JPH07238803A - Operation control device applied to power plant groups - Google Patents

Operation control device applied to power plant groups

Info

Publication number
JPH07238803A
JPH07238803A JP6029716A JP2971694A JPH07238803A JP H07238803 A JPH07238803 A JP H07238803A JP 6029716 A JP6029716 A JP 6029716A JP 2971694 A JP2971694 A JP 2971694A JP H07238803 A JPH07238803 A JP H07238803A
Authority
JP
Japan
Prior art keywords
generator
operation pattern
section
power generation
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6029716A
Other languages
Japanese (ja)
Inventor
Haruhisa Komatsu
治久 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6029716A priority Critical patent/JPH07238803A/en
Publication of JPH07238803A publication Critical patent/JPH07238803A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To let the device be effected, which can make an operating expenditure minimum for a plurality of generation plants, and concurrently reduce the mental and physical burden of an operator. CONSTITUTION:The device is equipped with a process input section 5 inputting the flow rate of steam and the output of each generator 1i which are detected by each detected means 3i, an equipment characteristic section 6 storing the equipment characteristics of each generator 1i, and with a demand input section 7 storing the total output demand of all of the generators. And the device is also equipped with an operation pattern operating section 8 which inputs each stored data out of the process input section 5, the equipment characteristic section 6 and the demand input section 7 so as to operate an operation pattern making a total operating expenditure minimum, and with an operation pattern output section 9 which inputs an operation pattern from the aforesaid operating section 8 so as to output an operation control signal to each generator control means 2i. The control of each generator based on an operation pattern which is obtained by the operation pattern operating section 8 in such a way that the total operating expenditure is made minimum, enables much labor and time on the part of an operator to be reduced, and also enables the continuous and economical operation of each generator to be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の発電プラントに
より形成された発電プラント群に適用される運転制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device applied to a power plant group formed by a plurality of power plants.

【0002】[0002]

【従来の技術】従来の複数台の容量の異なるボイラと、
これらのボイラに接続されたタービンと発電機からなる
発電プラントの制御系統においては、図4に示すような
系統が形成されており、その制御は、複数の運転員がお
互いに電話等で連絡をとりながら発電機器毎の発電電力
量を決定し、発電機器毎1 a,1b,……,1nに設置
された発電機器制御装置02a,02b,……,02n
を手動で操作することにより行われていた。
2. Description of the Related Art Conventional boilers having different capacities,
In the control system of the power plant including the turbine and the generator connected to these boilers, a system as shown in Fig. 4 is formed, and the control is performed by a plurality of operators contacting each other by telephone or the like. While determining the amount of power generated by each generator, the generator controller 02a, 02b, ..., 02n installed in each generator 1a, 1b ,.
Was manually operated.

【0003】[0003]

【発明が解決しようとする課題】従来の発電プラントの
運転制御においては、発電機の運転はその発電機器毎の
運転員の状況判断で運転されていたため、全発電機器の
運転費用が最小となる運転を実現することは非常に困難
であり、更に、運転員は連続的に発電機器制御装置を操
作しつづけなければならず、これが精神的、肉体的に大
きな負担になっていた。
In the conventional operation control of the power generation plant, since the operation of the generator is operated according to the situation judgment of the operator for each power generation device, the operation cost of all the power generation devices is minimized. It is very difficult to realize the operation, and furthermore, the operator has to continuously operate the generator control device, which imposes a heavy mental and physical burden.

【0004】本発明は、上記課題を解決するためのもの
であって、その目的とするところは、全発電機器の総運
転費用を最小にする各発電機器の発電電力量の演算を行
い、その演算にもとづいて、上記発電機器の運転制御信
号を出力する安価な運転制御装置を具備することによ
り、運転員が多大な労力と時間を要することなく、全発
電機器を連続的つ経済的に運転できるコンパクトで、か
つ価格低廉な運転制御装置を提供することにある。
The present invention is intended to solve the above problems, and an object of the present invention is to calculate the amount of electric power generated by each generator to minimize the total operating cost of all generators. Equipped with an inexpensive operation control device that outputs the operation control signal of the above-mentioned power generation equipment based on the calculation, the operator can operate all the power generation equipment continuously and economically without much labor and time. It is to provide a compact and inexpensive operation control device that can be performed.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明の発電プラント群に適用される運転制御装
置は、ボイラ、タービン及び発電機により形成された発
電機器と、蒸気流量と発電機出力を検知する検知手段が
接続され上記発電機器を制御する発電機器制御装置とを
それぞれが備えた複数の発電プラントにより形成された
発電プラント群に適用される運転制御装置において、上
記それぞれの検知手段により検知された蒸気流量と発電
機出力を周期的に取り込み格納するプロセス入力部と、
上記発電機器の上下限制約、ボイラ燃料消費量特性及び
発電機出力特性を予め入力し格納する機器特性部と、電
力需要予測データを基に求められ予め入力した総発電機
出力要求量を格納するデマンド入力部と、上記プロセス
入力部に格納された蒸気流量と発電機出力、機器特性部
に格納された発電機器の上下限制約とボイラ燃料消費量
特性と発電機出力特性及びデマンド入力部に格納された
総発電機出力要求量から上記発電機器の総運転費用を最
小にする運転パターンを演算する運転パターン演算部
と、同演算部にて求められた運転パターンにもとづき上
記発電機器用の運転制御信号をそれぞれの発電プラント
の発電機器制御装置へ出力する運転パターン出力部によ
り形成されたことを特徴としている。
(1) An operation control device applied to a power plant group of the present invention is a generator including a boiler, a turbine, and a generator, and a detector that detects a steam flow rate and a generator output. In an operation control device applied to a power plant group formed by a plurality of power generation plants each including a power generation device control device for controlling, the steam flow rate and the generator output detected by each of the above detection means are periodically changed. And the process input part that is stored in
It stores the upper and lower limit constraints of the above-mentioned power generation equipment, the equipment characteristic part that inputs and stores the boiler fuel consumption amount characteristic and the generator output characteristic in advance, and the total input generator output amount that is obtained based on the power demand forecast data and input in advance. Demand input section, steam flow rate and generator output stored in the above process input section, upper and lower limit constraints of generators stored in equipment characteristic section, boiler fuel consumption characteristic, generator output characteristic, and storage in demand input section The operation pattern calculator that calculates an operation pattern that minimizes the total operation cost of the generator from the generated total generator output demand, and operation control for the generator based on the operation pattern obtained by the calculator. It is characterized in that it is formed by an operation pattern output section for outputting a signal to the power generation equipment control device of each power generation plant.

【0006】(2)本発明は、上記発明(1)に記載の
発電プラント群に適用される運転制御装置において、運
転パターンが数理計画法の手法を用いて得られた運転パ
ターンであることを特徴としている。
(2) According to the present invention, in the operation control device applied to the power plant group according to the above-mentioned invention (1), the operation pattern is an operation pattern obtained by using a mathematical programming method. It has a feature.

【0007】[0007]

【作用】上記発明(1)において、機器特性部には、そ
れぞれの発電機器の上下限制約、ボイラ燃料消費量特性
及び発電機出力特性が予め入力されて格納され、デマン
ド入力部には、電力需要予測データを基として求められ
た総発電機出力要求量が予め入力され格納されている。
In the above invention (1), the equipment characteristic section stores the upper and lower limit constraints of each power generation apparatus, the boiler fuel consumption characteristic, and the generator output characteristic in advance, and the power is stored in the demand input section. The total generator output required amount calculated based on the demand forecast data is input and stored in advance.

【0008】プロセス入力部は、それぞれの検知手段が
検知した発電機器の蒸気流量と発電機出力を周期的に入
力して運転パターン演算部へ出力し、同演算部はプロセ
ス入力部から蒸気流量と発電機出力を入力するととも
に、上記機器特性部とデマンド入力部からそれぞれの格
納データを入力する。
The process input section periodically inputs the steam flow rate of the power generator and the generator output detected by the respective detection means and outputs it to the operation pattern calculation section, which outputs the steam flow rate from the process input section. The generator output is input, and the stored data is input from the device characteristic section and the demand input section.

【0009】上記データを入力した運転パターン演算部
はこれらのデータよりそれぞれの発電機器の総運転費用
を最小とする運転パターンを求めて運転パターン出力部
へ出力し、同運転パターン出力部はそれぞれの発電機器
制御装置へこの運転パターンに基づいた運転制御信号を
出力する。
The operation pattern calculation unit, to which the above data is input, obtains an operation pattern that minimizes the total operation cost of each power generator from these data, and outputs the operation pattern to the operation pattern output unit. An operation control signal based on this operation pattern is output to the generator control device.

【0010】上記運転制御信号を入力したそれぞれの発
電機器制御装置は、これを目標値とし、それぞれの検知
手段より入力したそれぞれの発電機器の蒸気流量と発電
機出力との偏差を求め、この偏差に基づく操作信号を出
力してそれぞれの発電機器を制御する。
Each generator control device which receives the operation control signal uses this as a target value and obtains the deviation between the steam flow rate of each generator and the generator output, which is input from each detecting means, and this deviation is obtained. It outputs an operation signal based on and controls each power generation device.

【0011】上記のように、総発電機出力要求量等のデ
ータに基づいて発電機器の総運転費用を最小とする運転
パターンが求められ、これをもとにそれぞれの発電機器
の運転が行われるため、運転員の多大な労力と時間を不
要とするとともに、発電機器の連続的かつ経済的な運転
が可能となる。
As described above, the operation pattern that minimizes the total operation cost of the power generator is obtained based on the data such as the total required output of the power generator, and the operation of each power generator is performed based on this operation pattern. Therefore, a great deal of labor and time for the operator is not required, and the continuous and economical operation of the power generation equipment becomes possible.

【0012】上記発明(2)においては、運転パターン
が数理計画法の手法を用いた演算により運転パターン演
算部で作成されるため、効率的な作成が可能となる。
In the above invention (2), since the operation pattern is created by the operation pattern operation unit by the operation using the mathematical programming method, the operation pattern can be efficiently created.

【0013】[0013]

【実施例】本発明の一実施例を図1(a),(b)に示
す。図1(a),(b)に示す本実施例は、ボイラ、タ
ービン及び発電機により形成されたそれぞれの発電機器
1a,1b,……,1nと、検知器3a,3b,……,
3nが上記発電機器1a,1b,……,1nよりそれぞ
れ検知した蒸気流量と発電機出力を入力し、上記発電機
器1a,1b,……,1nを制御するそれぞれの発電機
器制御装置2a,2b,……,2nをそれぞれが備えた
複数の発電プラントにより形成された発電プラント群に
適用される運転制御装置4である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention is shown in FIGS. In this embodiment shown in FIGS. 1A and 1B, power generators 1a, 1b, ..., 1n formed by a boiler, a turbine, and a generator, and detectors 3a, 3b ,.
, 3n inputs the steam flow rate and the generator output respectively detected from the power generators 1a, 1b, ..., 1n, and controls the power generators 1a, 1b ,. , 2n is an operation control device 4 applied to a power generation plant group formed by a plurality of power generation plants.

【0014】本実施例の運転制御装置4は、蒸気流量と
発電機出力を検知するそれぞれの検知器3a,3b,…
…,3nにより検知された蒸気流量と発電機出力を周期
的に取り込み格納するプロセス入力部5と、発電機器1
a,1b,……,1nの上下限制約、ボイラ燃料消費量
特性及び発電機出力特性Gを予め入力し格納する機器特
性部6と、電力需要予測データを基に求められ予め入力
した総発電機出力要求量Dを格納するデマンド入力部7
と、上記プロセス入力部5に格納された蒸気流量と発電
機出力、機器特性部6に格納された発電機器の上下限制
約、ボイラ燃料消費量特性と発電機出力特性及びデマン
ド入力部7に格納された総発電機出力要求量から上記発
電機器1a,1b,……,1nの総運転費用を最小にす
る運転パターンYを演算する運転パターン演算部8と、
同演算部8にて求められた運転パターンYにもとづき上
記発電機器1a,1b,……,1n用の運転制御信号を
それぞれの発電プラントの発電機器制御装置2a,2
b,……、2nへ出力する運転パターン出力部9により
形成されている。
The operation control device 4 of this embodiment includes detectors 3a, 3b, ... Which detect the steam flow rate and the generator output.
, Process input unit 5 that periodically takes in and stores the steam flow rate and generator output detected by 3n, and the generator unit 1.
a, 1b, ..., 1n upper and lower limit constraints, a device characteristic unit 6 that inputs and stores the boiler fuel consumption amount characteristic and the generator output characteristic G in advance, and total electricity generation that is obtained based on the power demand forecast data and input in advance. Demand input unit 7 for storing the required machine output amount D
And the steam flow rate and the generator output stored in the process input section 5, the upper and lower limit constraints of the power generation equipment stored in the equipment characteristic section 6, the boiler fuel consumption characteristic and the generator output characteristic, and the demand input section 7 An operation pattern calculation unit 8 for calculating an operation pattern Y that minimizes the total operation cost of the power generators 1a, 1b, ...
Based on the operation pattern Y obtained by the calculation unit 8, the operation control signals for the power generators 1a, 1b, ..., 1n are supplied to the power generator control devices 2a, 2 of the respective power plants.
b, ..., 2n, which is formed by the operation pattern output unit 9.

【0015】上記において、検知器3a,3b,……,
3nは前記発電機器1a,1b,……,1nの蒸気流量
と発電機出力をそれぞれ検知して、それらのアナログ信
号Xを発電機器制御装置2と運転制御装置4へ入力す
る。
In the above, the detectors 3a, 3b, ...,
3n detects the steam flow rate and the generator output of the power generators 1a, 1b, ..., 1n, respectively, and inputs their analog signals X to the power generator control device 2 and the operation control device 4.

【0016】前記検知器3から入力された蒸気流量と発
電機出力のアナログ信号Xは、運転制御装置4のプロセ
ス入力部5が一定周期で読み込み、A/D変換し、工学
値変換を行ったディジタル値Xdをメモリに格納する。
The analog signal X of the steam flow rate and the generator output input from the detector 3 is read by the process input section 5 of the operation control device 4 at a constant cycle, A / D converted, and converted into an engineering value. The digital value Xd is stored in the memory.

【0017】運転制御装置4の機器特性部6には、前記
発電機器1の上下限制約、ボイラ燃料消費量特性と発電
機出力特性Gが入力され、設定された値と特性Gが予め
メモリに格納されている。この特性Gは、それぞれその
典型例が図2(a),(b)に示されているが、いずれ
も実測により求められたものである。
The upper and lower limits of the generator 1, the boiler fuel consumption characteristic and the generator output characteristic G are input to the equipment characteristic section 6 of the operation control device 4, and the set value and the characteristic G are stored in a memory in advance. It is stored. The characteristic G is shown in FIGS. 2A and 2B, each of which is a typical example, and both are obtained by actual measurement.

【0018】また、デマンド入力部7には、予め予測さ
れた一定期間の総発電機出力要求量Dが入力され、入力
された要求量Dはメモリに格納されている。こゝで、総
発電機出力要求量Dは、電力需要予測モデルを用いて時
間毎に求められるものである。
Further, the demand input unit 7 is inputted with a total predicted generator output demand amount D for a predetermined period, which is preliminarily predicted, and the inputted demand amount D is stored in a memory. Here, the total generator output required amount D is obtained every hour by using the power demand prediction model.

【0019】電力需要予測モデルは基本需要予測部と変
動需要予測部とから構成され、基本需要予測部からフー
リエ級数を用いて基本の総発電機出力要求量D1 が求め
られ、変動需要予測部から気象、曜日、時間により変動
する総発電機出力要求量D2が求められ、時間毎の総発
電機出力要求量Dは上記D1 ,D2 を加算して求められ
る。
The power demand forecasting model comprises a basic demand forecasting unit and a variable demand forecasting unit. The basic demand forecasting unit obtains the basic total generator output demand D 1 using the Fourier series, and the variable demand forecasting unit. From the above, the total generator output required amount D 2 that varies depending on the weather, day of the week, and time is obtained, and the total generator output required amount D for each time is obtained by adding the above D 1 and D 2 .

【0020】前記プロセス入力部5に格納された蒸気流
量と発電機出力Xのディジタル値Xdは運転パターン演
算部8に入力され、同演算部8は前記機器特性部6から
上下限制約、特性Gのディジタル信号Gdを、更に、前
記デマンド入力部7から演算開始時刻に該当する総発電
機要求量Dのディジタル信号Ddを読み込んだ後、上記
蒸気流量と発電機出力Xdを初期値として上記上下限制
約、特性Gdを満足し、かつ総運転費用を最小にする運
転パターンYを数理計画法の手法を適用することにより
算出する。
The steam flow rate and the digital value Xd of the generator output X stored in the process input section 5 are input to the operation pattern calculation section 8, which calculates the upper and lower limit constraints and the characteristic G from the equipment characteristic section 6. Of the total generator required amount D corresponding to the calculation start time from the demand input section 7, and then the upper and lower limit control with the steam flow rate and the generator output Xd as initial values. An operation pattern Y which satisfies the characteristic Gd and minimizes the total operation cost is calculated by applying the mathematical programming method.

【0021】なお、上記数理計画法の手法は、非線形の
等式及び不等式制約条件式の基で非線形の目的関数を最
小又は最大にする非線形計画法であればどのような手法
も適用することができる。
As the mathematical programming method, any method can be applied as long as it is a nonlinear programming method that minimizes or maximizes the nonlinear objective function based on the nonlinear equality and inequality constraint conditional expressions. it can.

【0022】上記運転パターン演算部8は演算により求
めた運転パターンYを運転パターン出力部9に入力し、
同出力部9はこの運転パターンYに基づく運転制御信号
Zをそれぞれの発電機器制御装置2a,2b,……,2
nへ出力する。
The operation pattern operation unit 8 inputs the operation pattern Y obtained by the operation to the operation pattern output unit 9,
The output unit 9 outputs the operation control signal Z based on the operation pattern Y to the respective generator control devices 2a, 2b ,.
output to n.

【0023】上記発電機器制御装置2a,2b,……,
2nは図3に示す回路構成であり、上記運転制御信号Z
より目標値が設定され、検知器3a,3b,……,3n
より入力された蒸気流量と発電機出力との偏差を求め、
これより操作信号をつくって発電機器1a,1b,…
…,1nへ出力し、これを制御する。
The generator control devices 2a, 2b, ...
2n is the circuit configuration shown in FIG.
The target value is set by the detectors 3a, 3b, ..., 3n
Calculate the deviation between the steam flow rate input and the generator output,
The operation signal is generated from this, and the power generators 1a, 1b, ...
Output to 1n and control this.

【0024】本実施例においては、上記のように運転制
御装置が電力需要予測モデルに基づく総発電機出力要求
量を満たし、総運転費用が最小となる運転パターンでそ
れぞれの発電プラントの発電機器を運転するため、運転
員の多大な労力と時間を不要とし、発電機器の連続的か
つ経済的な運転を可能とする。
In the present embodiment, as described above, the operation control device satisfies the total generator output demand based on the power demand prediction model, and sets the power generation equipment of each power generation plant in the operation pattern that minimizes the total operation cost. Since the operation is performed, a great deal of labor and time of the operator is unnecessary, and continuous and economical operation of the power generation equipment is enabled.

【0025】[0025]

【発明の効果】本発明の発電プラント群に適用される運
転制御装置は、それぞれの検知手段により検知されたそ
れぞれの発電機器の蒸気流量と発電機出力を入力するプ
ロセス入力部、それぞれの発電機器の機器特性を格納す
る機器特性部、総発電機出力要求量を格納するデマンド
入力部、上記プロセス入力部と機器特性部とデマンド入
力部よりそれぞれの格納データを入力し総運転費用を最
小とする運転パターンを演算する運転パターン演算部、
および同演算部より運転パターンを入力してそれぞれの
発電機器制御装置へ運転制御信号を出力する運転パター
ン出力部を備え、上記運転パターン演算部で求められた
総運転費用を最小とする運転パターンに基づき各発電機
器が制御されることによって、運転員の多大な労力と時
間の軽減と、発電機器の連続的かつ経済的な運転が可能
となる。
The operation control device applied to the power plant group of the present invention includes a process input section for inputting a steam flow rate and a generator output of each power generating device detected by each detecting means, and each power generating device. To minimize the total operating cost by inputting the respective stored data from the device characteristic part that stores the device characteristic of the device, the demand input part that stores the total generator output required amount, the process input part, the device characteristic part, and the demand input part. An operation pattern calculator that calculates the operation pattern,
And an operation pattern output section for inputting an operation pattern from the operation section and outputting an operation control signal to each power generation equipment control device, so that the total operation cost obtained by the operation pattern operation section is minimized. By controlling each power generation device based on this, it is possible to reduce a great amount of labor and time of an operator and to continuously and economically operate the power generation device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図で、(a)それぞれ
の運転制御装置と発電機器と発電機器制御装置と検知器
との関係を示す説明図、(b)は運転制御装置のブロッ
ク図である。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, (a) an explanatory diagram showing a relationship among respective operation control devices, power generators, power generator control devices, and detectors, and (b) of the operation control devices. It is a block diagram.

【図2】上記一実施例に係る諸特性の説明図で、(a)
はボイラ燃料消費量特性、(b)は発電機出力特性の説
明図である。
FIG. 2 is an explanatory diagram of various characteristics according to the above-mentioned embodiment, (a)
FIG. 3B is an explanatory diagram of a boiler fuel consumption amount characteristic, and FIG.

【図3】上記一実施例に係る発電機器制御装置の説明図
である。
FIG. 3 is an explanatory diagram of a power generator control device according to the embodiment.

【図4】従来の装置の説明図である。FIG. 4 is an explanatory diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1a,1b,……,1n 発電機器 2a,2b,……,2n 発電機器制御装置 3a,3b,……,3n 検知器 4 運転制御装置 5 プロセス入力部 6 機器特性部 7 デマンド入力部 8 運転パターン演算部 9 運転パターン出力部 1a, 1b, ..., 1n Generator 2a, 2b, ..., 2n Generator controller 3a, 3b, ..., 3n Detector 4 Operation controller 5 Process input section 6 Equipment characteristic section 7 Demand input section 8 Operation Pattern calculation unit 9 Operation pattern output unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ、タービン及び発電機により形成
された発電機器と、蒸気流量と発電機出力を検知する検
知手段が接続され上記発電機器を制御する発電機器制御
装置とをそれぞれが備えた複数の発電プラントにより形
成された発電プラント群に適用される運転制御装置にお
いて、上記それぞれの検知手段により検知された蒸気流
量と発電機出力を周期的に取り込み格納するプロセス入
力部と、上記発電機器の上下限制約、ボイラ燃料消費量
特性及び発電機出力特性を予め入力し格納する機器特性
部と、電力需要予測データを基に求められ予め入力した
総発電機出力要求量を格納するデマンド入力部と、上記
プロセス入力部に格納された蒸気流量と発電機出力、機
器特性部に格納された発電機器の上下限制約とボイラ燃
料消費量特性と発電機出力特性及びデマンド入力部に格
納された総発電機出力要求量から上記発電機器の総運転
費用を最小にする運転パターンを演算する運転パターン
演算部と、同演算部にて求められた運転パターンにもと
づき上記発電機器用の運転制御信号をそれぞれの発電プ
ラントの発電機器制御装置へ出力する運転パターン出力
部により形成されたことを特徴とする発電プラント群に
適用される運転制御装置。
1. A plurality of generators, each of which includes a generator including a boiler, a turbine, and a generator, and a generator controller connected to a detector that detects a steam flow rate and a generator output to control the generator. In the operation control device applied to the power plant group formed by the power plant, the process input unit that periodically takes in and stores the steam flow rate and the generator output detected by the respective detection means, and the power generation device A device characteristic part that inputs and stores upper and lower limit constraints, boiler fuel consumption characteristics, and generator output characteristics in advance, and a demand input part that stores the total generator output request amount that is obtained based on power demand forecast data and input in advance. , The steam flow rate and generator output stored in the process input section, upper and lower limit constraints of the power generation equipment stored in the equipment characteristic section, boiler fuel consumption characteristic and power generation An operation pattern calculation unit that calculates an operation pattern that minimizes the total operation cost of the above-mentioned power generation equipment from the machine output characteristics and the total generator output request amount stored in the demand input unit, and the operation pattern obtained by the calculation unit Based on the above, an operation control device applied to a power plant group, which is formed by an operation pattern output unit that outputs the operation control signal for the power generation device to the power generation device control device of each power generation plant.
【請求項2】 請求項1に記載の発電プラント群に適用
される運転制御装置において、運転パターンが数理計画
法の手法を用いて得られた運転パターンであることを特
徴とする発電プラント群に適用される運転制御装置。
2. The operation control device applied to the power plant group according to claim 1, wherein the operation pattern is an operation pattern obtained by using a method of mathematical programming. Applied operation control device.
JP6029716A 1994-02-28 1994-02-28 Operation control device applied to power plant groups Withdrawn JPH07238803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6029716A JPH07238803A (en) 1994-02-28 1994-02-28 Operation control device applied to power plant groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6029716A JPH07238803A (en) 1994-02-28 1994-02-28 Operation control device applied to power plant groups

Publications (1)

Publication Number Publication Date
JPH07238803A true JPH07238803A (en) 1995-09-12

Family

ID=12283842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6029716A Withdrawn JPH07238803A (en) 1994-02-28 1994-02-28 Operation control device applied to power plant groups

Country Status (1)

Country Link
JP (1) JPH07238803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078750A (en) * 1998-08-31 2000-03-14 Mitsubishi Chemicals Corp Method and device for controlling optimum operation of power plant
JP2000078749A (en) * 1998-08-31 2000-03-14 Mitsubishi Chemicals Corp Method and device for controlling optimum operation of power plant
JP2019211922A (en) * 2018-06-01 2019-12-12 株式会社日立製作所 Data prediction system, data prediction method, and data prediction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078750A (en) * 1998-08-31 2000-03-14 Mitsubishi Chemicals Corp Method and device for controlling optimum operation of power plant
JP2000078749A (en) * 1998-08-31 2000-03-14 Mitsubishi Chemicals Corp Method and device for controlling optimum operation of power plant
JP2019211922A (en) * 2018-06-01 2019-12-12 株式会社日立製作所 Data prediction system, data prediction method, and data prediction device
JP2023022056A (en) * 2018-06-01 2023-02-14 株式会社日立製作所 Power supply and demand management system, data prediction method, and data prediction device

Similar Documents

Publication Publication Date Title
Bechert et al. Area automatic generation control by multi-pass dynamic programming
Astrom Process control--Past, present and future
KR101660102B1 (en) Apparatus for water demand forecasting
CN102096406A (en) Simulation control system and control system for unsteady change of water inflow during biological waste water treatment
JPH07238803A (en) Operation control device applied to power plant groups
CA1170778A (en) Method of minimizing the cost of operation of a process
JPH06187004A (en) Multivariable control adjusting meter
CN102540897A (en) Method for carrying out composite predictive control on coagulant dosage of water treatment
Hu et al. Predictive fuzzy control applied to the sinter strand process
JP3784408B2 (en) Method and apparatus for diagnosis and prediction of operating characteristics of turbine equipment
Noor et al. Quantifying the demand-side response capability of industrial plants to participate in power system frequency control schemes
JP2005078545A (en) Method and device for adjusting process model
SU879170A1 (en) Method of automatic optimisation of combustion process in gas-mazut steam generator fire box
JPH0565807A (en) Control device for cogeneration system
SU1103325A1 (en) Centrilized device for adjusting voltage and reactive power of power system
KR0164682B1 (en) Control system of powder concentrations
JPH09182295A (en) Power factor improvement device
SU1557629A2 (en) Centralized device for control of voltage and reactive power of energy system
SE9903592L (en) A computer-based method and a system for controlling an industrial process
SU1659877A1 (en) Method of selecting electric power consumption condition
Bangert et al. Increase of Overall Combined-Heat-and-Power (CHP) Efficiency via Mathematical Modeling
Yilmaz et al. Decentralized voltage control with linear parameter-varying
JP2002508097A (en) Equipment control equipment
JP2734475B2 (en) Plant optimal operation control device
SU440672A1 (en) Device for determining the optimal distribution of loads between power plants

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508