JPH07238801A - Governor control device fir steam turbine - Google Patents

Governor control device fir steam turbine

Info

Publication number
JPH07238801A
JPH07238801A JP2971394A JP2971394A JPH07238801A JP H07238801 A JPH07238801 A JP H07238801A JP 2971394 A JP2971394 A JP 2971394A JP 2971394 A JP2971394 A JP 2971394A JP H07238801 A JPH07238801 A JP H07238801A
Authority
JP
Japan
Prior art keywords
steam
valve
turbine
output
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2971394A
Other languages
Japanese (ja)
Inventor
Masaichi Yamaguchi
正市 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2971394A priority Critical patent/JPH07238801A/en
Publication of JPH07238801A publication Critical patent/JPH07238801A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To provide the governor control device which can easily perform a full arc admission mode, and concurrently exhibit the full performance of a turbine. CONSTITUTION:In the steam governor control device which is equipped with a plurality of steam chambers 28a and 28b having a stop valve at its inlet in addition to a plurality of steam governors 2a through 2d, and is provided with a plurality of nozzle boxes 5 corresponding to a plurality of the steam governors located at the circumferential direction, steam inlet pipes 19 connecting the governors to each nozzle box, and with an electric governor 12 controlling the steam governors, each connecting pipe 22 is provided, which connects the steam inlet pipe at one steam chamber side to the steam inlet pipe at the other steam chamber side, and has a connecting valve 23 And moreover, a gain switching means 31 for the electric governor is provided, which can switch a gain in response to the opening/closing of the connecting valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蒸気タービン発電設備に
適用される蒸気タービンの加減弁制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control valve controller for a steam turbine applied to steam turbine power generation equipment.

【0002】[0002]

【従来の技術】従来技術を図2により説明する。2. Description of the Related Art A conventional technique will be described with reference to FIG.

【0003】ボイラよりそれぞれ止め弁1a,1bを経
て2つの蒸気室28a,28bにつながれる。各蒸気室
28a,28bにはそれぞれ蒸気加減弁2a,2cと2
b,2d(6〜8個の場合もある)がある。蒸気タービ
ン6には周方向に配置された、ノズル20を持つノズル
ボックス5(A〜D)がある。各蒸気加減弁2a〜2d
は対応するノズルボックスA〜Dに各蒸気入口管19で
つながれている。各蒸気加減弁2a,2bと2c,2d
はサーボモータ3に連結されている。各サーボモータ3
には、それぞれ電油変換器4を経て油圧が供給されてい
る。
The boiler is connected to two steam chambers 28a and 28b via stop valves 1a and 1b, respectively. Steam control valves 2a, 2c and 2 are provided in the steam chambers 28a, 28b, respectively.
b, 2d (may be 6 to 8). The steam turbine 6 has nozzle boxes 5 (A to D) arranged in the circumferential direction and having nozzles 20. Each steam control valve 2a-2d
Are connected to the corresponding nozzle boxes A to D by respective steam inlet pipes 19. Each steam control valve 2a, 2b and 2c, 2d
Is connected to the servomotor 3. Each servo motor 3
The hydraulic pressure is supplied to each of them via the electro-hydraulic converter 4.

【0004】各電油変換器4には、電気ガバナ12から
開度信号が送られている。電気ガバナにはタービン6の
回転検出器8と発電機7の負荷検出器9からの出力が入
力されている。
An opening signal is sent from the electric governor 12 to each electro-hydraulic converter 4. Outputs from the rotation detector 8 of the turbine 6 and the load detector 9 of the generator 7 are input to the electric governor.

【0005】図中、13は速度設定器、14は負荷設定
器、15,16はゲイン器、30は加算器である。
In the figure, 13 is a speed setting device, 14 is a load setting device, 15 and 16 are gain devices, and 30 is an adder.

【0006】以上において、ボイラより送られた蒸気は
2系統に分かれ、それぞれ主蒸気止め弁1a,1bを通
って蒸気室28a,28bへ送られる。各蒸気室の蒸気
加減弁2a〜2dは電気ガバナ12からの制御信号(開
度指令信号)17sより電油変換器4及びサーボモータ
3を介して弁開度が制御される。各蒸気加減弁は、弁の
絞り損失を出来る丈低くするため出力要求に応じて順々
に開けられる。
In the above, the steam sent from the boiler is divided into two systems and sent to the steam chambers 28a and 28b through the main steam stop valves 1a and 1b, respectively. The valve opening degree of the steam control valves 2a to 2d in each steam chamber is controlled by a control signal (opening degree instruction signal) 17s from the electric governor 12 via the electro-oil converter 4 and the servo motor 3. Each steam control valve is opened in sequence according to the output demand in order to minimize throttling loss of the valve.

【0007】この図の場合(4個の弁の場合)2a、及
び2bの弁がまず同時に開となり、その後、2cと2d
が出力要求に応じて開き、蒸気を蒸気入口管19を介し
てノズルボックス5へ送る。ノズルボックス5内の蒸気
はノズル20で高速度の噴流となりロータ及び発電機を
駆動して電気を発生させる。蒸気加減弁2a〜2dの制
御は電気ガバナ12により行なわれ、速度設定器13の
出力と速度検出器8からの実速度信号10sとの偏差な
らびに負荷設定器14の出力と発電機負荷検出器9から
の実負荷信号11sとの偏差に、それぞれ比例ゲイン器
15,16でゲインK1 ,K2 を乗じて弁開度信号17
sが作られ、蒸気加減弁2a〜2dの開度が制御され
る。
In the case of this figure (in the case of four valves), the valves 2a and 2b are first opened simultaneously, and then 2c and 2d.
Opens in response to the output demand and sends steam to the nozzle box 5 through the steam inlet pipe 19. The steam in the nozzle box 5 becomes a high-speed jet flow at the nozzle 20 to drive the rotor and the generator to generate electricity. The control of the steam control valves 2a to 2d is performed by the electric governor 12, and the deviation between the output of the speed setter 13 and the actual speed signal 10s from the speed detector 8 and the output of the load setter 14 and the generator load detector 9 are controlled. From the actual load signal 11s by the gains K 1 and K 2 in the proportional gain units 15 and 16, respectively, and the valve opening signal 17
s is created, and the opening degrees of the steam control valves 2a to 2d are controlled.

【0008】[0008]

【発明が解決しようとする課題】上記従来の蒸気タービ
ンの加減弁制御装置には次の問題点があった。 (1)蒸気タービンの起動時は出来るだけロータに発生
する熱応力を低減させるために、起動時のロータ温度に
合わせて運転方法を変えている。ロータの温度が低い場
合は、蒸気止め弁を全開にして蒸気加減弁を順々に開け
ていく部分噴射モードが選ばれる。
The conventional control valve controller for a steam turbine has the following problems. (1) At the time of starting the steam turbine, in order to reduce the thermal stress generated in the rotor as much as possible, the operating method is changed according to the rotor temperature at the time of starting. When the temperature of the rotor is low, the partial injection mode in which the steam stop valve is fully opened and the steam control valve is sequentially opened is selected.

【0009】逆にロータの温度が暖い場合は、蒸気加減
弁を全て全開にして蒸気止め弁の開度にて制御する全周
噴射モードが選ばれる。全周噴射モードでは蒸気止め弁
により制御されるため、タービン出力を高くまで全周噴
射モードで運用するためには制御する蒸気流量との関係
で主蒸気止め弁内の案内弁口径を大きくし、かつ弁を駆
動するサーボモータも大きなものとしなければならな
い。(コストアップの要因)また主蒸気止め弁にて負荷
を加減するため、主蒸気止め弁の制御機能に負荷制御機
能が必要となり、制御装置としてはコストアップの要因
となっていた。 (2)蒸気タービンの主要弁は、蒸気スケール等により
弁がスティックし制御不能とならないように、定期的に
運転中弁を開閉し、スティックを防止する弁テストが行
なわれる。
On the contrary, when the temperature of the rotor is warm, the all around injection mode is selected in which all the steam control valves are fully opened and controlled by the opening of the steam stop valve. In the full-circle injection mode, it is controlled by the steam stop valve, so in order to operate the turbine output in the full-circle injection mode up to a high value, the guide valve diameter in the main steam stop valve is increased in relation to the steam flow to be controlled, Also, the servo motor that drives the valve must be large. (Factor of cost increase) Further, since the load is adjusted by the main steam stop valve, the control function of the main steam stop valve needs a load control function, which causes a cost increase for the control device. (2) The main valve of the steam turbine is periodically opened and closed during operation so that the valve does not get out of control due to steam scale or the like, and a valve test is performed to prevent sticking.

【0010】弁テストの方法は片系列の蒸気加減弁を全
閉し、その後同じ側の主蒸気止め弁を全閉することで行
なわれる。
The valve test method is performed by completely closing one series of steam control valves and then fully closing the main steam stop valve on the same side.

【0011】このため弁テスト時には、蒸気が片系列
(テストしていない側)の主蒸気止め弁及び蒸気加減弁
しか流れないため、タービンの出力は100%出せな
く、弁テスト前に70%近くまで出力を下げなければな
らない。 (3)タービンの出力をデマンドの要求にしたがって急
速に増減する場合、タービン内の急激な温度変化により
熱応力が発生する。このため出力変化に対して温度変化
が少ない方が熱応力の緩和という点からは良く、運転モ
ードとしては全周噴射モードが選ばれる。しかしなが
ら、従来の方式では主蒸気止め弁の容量がせいぜい30
%出力ぐらいまでしかなく、出力の高い領域では全周噴
射モードによる運転が出来ず、急速な出力の増減運転が
出来なかった。
Therefore, at the time of the valve test, since the steam only flows through the main steam stop valve and the steam control valve of one series (the side not tested), the output of the turbine cannot be 100%, and the output of the turbine is close to 70% before the valve test. Output must be reduced to. (3) When the output of the turbine is rapidly increased or decreased according to demand, thermal stress occurs due to a rapid temperature change in the turbine. Therefore, it is better that the temperature change is smaller with respect to the output change from the viewpoint of relaxing the thermal stress, and the omnidirectional injection mode is selected as the operation mode. However, in the conventional system, the capacity of the main steam stop valve is at most 30.
There was only about% output, and in the high output area, operation in the full-circle injection mode was not possible, and rapid increase / decrease in output could not be performed.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention takes the following means in order to solve the above problems.

【0013】すなわち、複数の蒸気加減弁を持つととも
に入口に止め弁を持つ複数の蒸気室と、周方向に配置さ
れ上記蒸気加減弁に対応する複数のノズルボックスと、
上記蒸気加減弁およびノズルボックスをつなぐ蒸気入口
管と、上記蒸気加減弁を制御する電気ガバナとを有する
蒸気タービンの加減弁制御装置において、一方の上記蒸
気室側の蒸気入口管および他方の上記蒸気室側の蒸気入
口管間を連絡するとともに連絡弁を持つ連絡管と、同連
絡弁の開閉に応じてゲインが切替えられる上記電気ガバ
ナのゲイン切替装置とを設ける。
That is, a plurality of steam chambers having a plurality of steam control valves and a stop valve at the inlet, and a plurality of nozzle boxes arranged in the circumferential direction corresponding to the steam control valves.
In a control valve controller for a steam turbine having a steam inlet pipe connecting the steam control valve and a nozzle box, and an electric governor for controlling the steam control valve, one steam inlet pipe on the steam chamber side and the other steam A communication pipe that connects the steam inlet pipes on the chamber side and has a communication valve, and a gain switching device for the electric governor that switches the gain according to opening and closing of the communication valve are provided.

【0014】[0014]

【作用】上記手段において、例えば急速な出力増運転等
の場合、全周噴射モードが用いられる。このとき最初に
各連絡弁が開かれると、各連絡管を経て蒸気が全周のノ
ズルボックスに供給される。従って蒸気加減弁の全閉か
ら全開にわたって、全周モード運転が円滑に行われ、急
速な出力増運転が可能となる。
In the above means, the full-circle injection mode is used, for example, in the case of rapid output increase operation. At this time, when each communication valve is first opened, steam is supplied to the nozzle box on the entire circumference through each communication pipe. Therefore, the full-circle mode operation is smoothly performed from the fully closed to fully opened state of the steam control valve, and the rapid output increase operation is possible.

【0015】このとき、電気ガバナの補償ゲインが対応
して切替えられ、最適な開度信号が出力されるので、上
記運転が円滑安定に行われる。
At this time, the compensation gain of the electric governor is correspondingly switched and the optimum opening signal is output, so that the above operation is smoothly and stably performed.

【0016】また弁検査時、例えば一つの止め弁およ
び、その系統の蒸気室の蒸気加減弁を閉としても、上記
と同様各連絡弁が開かれると、他の蒸気室から蒸気が各
ノズルボックスに供給されるので、従来のように出力を
大きく落すことなく運転が維持できる。
Further, at the time of valve inspection, for example, even if one stop valve and the steam control valve of the steam chamber of the system are closed, when each communication valve is opened in the same manner as above, steam from other steam chambers will flow into each nozzle box. Since it is supplied to, the operation can be maintained without significantly reducing the output as in the conventional case.

【0017】従って通常の運転を行いながら弁の検査が
可能となる。
Therefore, it is possible to inspect the valve while performing normal operation.

【0018】[0018]

【実施例】前記記載の本発明の一実施例を図1により説
明する。なお、従来例で説明した部分は同一の番号をつ
け説明を省略し、この発明に関する部分を主体に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention described above will be described with reference to FIG. The parts explained in the conventional example are given the same numbers and their explanations are omitted, and the parts relating to the present invention will be mainly explained.

【0019】一方の蒸気室28aの蒸気減圧弁2aから
出た蒸気入口管19と他方の蒸気室28bの蒸気減圧弁
2dから出た蒸気入口管19との間が連絡弁23を持つ
連絡管22でつながれる。また同様に一方の蒸気室28
aの蒸気減圧弁2cから出た蒸気入口管19と他方の蒸
気室28bの蒸気減圧弁2bから出た蒸気入口管19と
の間が連絡弁23を持つ連絡管22でつながれる。電気
ガバナ12には加算器30のあとにゲイン切替装置31
がつながれる。ゲイン切替装置31は切替スイッチ25
と、並列に配置されたゲイン器26とゲイン器27があ
る。
A communication pipe 22 having a communication valve 23 between the steam inlet pipe 19 emerging from the steam pressure reducing valve 2a of the one steam chamber 28a and the steam inlet pipe 19 emerging from the steam pressure reducing valve 2d of the other steam chamber 28b. Can be connected. Similarly, one steam chamber 28
A communication pipe 22 having a communication valve 23 connects the steam inlet pipe 19 from the steam pressure reducing valve 2c of a to the steam inlet pipe 19 from the steam pressure reducing valve 2b of the other steam chamber 28b. The electric governor 12 has a gain switching device 31 after the adder 30.
Can be connected. The gain switching device 31 includes a changeover switch 25.
There are a gain unit 26 and a gain unit 27 arranged in parallel.

【0020】以上において、通常運転時は、蒸気連絡弁
23は閉となっており、蒸気加減弁2a〜2dからの蒸
気はそれぞれに対応するノズルボックスに送られ、ター
ビンロータ、発電機を駆動する。この場合、電気ガバナ
12の補正ゲインはゲイン器26のα1 が選択される。
これはいわゆる部分噴射モードで、出力変動の少ない通
常運転時とか起動時のロータ温度が低い場合に用いられ
る。
In the above, during normal operation, the steam communication valve 23 is closed, and the steam from the steam control valves 2a to 2d is sent to the corresponding nozzle boxes to drive the turbine rotor and the generator. . In this case, α 1 of the gain unit 26 is selected as the correction gain of the electric governor 12.
This is a so-called partial injection mode, and is used during normal operation with little output fluctuation or when the rotor temperature is low at startup.

【0021】起動時ロータ温度が高い場合とか、急速な
出力増・減要求がある場合は、全周噴射モードが用いら
れる。この場合は各蒸気連絡管22に設けられ各蒸気連
絡弁23が開かれる。
When the rotor temperature at startup is high, or when there is a rapid output increase / decrease request, the full-circle injection mode is used. In this case, each steam communication valve 22 provided in each steam communication pipe 22 is opened.

【0022】このモードでは、蒸気加減弁1個に対して
ノズルボックスが2個つながる状態となる。つまり最初
に開き始める蒸気加減弁(2aと2b)が全てのノズル
ボックスとつながった状態となる(2aからノズルボッ
クス5A,5Dに、2bから5B,5Cにつながる)た
め、全ての出力範囲で4個のノズルボックスから蒸気が
タービンへ導入されるいわゆる全周噴射モードとなる。
In this mode, two nozzle boxes are connected to one steam control valve. In other words, the steam control valves (2a and 2b) that start to open first are in a state of being connected to all the nozzle boxes (from 2a to the nozzle boxes 5A and 5D, and from 2b to 5B and 5C), so that 4 in all output ranges. This is the so-called full-circle injection mode in which steam is introduced into the turbine from individual nozzle boxes.

【0023】この場合、1個の蒸気加減弁から2個のノ
ズルボックスへ蒸気が送られるため、蒸気加減弁から流
れる流量は蒸気連絡弁23閉の状態(部分導入モード)
に比べ、約2倍となり蒸気タービンの制御が不安定にな
る可能性がある。このため、このモードでは補正ゲイン
器27のゲインβ側が選択され、制御ゲインが約1/2
に下がり安定した運転が可能となる。
In this case, since steam is sent from one steam control valve to the two nozzle boxes, the flow rate of steam flowing from the steam control valve is in the state where the steam communication valve 23 is closed (partial introduction mode).
Compared with, the control of the steam turbine may become unstable. Therefore, in this mode, the gain β side of the correction gain unit 27 is selected, and the control gain is about 1/2.
The stable operation becomes possible.

【0024】弁テスト時には、蒸気連絡弁23が開かれ
る。そしてテストが行われることで、従来、弁テストの
ためにタービン出力が下がらざるを得なかった不適合
が、解消される。
During the valve test, the steam communication valve 23 is opened. Then, by performing the test, the nonconformity, which was conventionally required to reduce the turbine output due to the valve test, is eliminated.

【0025】例えば主蒸気止め弁1a及び、蒸気加減弁
2a,2cの系統側が弁テストにより閉められた場合、
従来は蒸気加減弁2b,2dからの蒸気はそれぞれのノ
ズルボックス5B,5Dにしか供給されないため、ター
ビンの出力は制限された。
For example, when the system side of the main steam stop valve 1a and the steam control valves 2a and 2c are closed by a valve test,
Conventionally, the steam from the steam control valves 2b and 2d is supplied only to the respective nozzle boxes 5B and 5D, so that the output of the turbine is limited.

【0026】しかし蒸気連絡弁23が開かれ、蒸気加減
弁1個に対しノズルボックス5が2個結がり、蒸気加減
弁2b,2dからの蒸気は全てのノズルボックス5A〜
5Dに供給される。このためタービン出力は如何なる値
でも選択可能となり、出力低下が防止される。
However, the steam communication valve 23 is opened, two nozzle boxes 5 are connected to one steam control valve, and the steam from the steam control valves 2b and 2d is supplied to all the nozzle boxes 5A to 5D.
Supplied to 5D. Therefore, the turbine output can be selected at any value and the output reduction can be prevented.

【0027】以上のようにして、タービンの性能をフル
に発揮させるためには、従来構成では全周噴射モード運
用に、主蒸気止め弁及びサーボモータの容量アップ、な
らびに主蒸気止め弁の負荷制御機能追加といった、コス
トアップが必要となるが、これらが不要となる。
As described above, in order to maximize the performance of the turbine, in the conventional configuration, the operation of the full-circle injection mode is performed, the capacity of the main steam stop valve and the servo motor is increased, and the load control of the main steam stop valve is performed. It is necessary to increase costs such as adding functions, but these are unnecessary.

【0028】また如何なる出力域においても全周噴射モ
ードが選択でき、フレキシブルな運用が可能となる。さ
らに弁テストを100%出力時にも出来るため、弁テス
トのためにタービン出力を制限する必要がなくなる。
Further, the all-around injection mode can be selected in any output range, and flexible operation becomes possible. Further, since the valve test can be performed at 100% output, it is not necessary to limit the turbine output for the valve test.

【0029】[0029]

【発明の効果】以上に説明したように、本発明は次の効
果を奏する。 (1)如何なる出力域においても全周噴射モードが選択
でき、フレキシブルな運用が可能となる。 (2)弁テストを100%出力時にも出来るため、弁テ
ストのためにタービン出力を制限する必要がなくなる。
As described above, the present invention has the following effects. (1) The full-circle injection mode can be selected in any output range, which enables flexible operation. (2) Since the valve test can be performed even at 100% output, it is not necessary to limit the turbine output for the valve test.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成系統図である。FIG. 1 is a configuration system diagram of an embodiment of the present invention.

【図2】従来例の構成系統図である。FIG. 2 is a configuration system diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 主蒸気止め弁 2 蒸気加減弁 3 蒸気加減弁サーボモータ 4 蒸気加減弁電油変換器 5 ノズルボックス 6 蒸気タービン 7 発電機 8 速度検出器 9 発電機負荷検出器 10s 実速度信号 11s 実負荷信号 12 電気ガバナ 13 速度設定器 14 負荷設定器 15 速度ゲイン器 16 負荷ゲイン器 17s 蒸気加減弁開度指令 18 高圧油 19 蒸気入口管 20 ノズル 21 主蒸気止め弁サーボモータ 22 蒸気連絡管 23 蒸気連絡弁 24 開度計 25 切替スイッチ 26 補正ゲイン器 27 補正ゲイン器 28 蒸気室 29 減算器 30 加算器 31 ゲイン切替装置 1 Main steam stop valve 2 Steam control valve 3 Steam control valve Servo motor 4 Steam control valve Electro-oil converter 5 Nozzle box 6 Steam turbine 7 Generator 8 Speed detector 9 Generator load detector 10s Actual speed signal 11s Actual load signal 12 Electric governor 13 Speed setting device 14 Load setting device 15 Speed gain device 16 Load gain device 17s Steam control valve opening command 18 High pressure oil 19 Steam inlet pipe 20 Nozzle 21 Main steam stop valve Servo motor 22 Steam communication pipe 23 Steam communication valve 24 Openness meter 25 Changeover switch 26 Correction gain device 27 Correction gain device 28 Steam chamber 29 Subtractor 30 Adder 31 Gain switching device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の蒸気加減弁を持つとともに入口に
止め弁を持つ複数の蒸気室と、周方向に配置され上記蒸
気加減弁に対応する複数のノズルボックスと、上記蒸気
加減弁およびノズルボックスをつなぐ蒸気入口管と、上
記蒸気加減弁を制御する電気ガバナとを有する蒸気ター
ビンの加減弁制御装置において、一方の上記蒸気室側の
蒸気入口管および他方の上記蒸気室側の蒸気入口管間を
連絡するとともに連絡弁を持つ連絡管と、同連絡弁の開
閉に応じてゲインが切替えられる上記電気ガバナのゲイ
ン切替装置とを備えてなることを特徴とする蒸気タービ
ンの加減弁制御装置。
1. A plurality of steam chambers having a plurality of steam control valves and a stop valve at an inlet, a plurality of nozzle boxes arranged in the circumferential direction corresponding to the steam control valves, the steam control valve and the nozzle box. In a control valve controller of a steam turbine having a steam inlet pipe connecting the steam control pipe and an electric governor for controlling the steam control valve, between the steam inlet pipe on the one steam chamber side and the steam inlet pipe on the other steam chamber side. A control valve control device for a steam turbine, comprising: a communication pipe that communicates with each other and a communication valve; and a gain switching device of the electric governor that switches a gain according to opening and closing of the communication valve.
JP2971394A 1994-02-28 1994-02-28 Governor control device fir steam turbine Withdrawn JPH07238801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2971394A JPH07238801A (en) 1994-02-28 1994-02-28 Governor control device fir steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2971394A JPH07238801A (en) 1994-02-28 1994-02-28 Governor control device fir steam turbine

Publications (1)

Publication Number Publication Date
JPH07238801A true JPH07238801A (en) 1995-09-12

Family

ID=12283757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2971394A Withdrawn JPH07238801A (en) 1994-02-28 1994-02-28 Governor control device fir steam turbine

Country Status (1)

Country Link
JP (1) JPH07238801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386829B1 (en) 1999-07-02 2002-05-14 Power Technology, Incorporated Multi-valve arc inlet for steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386829B1 (en) 1999-07-02 2002-05-14 Power Technology, Incorporated Multi-valve arc inlet for steam turbine

Similar Documents

Publication Publication Date Title
JPS6240526B2 (en)
JPH01130003A (en) Steam turbine
US4187685A (en) Method and system for effecting control governing of a steam turbine
US4847039A (en) Steam chest crossties for improved turbine operations
JPH07238801A (en) Governor control device fir steam turbine
RU2211338C2 (en) Device for nozzle steam distribution in high-pressure cylinder of steam turbine
JPH0222203B2 (en)
JP2002189503A (en) Controller equipped with simulation function
JP2005061346A (en) Speed governing device for water turbine
JPS6139043Y2 (en)
US4714401A (en) Governing mode change-over apparatus
JPS63186902A (en) Turbine control device
JPH0553922B2 (en)
SU1196518A1 (en) Device for controlling motor operation of turbine unit
JPH08296405A (en) Thermal stress decreasing operation method for steam turbine in uniaxial combined cycle
JP2825235B2 (en) Steam control valve controller
JPH08218806A (en) Control device for multi-valve type steam governing valve in stream turbine
JP2002267784A (en) Water injection flow rate adjusting facility for nuclear reactor water injection system
JPS58200011A (en) Control of axial flow turbine in power generating facility with low temperature heat
JPH09189204A (en) Steam turbine control device
JP3272843B2 (en) Turbine control device
JPS6267209A (en) Electronic governor for steam turbine
JPS6149484B2 (en)
JPH0814005A (en) Radial turbine power generating device
JPH08151902A (en) Load controller for steam turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508