最も好ましい値は、 ri2=0.505d re2=0.54d である。上記各曲率半径ri2、re2をこの様な範囲に規
制する事で、玉12の転動面と内輪軌道15及び外輪軌
道14との当接部の接触面圧を低く抑えつつ、前述した
様な滑りに基づく異常摩耗の発生を防止できる。
0.505d ≦ r i2 ≦ 0.52d 0.53d ≦ r e2 ≦ 0.56d More preferably, 0.505d ≦ r i2 <0.51d 0.53d <r e2 ≦ 0.56d. The most preferable value is r i2 = 0.505d re 2 = 0.54d. By restricting the respective radii of curvature r i2 and r e2 in such ranges, the contact surface pressure of the contact portion between the rolling surface of the ball 12 and the inner ring raceway 15 and the outer ring raceway 14 is suppressed to a low level as described above. It is possible to prevent abnormal wear due to such slippage.

【0041】更に、運転時に負荷を受けつつ回転する第
一の玉軸受5aの内輪軌道15及び外輪軌道14の断面
の曲率半径を規制する事で、プラス隙間を付与して無負
荷状態で運転される第二の玉軸受6aに滑りが発生する
可能性を、より少なくできる。この理由に就いて図5に
より説明する。上記滑りは、第二の玉軸受6aを構成す
る玉12が遠心力に基づいて外輪軌道14の大径側に変
位し、しかもこの玉12の転動面と内輪軌道15との当
接圧が零若しくは零に近くなった状態で発生する。従っ
て、上記滑りの発生を防止する為には、上記第二の玉軸
受6aを構成する内輪10外周面の内輪軌道15が、玉
12から離れる方向(図5の左方向)に変位するのを防
止する事が効果がある。一方、この内輪10は、上記第
一の玉軸受5aに加わるアキシャル荷重が大きい場合に
は、この第一の玉軸受5aを構成する玉11の転動面と
外輪軌道14及び内輪軌道15との当接部分の弾性変形
に基づいて、図5の左方向に変位する。この事から明ら
かな通り、負荷状態で運転される第一の玉軸受5aの弾
性変形を少なく抑える事が、無負荷状態で運転される第
二の玉軸受6aの滑り防止に効果がある。
Furthermore, by controlling the radius of curvature of the cross section of the inner ring raceway 15 and the outer ring raceway 14 of the first ball bearing 5a which rotates while receiving a load during operation, a positive clearance is provided to operate in an unloaded state. The possibility that slippage will occur in the second ball bearing 6a can be further reduced. The reason for this will be described with reference to FIG. The slip causes the balls 12 forming the second ball bearing 6a to be displaced toward the large diameter side of the outer ring raceway 14 based on the centrifugal force, and the contact pressure between the rolling surface of the ball 12 and the inner ring raceway 15 is increased. It occurs at zero or near zero. Therefore, in order to prevent the occurrence of the slip, it is necessary to displace the inner ring raceway 15 on the outer peripheral surface of the inner ring 10 constituting the second ball bearing 6a in the direction away from the balls 12 (leftward in FIG. 5). Preventing is effective. On the other hand, in the inner ring 10, when the axial load applied to the first ball bearing 5a is large, the rolling surface of the ball 11 forming the first ball bearing 5a, the outer ring raceway 14 and the inner ring raceway 15 are separated from each other. Based on the elastic deformation of the abutting portion, it is displaced leftward in FIG. As is clear from this, suppressing the elastic deformation of the first ball bearing 5a operated under load is effective in preventing slippage of the second ball bearing 6a operated under no load.

【0042】上記弾性変形を少なく抑える為には、上記
第一の玉軸受5aの外輪軌道14の断面形状の曲率半径
e1と、内輪軌道15の断面形状の曲率半径ri1とを、
この第一の玉軸受5aを構成する玉11の外径d´(本
実施例の場合にはd´=d)の1/2に近づける(但
し、前述した理由で0.505d´以上)事が効果があ
る。但し、上記両曲率半径re1、ri1を何れも上記外径
d´の1/2に近づけると、外輪13の中心軸と内輪1
0の中心軸とが傾斜した場合に、玉11の転動面と外輪
軌道14及び内輪軌道15との接触部分に無理な力が加
わり、上記第一の玉軸受5aが破損し易くなる。前述の
様に、本発明の玉軸受装置が組み込まれるスクリューコ
ンプレッサの場合、上記内輪10を外嵌した回転軸2
(図3)が傾斜し易い為、この様な事態を避けるべく、
上記各曲率半径re1、ri1を或る程度大きくする必要が
ある。
In order to suppress the elastic deformation to a minimum, the radius of curvature r e1 of the outer ring raceway 14 of the first ball bearing 5a and the radius of curvature r i1 of the inner ring raceway 15 are
It should be close to 1/2 of the outer diameter d '(d' = d in the case of this embodiment) of the ball 11 constituting the first ball bearing 5a (however, 0.505d 'or more for the above-mentioned reason). Is effective. However, if both of the above-mentioned radii of curvature r e1 and r i1 are brought close to 1/2 of the above-mentioned outer diameter d ′, the central axis of the outer ring 13 and the inner ring 1
When the center axis of 0 is inclined, an unreasonable force is applied to the contact portion between the rolling surface of the ball 11 and the outer ring raceway 14 and the inner ring raceway 15, and the first ball bearing 5a is easily damaged. As described above, in the case of the screw compressor in which the ball bearing device of the present invention is incorporated, the rotary shaft 2 fitted with the inner ring 10 is externally fitted.
(Fig. 3) tends to tilt, so in order to avoid such a situation,
It is necessary to increase the curvature radii r e1 and r i1 to some extent.

【0043】そこで、本実施例の場合には、回転軸2の
傾斜により第一の玉軸受5aが破損する事を防止しつ
つ、上記第一の玉軸受5aを構成する内輪10が図5の
左方向に変位する事を防止する為、上記曲率半径re1
i1を、次の(1)〜(3)の条件を満たす様に規制す
る。 ri1≦re1 −−− (1) ri1≦0.52d´ −−− (2) ri1+re1≧1.03d´ −−− (3)
Therefore, in the case of the present embodiment, while preventing the first ball bearing 5a from being damaged due to the inclination of the rotary shaft 2, the inner ring 10 constituting the first ball bearing 5a has the structure shown in FIG. In order to prevent displacement to the left, the above radius of curvature r e1 ,
r i1 is regulated so as to satisfy the following conditions (1) to (3). r i1 ≦ r e1 −−− (1) r i1 ≦ 0.52d ′ −−− (2) r i1 + r e1 ≧ 1.03d ′ −−− (3)

【0044】上記(1)〜(3)の条件の内、(1)
(2)の条件は、玉12の転動面と内輪軌道15との当
接部の弾性変形を小さくして(当接部の接触面積を広く
して)、内輪10が図5の左方向に変位する事を防止す
る為に必要である。又、(3)の条件は、回転軸2が傾
斜した場合に、第一の玉軸受5aに無理な応力が加わる
事を防止する為に必要である。接触角α2 が小さく、無
負荷状態で運転される第二の玉軸受6aの外輪軌道14
及び内輪軌道15の断面形状の曲率半径re2、ri2を前
述の様に規制するだけでなく、接触角α1 が大きく、負
荷状態で運転される第一の玉軸受5aの断面形状の曲率
半径re1、ri1を上述の様に規制する事で、これら第
一、第二の玉軸受5a、6aを組み合わせて成る玉軸受
装置の寿命を、前記従来の玉軸受装置に比べて大幅に延
長できる。又、前記各公報に記載された玉軸受装置に比
べても、寿命延長効果が確実になる。
Among the above conditions (1) to (3), (1)
The condition (2) is that the elastic deformation of the contact portion between the rolling surface of the ball 12 and the inner ring raceway 15 is made small (the contact area of the contact portion is made wide), and the inner ring 10 is moved to the left in FIG. It is necessary to prevent the displacement. The condition (3) is necessary to prevent the first ball bearing 5a from being unduly stressed when the rotary shaft 2 is tilted. The outer ring raceway 14 of the second ball bearing 6a which has a small contact angle α 2 and is operated under no load
And not only the radius of curvature r e2 , r i2 of the cross-sectional shape of the inner ring raceway 15 is restricted as described above, but also the curvature of the cross-sectional shape of the first ball bearing 5a that has a large contact angle α 1 and is operated under load. By limiting the radii r e1 and r i1 as described above, the life of the ball bearing device formed by combining these first and second ball bearings 5a and 6a can be made significantly longer than that of the conventional ball bearing device. Can be extended. Further, compared to the ball bearing device described in each of the above publications, the effect of extending the life is ensured.

【0045】図8は、本発明の効果を確認する為に行な
った計算の結果を示している。計算の前提条件は、アキ
シャル荷重を100kgf とした以外は、前記第1表を作
成した場合の条件と同じである。又、負荷側である第一
の玉軸受5aの接触角は30度、反負荷側である第二の
玉軸受6aの接触角は15度とした。この図8で、横軸
は第一、第二の玉軸受5a、6aを組み合わせて成る玉
軸受装置の運転中のアキシャル方向の隙間(有効アキシ
ャル隙間)を、縦軸は計算寿命を、それぞれ表してい
る。又、実線Aは、本発明の実施例の計算寿命を、破線
Bは本発明の限界部分から外れた曲率を持つ例であり、
実施する場合に注意を要する比較例の計算寿命を、それ
ぞれ表している。
FIG. 8 shows the result of calculation performed to confirm the effect of the present invention. The preconditions of the calculation are the same as the conditions when the above Table 1 was prepared except that the axial load was 100 kgf. Further, the contact angle of the first ball bearing 5a on the load side was 30 degrees, and the contact angle of the second ball bearing 6a on the anti-load side was 15 degrees. In FIG. 8, the horizontal axis represents the axial clearance (effective axial clearance) during operation of the ball bearing device formed by combining the first and second ball bearings 5a and 6a, and the vertical axis represents the calculated life. ing. Further, the solid line A is the calculated service life of the embodiment of the present invention, and the broken line B is an example having a curvature outside the limit of the present invention.
The calculated lifespans of the comparative examples, which require attention when implemented, are shown.

【0046】尚、上記実線Aで表された本発明の実施
例、及び破線Bで表された比較例の、第一の玉軸受5a
及び第二の玉軸受6aの外輪軌道14及び内輪軌道15
の曲率半径は、次の様に規制した。尚、玉11、12の
外径d、d´は同じ(d=d´)である。 実施例 第一の玉軸受5a ri1=0.505d´ re1=0.525d´ 第二の玉軸受6a ri2=0.505d re2=0.540d 比較例 第一の玉軸受5a ri1=0.515d´ re1=0.515d´ 第二の玉軸受6a ri2=0.515d re2=0.515d
The first ball bearing 5a of the embodiment of the present invention represented by the solid line A and the comparative example represented by the broken line B are shown.
And the outer ring raceway 14 and the inner ring raceway 15 of the second ball bearing 6a.
The radius of curvature of was regulated as follows. The outer diameters d and d'of the balls 11 and 12 are the same (d = d '). Example First ball bearing 5a r i1 = 0.505d 'r e1 = 0.525d' Second ball bearing 6a r i2 = 0.505d r e2 = 0.540d Comparative example First ball bearing 5a r i1 = 0.515d 'r e1 = 0.515d' Second ball bearing 6a r i2 = 0.515d r e2 = 0.515d

【0047】図8の記載から明らかな通り、本発明の玉
軸受装置によれば、従来構造に比べて大幅な寿命延長を
図れる。しかも、十分な有効アキシャル隙間を設けた状
態で長寿命を実現できる為、スクリューコンプレッサ用
回転軸の様に、しばしば傾斜角度を変化させつつ超高速
で回転する回転軸の支持を確実に行なえる。即ち、本発
明の実施例によれば、例えば上記有効アキシャル隙間を
5〜25μm程度と比較的大きくしても、十分な耐久性
(計算寿命)を得る事ができる。
As is clear from the description of FIG. 8, the ball bearing device of the present invention can significantly extend the life as compared with the conventional structure. Moreover, since a long life can be realized with a sufficient effective axial gap provided, it is possible to reliably support a rotating shaft that rotates at an ultra-high speed while often changing the tilt angle, like a rotating shaft for a screw compressor. That is, according to the embodiment of the present invention, sufficient durability (calculated life) can be obtained even if the effective axial gap is relatively large, for example, about 5 to 25 μm.

【0048】これに対して比較例の場合には、元々得ら
れる耐久性が実施例に比べて劣るだけでなく、有効アキ
シャル隙間が3〜6μmを越えると、前述した様な滑り
の発生に基づいて耐久性が急激に低下してしまう。従っ
て、使用時には、有効アキシャル隙間が0〜6μmの範
囲に収まる様に注意する必要がある。この様に、本発明
から外れた曲率半径を持つ場合には、耐久性が急激に低
下する有効アキシャル隙間の値の範囲がより小さいもの
となり、殆ど実用に供し得なくなる。
On the other hand, in the case of the comparative example, not only the durability originally obtained is inferior to that of the example, but also when the effective axial gap exceeds 3 to 6 μm, the above-mentioned slippage occurs. Durability will drop sharply. Therefore, at the time of use, it is necessary to take care so that the effective axial gap falls within the range of 0 to 6 μm. As described above, when the radius of curvature deviates from the present invention, the range of the value of the effective axial gap in which the durability sharply decreases becomes smaller, and it becomes practically practically useless.

【0049】尚、玉軸受装置を構成する第一の玉軸受5
aの計算寿命L5aと第二の玉軸受6aの計算寿命L6a
の関係は、3L5a≦L6aとする事が、これら両玉軸受5
a、6aを組み合わせて成る玉軸受装置の計算寿命LT
を確保する面から好ましい。この理由は次の通りであ
る。複数の玉軸受を組み合わせて成る玉軸受装置の計算
寿命は、最も計算寿命が短い玉軸受(短寿命軸受)の計
算寿命と一致するのではなく、これよりも短くなる事、
計算寿命の長い玉軸受(長寿命軸受)の計算寿命に影響
される事、更には長寿命軸受の計算寿命が長くなる程、
玉軸受装置の計算寿命LT が短寿命軸受の計算寿命に近
づく事は、従来から知られている。
Incidentally, the first ball bearing 5 which constitutes the ball bearing device.
relationship between a calculation lifetime L 5a and calculated life L 6a of the second ball bearing 6a is that the 3L 5a ≦ L 6a is, these two ball bearings 5
Calculated life L T of ball bearing device consisting of a and 6a
It is preferable from the viewpoint of securing. The reason for this is as follows. The calculated life of a ball bearing device consisting of a combination of multiple ball bearings does not match the calculated life of the ball bearing with the shortest calculated life (short-life bearing), but becomes shorter than this.
Being affected by the calculated life of ball bearings (long-life bearings) with a long calculated life, and further, the longer the calculated life of long-life bearings,
It is conventionally known that the calculated life L T of a ball bearing device approaches the calculated life of a short-life bearing.

【0050】一方、使用時にアキシャル荷重を受ける第
一の玉軸受5aの計算寿命L5aを長くする事は難しい反
面、この様なアキシャル荷重を受けない第二の玉軸受6
aの計算寿命L6aを長くする事は容易である。従って、
本発明の玉軸受装置の場合には、第一の玉軸受5aの計
算寿命L5aを短寿命軸受の計算寿命と考え、第二の玉軸
受6aの計算寿命L6aを長寿命軸受の計算寿命と考える
事ができる。そこで、これら第一、第二の玉軸受5a、
6aの計算寿命L5a、L6aの比(L6a/L5a)と、これ
ら両玉軸受5a、6aを組み合わせて成る玉軸受装置の
計算寿命LT と上記第一の玉軸受5aの計算寿命L5a
の比(LT /L5a)の関係を示すと、図9の様になる。
この図9は、従来から知られた組み合わせ軸受の寿命の
計算式に基づいて描いたものである。この図9から明ら
かな通り、第二の玉軸受6aの計算寿命L6aを第一の玉
軸受5aの計算寿命L5aの3倍以上にすれば、玉軸受装
置の計算寿命LT を第一の玉軸受5aの計算寿命L5a
80%以上にできる。
On the other hand, while it is difficult to extend the calculated life L 5a of the first ball bearing 5a that receives an axial load during use, the second ball bearing 6 that does not receive such an axial load is difficult.
It is easy to lengthen the calculation life L 6a of a. Therefore,
In the case of the ball bearing device of the present invention, the calculated life L 5a of the first ball bearing 5a is considered to be the calculated life of the short-life bearing, and the calculated life L 6a of the second ball bearing 6a is the calculated life of the long-life bearing. Can be thought of. Therefore, these first and second ball bearings 5a,
6a the calculated life L 5a, the ratio of L 6a and (L 6a / L 5a), the calculated life of the calculated life L T and the first ball bearing 5a of both ball bearings 5a, ball bearing apparatus comprising a combination of 6a When showing the relationship between the specific (L T / L 5a) of the L 5a, it becomes as in FIG.
This FIG. 9 is drawn based on a conventionally known formula for calculating the life of a combined bearing. As is apparent from FIG. 9, if the calculated life L 6a of the second ball bearing 6a is set to be three times or more the calculated life L 5a of the first ball bearing 5a, the calculated life L T of the ball bearing device will be the first. Can be 80% or more of the calculated life L 5a of the ball bearing 5a.

【0051】勿論、第二の玉軸受6aの計算寿命L6a
第一の玉軸受5aの計算寿命L5aに比べて大幅に長くす
れば、上記玉軸受装置の計算寿命LT を第一の玉軸受5
aの計算寿命L5aに、より近づける事ができる。但し、
第二の玉軸受6aの計算寿命L6aを第一の玉軸受5aの
計算寿命L5aの3倍を大幅に越えて延長しても、計算寿
命L6aを伸ばす事に要するコストに比べて、それにより
得られる玉軸受装置の計算寿命LT の延長効果は少な
い。従って、全体のコストを考えた場合、第二の玉軸受
6aの計算寿命L6aは、上記第一の玉軸受5aの計算寿
命L5aの3倍を越える程度にする事が適当である。
Of course, if the calculated life L 6a of the second ball bearing 6a is made significantly longer than the calculated life L 5a of the first ball bearing 5a, the calculated life L T of the ball bearing device will be Ball bearing 5
It can be brought closer to the calculated life L 5a of a. However,
Even if the calculated lifespan L 6a of the second ball bearing 6a is greatly extended over three times the calculated lifespan L 5a of the first ball bearing 5a, the cost required to extend the calculated lifespan L 6a is The effect of extending the calculated life L T of the ball bearing device obtained thereby is small. Therefore, considering the total cost, it is appropriate that the calculated life L 6a of the second ball bearing 6a exceeds three times the calculated life L 5a of the first ball bearing 5a.

【0052】次に、図10は本発明の第二実施例を示し
ている。本実施例の場合、第一、第二の玉軸受5a、6
aの玉11、12を、保持器16、16により転動自在
に保持している。各保持器16、16は、所謂もみ抜き
保持器と呼ばれるもので、円筒状の主部17、17に玉
11、12を転動自在に保持する為のポケット18、1
8を形成して成る。この様な保持器16、16は、それ
ぞれ第一、第二の玉軸受5a、6aを構成する外輪1
3、13の内側に、所謂外輪案内で装着している。特に
図示の実施例では、これら各保持器16、16の軸方向
(図10の左右方向)両端部外周面と、外輪13、13
の内周面両肩部、即ち外輪軌道14、14から外れた部
分とを、微小隙間を介して互いに対向させて、所謂外輪
両肩案内としている。
Next, FIG. 10 shows a second embodiment of the present invention. In the case of this embodiment, the first and second ball bearings 5a, 6
The balls 11 and 12 of a are held rotatably by the cages 16 and 16. The cages 16, 16 are so-called machined cages, and are pockets 18, 1 for rollingly holding the balls 11, 12 in a cylindrical main portion 17, 17.
8 is formed. Such cages 16 and 16 are the outer ring 1 which comprises the 1st and 2nd ball bearings 5a and 6a, respectively.
The outer ring guides 3 and 13 are mounted inside. Particularly, in the illustrated embodiment, the outer peripheral surfaces of both ends of the retainers 16 and 16 in the axial direction (the left-right direction in FIG. 10) and the outer rings 13 and 13 are shown.
Both shoulder portions of the inner peripheral surface, that is, the portions deviated from the outer ring raceways 14, 14 are opposed to each other with a minute gap therebetween to form a so-called outer ring shoulder guide.

【0053】この様に、上記各保持器16、16の案内
状態を外輪案内とする理由は、次の通りである。即ち、
玉軸受装置としての一般的な使用状態、即ち、dmn が7
0万以下で、且つ第一、第二の玉軸受5a、6aに予圧
が付与されて、運転時に振動の発生が少ない状態であれ
ば、保持器16、16の案内条件を特に規制する必要は
ない。一方、本発明の対象となる、スクリューコンプレ
ッサに組み込まれる玉軸受装置の場合には、dmn が70
万を上回る超高速領域で、プラスのアキシャル隙間を付
与した状態で運転される。しかも、スクリューコンプレ
ッサ特有のアキシャル荷重の変動により振動が多くな
る。この様な使用状態で、上記各保持器16、16の案
内面の摩耗を抑える為には、この保持器16、16の傾
斜を抑える事ができる外輪案内とする事が必要である。
The reason why the guide state of each of the cages 16 and 16 is the outer ring guide is as follows. That is,
The general use condition as a ball bearing device, that is, d m n is 7
If the preload is applied to the first and second ball bearings 5a and 6a and the vibration is less generated during operation, the guide conditions for the cages 16 and 16 need not be particularly restricted. Absent. On the other hand, in the case of the ball bearing device incorporated in the screw compressor, which is the object of the present invention, d m n is 70 or less.
It operates in the ultra-high speed range of over 10,000 with a positive axial clearance. Moreover, the vibration increases due to the fluctuation of the axial load peculiar to the screw compressor. In order to suppress the wear of the guide surfaces of the cages 16 and 16 in such a usage state, it is necessary to use outer ring guides that can suppress the inclination of the cages 16 and 16.

【0054】これに対して、これら保持器16、16を
転動体案内、或は内輪案内とした場合には、運転時の遠
心力等に基づいて(内輪10及び外輪13に比べて剛性
が低い)保持器16、16の径が弾性的に広がる事に伴
い、案内面の間隔が広がって、十分な案内を行なえなく
なる。この状態でこれら保持器16、16に運転時の振
動が加わると、保持器16、16の表面と相手面とが狭
い面積で接触し、異常摩耗等の不都合の原因となる。外
輪案内とした場合には、遠心力に伴って保持器16、1
6の径が広がる傾向となっても、案内面(保持器16、
16の外周面及び外輪13、13の内周面)の間隔が広
がる事はない。又、この案内面の間には潤滑油が存在す
る為、この案内面同士が直接擦れ合う事はない。従っ
て、保持器16、16を外輪案内とする事で、上記案内
面の異常摩耗を有効に防止できる。尚、保持器16、1
6として銅合金製の保持器を使用すれば、この保持器1
6、16の強度を高くして、保持器16、16の損傷防
止を有効に図れる。
On the other hand, when these cages 16, 16 are used as rolling element guides or inner ring guides, the rigidity is lower than that of the inner ring 10 and the outer ring 13 based on centrifugal force during operation. ) As the diameters of the cages 16, 16 expand elastically, the spacing between the guide surfaces increases, and it becomes impossible to provide sufficient guidance. When vibrations are applied to the cages 16 and 16 during operation in this state, the surfaces of the cages 16 and 16 and the mating surface come into contact with each other in a small area, which causes inconvenience such as abnormal wear. When the outer ring guide is used, the cages 16, 1 are accompanied by centrifugal force.
Even if the diameter of 6 tends to widen, the guide surface (the cage 16,
The distance between the outer peripheral surface of 16 and the inner peripheral surfaces of the outer rings 13 and 13 does not increase. Further, since the lubricating oil exists between the guide surfaces, the guide surfaces do not rub each other directly. Therefore, by using the cages 16 and 16 as outer ring guides, abnormal wear of the guide surfaces can be effectively prevented. Incidentally, the cages 16, 1
If a retainer made of copper alloy is used as 6, retainer 1
The strength of the retainers 16 and 16 can be effectively increased by increasing the strength of the retainers 16 and 16.

【0055】その他、プラス隙間を設ける点、第二の玉
軸受6aの接触角を第一の玉軸受5aの接触角よりも小
さくする点、各玉軸受5a、6aの外輪軌道14、14
及び内輪軌道15、15の断面形状の曲率半径を規制す
る点は、上述した第一実施例と同様である。尚、使用時
のdmn がそれ程高くなく、従って保持器16、16に加
わる遠心力が限られたものであれば、図11に示す第三
実施例の様に、各保持器16、16を外輪片肩案内とし
ても良い。
In addition, a plus clearance is provided, a contact angle of the second ball bearing 6a is made smaller than a contact angle of the first ball bearing 5a, and outer ring raceways 14, 14 of the ball bearings 5a, 6a.
Also, the point that the radius of curvature of the cross-sectional shape of the inner ring raceways 15, 15 is restricted is the same as in the first embodiment described above. If the d m n in use is not so high and therefore the centrifugal force applied to the cages 16 and 16 is limited, as in the third embodiment shown in FIG. May be used as one-shoulder guide for the outer ring.

【0056】次に、図12は本発明の第四実施例とし
て、スクリューコンプレッサの回転軸の支持部分のより
具体化した構造を示している。回転軸2の外周面とハウ
ジング3の内周面との間には、このハウジング3内に収
納されたロータ1の側から順に、ラビリンスシール等の
非接触型のシール、或はメカニカルシール等の接触型の
シール等のシール装置19と、ラジアル荷重を支承する
為のころ軸受4と、本発明の玉軸受装置を構成する第一
の玉軸受5a及び第二の玉軸受6aとを、互いに直列に
配設している。又、上記ころ軸受4の内輪20と上記第
一の玉軸受5aとの間には間座7を、上記ころ軸受4の
外輪21と上記第一の玉軸受5aの外輪13との間には
ノズルリング22を、それぞれ挟持している。
Next, FIG. 12 shows, as a fourth embodiment of the present invention, a more specific structure of the supporting portion of the rotary shaft of the screw compressor. Between the outer peripheral surface of the rotary shaft 2 and the inner peripheral surface of the housing 3, a non-contact type seal such as a labyrinth seal or a mechanical seal is arranged in this order from the side of the rotor 1 housed in the housing 3. A seal device 19 such as a contact type seal, a roller bearing 4 for bearing a radial load, a first ball bearing 5a and a second ball bearing 6a constituting the ball bearing device of the present invention are connected in series with each other. It is installed in. A spacer 7 is provided between the inner ring 20 of the roller bearing 4 and the first ball bearing 5a, and a spacer 7 is provided between the outer ring 21 of the roller bearing 4 and the outer ring 13 of the first ball bearing 5a. The nozzle rings 22 are respectively sandwiched.

【0057】上記ノズルリング22の両側面内周寄り部
分は、内周縁に向かう程互いに近づく方向に傾斜した、
円錐凹面状の傾斜面としている。そして両傾斜面の円周
方向1個所乃至は複数個所に、ノズル孔23、23を開
口させている。各ノズル孔23、23は、上記傾斜面に
対して垂直方向に形成している。上記傾斜面を設けるの
は、傾斜方向のノズル孔23、23を形成する作業の容
易化を図る為である。従って、これら各ノズル孔23、
23は、直径方向斜め内方に向けて開口している。そし
て、これら各ノズル孔23、23には、上記ハウジング
3及び上記ノズルリング22内に形成した給油通路24
を介して、潤滑油を送り込み自在としている。
The inner peripheral portions on both side surfaces of the nozzle ring 22 are inclined toward the inner peripheral edge so as to approach each other.
It is a conical concave inclined surface. The nozzle holes 23, 23 are opened at one or a plurality of positions on the both inclined surfaces in the circumferential direction. Each nozzle hole 23, 23 is formed in a direction perpendicular to the inclined surface. The inclined surface is provided in order to facilitate the work of forming the nozzle holes 23, 23 in the inclined direction. Therefore, each of these nozzle holes 23,
The opening 23 is directed inwardly in the diametrical direction. Then, in each of these nozzle holes 23, 23, an oil supply passage 24 formed in the housing 3 and the nozzle ring 22 is provided.
The lubricating oil can be fed in through the.

【0058】一方、上記第一、第二の玉軸受5a、6a
に組み込まれた保持器16a、16aの軸方向(図12
の左右方向)両端部内周面は、端縁部に向かう程内径が
大きくなる、円錐凹面状の傾斜面としている。従って、
上記各玉軸受5a、6aを構成する内輪10、10の外
周面と上記各保持器16a、16aの内周面との間に存
在する空間の、直径方向(図12の上下方向)に亙る幅
寸法は、開口端部に向かう程大きくなる。この結果、上
記ノズル孔23から噴出する潤滑油を、上記第一、第二
の玉軸受5a、6a内に送り込む効率が向上する。従っ
て、これら各玉軸受5a、6aにより構成される玉軸受
装置が超高速で運転される場合にも、これら各玉軸受5
a、6a内に十分量の潤滑油を取り込む事が可能とな
る。
On the other hand, the above-mentioned first and second ball bearings 5a, 6a
Of the cages 16a, 16a incorporated in the
The inner peripheral surface of both end portions is a conical concave inclined surface whose inner diameter increases toward the edge portion. Therefore,
The width of the space existing between the outer peripheral surfaces of the inner rings 10 and 10 forming the ball bearings 5a and 6a and the inner peripheral surfaces of the retainers 16a and 16a in the diametrical direction (vertical direction in FIG. 12). The dimension increases toward the open end. As a result, the efficiency of feeding the lubricating oil ejected from the nozzle hole 23 into the first and second ball bearings 5a and 6a is improved. Therefore, even when the ball bearing device composed of these ball bearings 5a and 6a is operated at ultra-high speed, these ball bearings 5
It is possible to take in a sufficient amount of lubricating oil in a and 6a.

【0059】ノズル孔23が開口する方向、並びに上記
各保持器16a、16aの内周面の形状を上述の様にし
た理由は、次の通りである。即ち、本発明の玉軸受装置
は、前述した従来装置に比べて寿命を大幅に延長する事
ができる。従って、従来と同じ大きさで造った場合に要
求寿命を大幅に上回る様な場合には、第一、第二の玉軸
受5a、6aの寸法系列を小さくして、内径を変える事
なく外径を小さくする事ができる。これにより、玉軸受
装置の小型化、低廉化が可能となるが、寸法系列の小さ
な玉軸受は内部空間が狭い。この為、スクリューコンプ
レッサで一般的に行なわれているジェット給油(高速回
転に基づいて軸受の内部に発生する空気の壁を破って、
軸受の内部に潤滑油を送り込む潤滑方法)を行ないにく
くなる。そこで、上述の様なノズル孔23、23の開口
方向と保持器16a、16aの内周面形状とを採用する
事により、上記ジェット給油を可能とする。
The reason why the direction in which the nozzle hole 23 is opened and the shape of the inner peripheral surface of each of the cages 16a, 16a are set as described above is as follows. In other words, the ball bearing device of the present invention can greatly extend the life as compared with the conventional device described above. Therefore, if the required life is greatly exceeded when it is made in the same size as the conventional one, the size series of the first and second ball bearings 5a and 6a should be reduced so that the inner diameter does not change. Can be reduced. This makes it possible to reduce the size and cost of the ball bearing device, but a ball bearing with a small size series has a small internal space. For this reason, jet refueling generally performed in screw compressors (breaking the wall of air generated inside the bearing based on high speed rotation,
It becomes difficult to carry out the lubrication method by sending lubricating oil into the inside of the bearing. Therefore, by adopting the above-described opening direction of the nozzle holes 23, 23 and the shape of the inner peripheral surface of the retainers 16a, 16a, the jet oil supply can be performed.

【0060】尚、上記ノズル孔23の回転軸2に対する
傾斜角度は、15度程度が最適であるが、10〜20度
の範囲で設定可能である。又、このノズル孔23を有す
る、外輪間座としての機能を兼ね備えたノズルリング2
2は、硬度が HRc56〜66(更に好ましくは HRc60
〜62)の範囲の鋼材により造るのが好ましい。これ
は、スクリューコンプレッサの運転時に生じる特有の振
動により、互いに当接するこのノズルリング22の両側
面と、ころ軸受4及び第一の玉軸受5aの外輪21、1
3の端面とにフレッチング摩耗が発生する事を防止する
為である。
The inclination angle of the nozzle hole 23 with respect to the rotary shaft 2 is optimally about 15 degrees, but can be set within the range of 10 to 20 degrees. Further, the nozzle ring 2 having the nozzle hole 23 and also having a function as an outer ring spacer.
2 has a hardness of HRc56 to 66 (more preferably HRc60
Preferably, it is made of a steel material in the range of -62). This is because both sides of the nozzle ring 22, which come into contact with each other, and the outer races 21, 1 of the roller bearing 4 and the first ball bearing 5a are brought into contact with each other due to the peculiar vibration generated when the screw compressor is operated.
This is to prevent fretting wear from occurring with the end face of No. 3.

【0061】その他、プラス隙間を設ける点、第二の玉
軸受6aの接触角を第一の玉軸受5aの接触角よりも小
さくする点、各玉軸受5a、6aの外輪軌道14、14
及び内輪軌道15、15の断面形状の曲率半径を規制す
る点は、前述した第一実施例及び上述した第二〜第三実
施例と同様である。
In addition, a plus clearance is provided, the contact angle of the second ball bearing 6a is made smaller than the contact angle of the first ball bearing 5a, and the outer ring raceways 14, 14 of each ball bearing 5a, 6a.
The point that the radius of curvature of the cross-sectional shape of the inner ring raceways 15, 15 is restricted is the same as in the above-described first embodiment and the above-described second to third embodiments.

【0062】又、図13は本発明の第五実施例を示して
いる。本実施例の場合には、反負荷側の第二の玉軸受6
aを構成する玉12aを、負荷側の第一の玉軸受5aを
構成する玉11よりも小径にしている。玉12aを小径
にした分だけ、使用時にこの玉12aに加わる遠心力に
基づいて玉軸受装置の内部で発生する内部アキシャル荷
重が小さくなり、玉軸受装置の耐久性をより向上させる
事ができる。小径の玉12aを使用する事で負荷容量は
小さくなるが、第二の玉軸受6aに加わる負荷は小さい
ので、小径の玉12aを使用した場合でも、実用上十分
な耐久性を確保できる。その他、プラス隙間を設ける
点、第二の玉軸受6aの接触角を第一の玉軸受5aの接
触角よりも小さくする点、第一、第二の玉軸受5a、6
aの外輪軌道14、14及び内輪軌道15、15の断面
形状の曲率半径を規制する点は、上述した各実施例と同
様である。
FIG. 13 shows a fifth embodiment of the present invention. In the case of the present embodiment, the second ball bearing 6 on the non-load side
The diameter of the ball 12a forming a is smaller than that of the ball 11 forming the load-side first ball bearing 5a. The smaller the diameter of the ball 12a, the smaller the internal axial load generated inside the ball bearing device due to the centrifugal force applied to the ball 12a during use, and the durability of the ball bearing device can be further improved. Although the load capacity is reduced by using the small diameter ball 12a, the load applied to the second ball bearing 6a is small, and therefore, even when the small diameter ball 12a is used, practically sufficient durability can be secured. In addition, a point where a positive gap is provided, a point where the contact angle of the second ball bearing 6a is made smaller than the contact angle of the first ball bearing 5a, the first and second ball bearings 5a, 6
The point that the radii of curvature of the cross-sectional shapes of the outer ring raceways 14 and 14 and the inner ring raceways 15 and 15 of a are regulated is the same as in each of the above-described embodiments.

【0063】更に、図示は省略したが、反負荷側の第二
の玉軸受を構成する玉の数を、負荷側の第一の玉軸受を
構成する玉の数よりも少なくする事で、上記内部アキシ
ャル荷重を小さくする事もできる。玉の数を減らす事で
負荷容量は小さくなるが、第二の玉軸受に加わる負荷は
小さいので、玉の数を減らした場合でも、実用上十分な
耐久性を確保できる。この様に第二の玉軸受を構成する
玉の数mを第一の玉軸受を構成する玉の数nよりも少な
く(m<n)する場合、上記少ない数mを多い数nの7
0〜80%(m=(0.7〜0.8)n)に規制する事
が好ましい。80%を越える数の玉を組み込んだ場合に
は、内部アキシャル荷重を低減する効果が不十分にな
る。反対に、70%に満たない場合には、隣り合う玉の
間隔が広くなり過ぎて、円滑な回転を妨げてしまう。
尚、この様に、反負荷側の第二の玉軸受を構成する玉の
数を、負荷側の第一の玉軸受を構成する玉の数よりも少
なくする技術は、本発明と組み合わせて実施できる他、
本発明とは独立した形でも実施できる事は明らかであ
る。
Although not shown, the number of balls forming the second ball bearing on the anti-load side is smaller than the number of balls forming the first ball bearing on the load side. The internal axial load can also be reduced. Although the load capacity is reduced by reducing the number of balls, since the load applied to the second ball bearing is small, practically sufficient durability can be secured even when the number of balls is reduced. In this way, when the number m of the balls forming the second ball bearing is set to be smaller than the number n of the balls forming the first ball bearing (m <n), the small number m is set to 7
It is preferable to regulate to 0 to 80% (m = (0.7 to 0.8) n). When incorporating more than 80% of balls, the effect of reducing the internal axial load becomes insufficient. On the other hand, when it is less than 70%, the distance between the adjacent balls becomes too wide, which hinders smooth rotation.
In this way, the technique of reducing the number of balls forming the second ball bearing on the anti-load side to less than the number of balls forming the first ball bearing on the load side is implemented in combination with the present invention. Other than that,
It is obvious that the present invention can be carried out independently of the present invention.

【0064】同様に、反負荷側の第二の玉軸受を構成す
る玉のみを、軸受鋼に比べて軽量なセラミック製とする
事で、上記内部アキシャル荷重の低減を図る事もでき
る。セラミック製の玉を使用する事により、前述の様に
玉の転動面と当接する軌道面に加わる面圧が高くなる
が、第二の玉軸受に加わる負荷は小さいので、過大な面
圧が作用する事はなく、実用上十分な耐久性を確保でき
る。勿論、この様に反負荷側の玉軸受を構成する玉の径
を小さくしたり、玉の数を減らしたり、セラミック製の
玉を使用する技術は、単独で使用する他、組み合わせて
使用する事もできる。この様に、内部アキシャル荷重を
より小さくできる結果、dmn が80〜300と言った様
なより超高速回転で、ラジアル荷重Fr がアキシャル荷
重Fa の1/5以下(5Fr ≦Fa )と言った、より厳
しい条件下での使用も可能になる。
Similarly, the internal axial load can be reduced by making only the balls constituting the second ball bearing on the counter-load side, which are lighter in weight than the bearing steel. By using a ceramic ball, the surface pressure applied to the raceway surface that contacts the rolling surface of the ball increases as described above, but the load applied to the second ball bearing is small, so an excessive surface pressure is applied. It does not work and can ensure sufficient durability for practical use. Of course, in this way, the diameter of the balls that make up the ball bearing on the anti-load side can be reduced, the number of balls can be reduced, and the technology of using ceramic balls can be used alone or in combination. You can also In this way, as a result of making the internal axial load smaller, the radial load F r is ⅕ or less of the axial load F a (5F r ≦ F) at a higher speed such as d m n of 80 to 300. It can be used under more severe conditions such as a ).

【0065】尚、図示の実施例は何れも、1対のアンギ
ュラ型玉軸受をDFで組み合わせた例に就いて示した
が、運転時にアキシャル荷重Fa を支承する第一の玉軸
受を複数個、互いに並列組み合わせで設け、これら複数
個の第一の玉軸受と、アキシャル荷重Fa を支承しない
1個の第二の玉軸受とをDFで組み合わせる事もでき
る。
In each of the illustrated embodiments, a pair of angular type ball bearings is combined with DF, but a plurality of first ball bearings that support the axial load F a during operation are shown. It is also possible to provide the plurality of first ball bearings in parallel combination with each other and one second ball bearing that does not support the axial load Fa to form a DF.

【0066】[0066]

【発明の効果】本発明は、以上に述べた通り構成され作
用する為、外部アキシャル荷重に対する負荷容量を十分
に確保しつつ、内部アキシャル荷重の低減を図って、玉
軸受装置の耐久性向上を図れる。しかも、回転軸の傾斜
に対する許容度も大きく、且つ滑りに伴う異常摩耗も確
実に防止できる為、より優れた耐久性を確実に得る事が
できる。
Since the present invention is constructed and operates as described above, it is possible to improve the durability of the ball bearing device by reducing the internal axial load while ensuring a sufficient load capacity against the external axial load. Can be achieved. Moreover, the tolerance for the inclination of the rotary shaft is large, and abnormal wear due to slipping can be reliably prevented, so that superior durability can be reliably obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来装置の第1例を示す断面図。FIG. 1 is a sectional view showing a first example of a conventional device.

【図2】同じく要部断面図。FIG. 2 is a sectional view of the same main part.

【図3】同第2例を示す断面図。FIG. 3 is a sectional view showing the second example.

【図4】同じく要部断面図。FIG. 4 is a sectional view of the same main part.

【図5】反負荷側の玉軸受に滑りが発生する状態を示
す、図4と同様の断面図。
FIG. 5 is a sectional view similar to FIG. 4, showing a state where slippage occurs in the ball bearing on the anti-load side.

【図6】回転速度並びにアキシャル荷重とラジアル荷重
との比が玉軸受装置の寿命に及ぼす影響を示す線図。
FIG. 6 is a diagram showing the influence of the rotational speed and the ratio of the axial load to the radial load on the life of the ball bearing device.

【図7】本発明の玉軸受装置を構成する第二の玉軸受の
断面を、軌道の曲率半径を誇張して示す断面図。
FIG. 7 is a cross-sectional view showing a cross section of a second ball bearing that constitutes the ball bearing device of the present invention with exaggerated radius of curvature of the raceway.

【図8】軌道の曲率半径とアキシャル隙間とが玉軸受装
置の計算寿命に及ぼす影響を示す線図。
FIG. 8 is a diagram showing the influence of the radius of curvature of the raceway and the axial clearance on the calculated life of the ball bearing device.

【図9】第一の玉軸受の計算寿命と第二の玉軸受の計算
寿命との比と、これらが組み合わされて成る玉軸受装置
の計算寿命と第一の玉軸受の計算寿命との比との関係を
示す線図。
FIG. 9: Ratio of the calculated life of the first ball bearing and the calculated life of the second ball bearing, and the ratio of the calculated life of the ball bearing device formed by combining these and the calculated life of the first ball bearing. FIG.

【図10】本発明の第二実施例を示す要部断面図。FIG. 10 is a cross-sectional view of a main part showing a second embodiment of the present invention.

【図11】同第三実施例を示す要部断面図。FIG. 11 is a cross-sectional view of a main part showing the third embodiment.

【図12】同第四実施例を示す要部断面図。FIG. 12 is a cross-sectional view of an essential part showing the fourth embodiment.

【図13】同第五実施例を示す要部断面図。FIG. 13 is a cross-sectional view of a main part showing the fifth embodiment.

【符号の説明】[Explanation of symbols]

1 ロータ 2 回転軸 3 ハウジング 4 ころ軸受 5、5a 第一の玉軸受 6、6a 第二の玉軸受 7、8 間座 9 抑え金 10 内輪 11 玉 12、12a 玉 13 外輪 14、14a 外輪軌道 15 内輪軌道 16、16a 保持器 17 主部 18 ポケット 19 シール装置 20 内輪 21 外輪 22 ノズルリング 23 ノズル孔 24 給油通路 DESCRIPTION OF SYMBOLS 1 rotor 2 rotating shaft 3 housing 4 roller bearing 5, 5a first ball bearing 6, 6a second ball bearing 7, 8 spacer 9 retaining ring 10 inner ring 11 ball 12, 12a ball 13 outer ring 14, 14a outer ring raceway 15 Inner ring track 16, 16a Cage 17 Main part 18 Pocket 19 Sealing device 20 Inner ring 21 Outer ring 22 Nozzle ring 23 Nozzle hole 24 Oil supply passage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸の外周面とハウジングの内周面との間
に設けられた、それぞれがアンギュラ型であり、接触角
の方向が互いに異なる第一、第二の玉軸受を備え、使用
時に上記軸とハウジングとの間に外部からほぼ一定方向
に加わるアキシャル荷重を、第二の玉軸受の接触角に比
べて大きな接触角を有する第一の玉軸受により支承する
玉軸受装置に於いて、 上記第一、第二の玉軸受は正面組み合わせで配列され
て、それぞれプラスの隙間を持っており、 上記第二の玉軸受の外輪軌道の断面形状の曲率半径をr
e2とし、この第二の玉軸受を構成する玉の外径をdとし
た場合に、 0.53d≦re2≦0.56dを満たし、 上記第二の玉軸受の内輪軌道の断面形状の曲率半径をr
i2とし、この第二の玉軸受を構成する玉の外径をdとし
た場合に、 0.505d≦ri2≦0.52dを満たす事を特徴とす
る玉軸受装置。
1. A first and a second ball bearing, which are provided between an outer peripheral surface of a shaft and an inner peripheral surface of a housing, are angular type and have different contact angle directions from each other. In a ball bearing device for supporting an axial load applied from the outside in a substantially constant direction between the shaft and the housing by a first ball bearing having a contact angle larger than that of the second ball bearing, The first and second ball bearings are arranged in a front combination and each has a positive gap. The radius of curvature of the cross-sectional shape of the outer ring raceway of the second ball bearing is r
where e2 and the outer diameter of the ball forming the second ball bearing are d, 0.53d ≦ r e2 ≦ 0.56d is satisfied, and the curvature of the cross-sectional shape of the inner ring raceway of the second ball bearing is satisfied. Radius r
i2 and then, the outer diameter of the ball configuring the second ball bearing in the case of the d, ball bearing apparatus characterized in that satisfy 0.505d ≦ r i2 ≦ 0.52d.
【請求項2】 第一の玉軸受の外輪軌道の断面形状の曲
率半径をre1とし、この第一の玉軸受を構成する玉の外
径をd´とした場合に、 0.505d´≦re1≦0.53d´を満たし、 上記第一の玉軸受の内輪軌道の断面形状の曲率半径をr
i1とし、この第一の玉軸受を構成する玉の外径をd´と
した場合に、 0.505d´≦ri1≦0.52d´を満たし、 更に、 re1+ri1≧1.03d´を満たす請求項1に記載した
玉軸受装置。
2. When the radius of curvature of the cross-sectional shape of the outer ring raceway of the first ball bearing is r e1 and the outer diameter of the balls forming the first ball bearing is d ′, 0.505 d ′ ≦ r e1 ≦ 0.53d ′ is satisfied, and the radius of curvature of the cross-sectional shape of the inner ring raceway of the first ball bearing is r
i1 and the outer diameter of the ball forming the first ball bearing is d ′, 0.505d ′ ≦ r i1 ≦ 0.52d ′ is satisfied, and further, r e1 + r i1 ≧ 1.03 d ′ The ball bearing device according to claim 1, which satisfies:
JP02940394A 1994-02-28 1994-02-28 Ball bearing device Expired - Fee Related JP3252587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02940394A JP3252587B2 (en) 1994-02-28 1994-02-28 Ball bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02940394A JP3252587B2 (en) 1994-02-28 1994-02-28 Ball bearing device

Publications (2)

Publication Number Publication Date
JPH07238926A true JPH07238926A (en) 1995-09-12
JP3252587B2 JP3252587B2 (en) 2002-02-04

Family

ID=12275179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02940394A Expired - Fee Related JP3252587B2 (en) 1994-02-28 1994-02-28 Ball bearing device

Country Status (1)

Country Link
JP (1) JP3252587B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147408A (en) * 2005-01-11 2005-06-09 Ntn Corp Double row rolling bearing
JP2008298284A (en) * 2007-05-01 2008-12-11 Jtekt Corp Bearing device for turbocharger
JP2011503477A (en) * 2007-11-14 2011-01-27 アクツィエブーラゲート エスケイエフ Pinion bearing unit
US7918649B2 (en) 2003-11-18 2011-04-05 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
JP2011252521A (en) * 2010-06-01 2011-12-15 Nsk Ltd Double row ball bearing unit
CN106286581A (en) * 2016-08-26 2017-01-04 洛阳轴研科技股份有限公司 One assembles angular contact ball bearing
EP3919767A1 (en) * 2020-06-03 2021-12-08 Jtekt Corporation Touchdown bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918649B2 (en) 2003-11-18 2011-04-05 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
JP2005147408A (en) * 2005-01-11 2005-06-09 Ntn Corp Double row rolling bearing
JP4522266B2 (en) * 2005-01-11 2010-08-11 Ntn株式会社 Double row roller bearing
JP2008298284A (en) * 2007-05-01 2008-12-11 Jtekt Corp Bearing device for turbocharger
JP2011503477A (en) * 2007-11-14 2011-01-27 アクツィエブーラゲート エスケイエフ Pinion bearing unit
US9903413B2 (en) 2007-11-14 2018-02-27 Aktiebolaget Skf Pinion bearing unit
JP2011252521A (en) * 2010-06-01 2011-12-15 Nsk Ltd Double row ball bearing unit
CN106286581A (en) * 2016-08-26 2017-01-04 洛阳轴研科技股份有限公司 One assembles angular contact ball bearing
EP3919767A1 (en) * 2020-06-03 2021-12-08 Jtekt Corporation Touchdown bearing

Also Published As

Publication number Publication date
JP3252587B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
US9500231B2 (en) Fractured-outer-race full-complement ball-bearing system incorporated in a turbocharger assembly
US7918649B2 (en) Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
US5540575A (en) High speed rotating apparatus having face-to-face angular contact ball bearings
EP1961982B1 (en) Roller bearing
US9528592B2 (en) Solid-lubricated bearing assembly
JP2003239993A (en) Rolling bearing
JPH07238926A (en) Ball bearing device
JP3682998B2 (en) Rolling bearing device
JP3550712B2 (en) Ball bearing device
JP4364610B2 (en) Roller bearing
JP2006214456A (en) Roller bearing
JP2008267400A (en) Ball bearing
JP2006214456A5 (en)
JP4715961B2 (en) Rotary table device for machine tools
JP2007225034A (en) Rolling bearing
JP2006112555A (en) Roller bearing with aligning ring
JP3360396B2 (en) Ball bearing device
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
CN112714833B (en) Spindle device
JP2006077814A (en) Spindle rotation support device for machine tool
JP2535073B2 (en) Slewing bearing
JP4269809B2 (en) Spherical roller bearing
JP2004108429A (en) Tapered roller bearing
JP4855181B2 (en) Roller bearing
KR101398984B1 (en) Roller and roller bearing using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees