JPH07238334A - Sliding parts and sliding member for nuclear power plant - Google Patents

Sliding parts and sliding member for nuclear power plant

Info

Publication number
JPH07238334A
JPH07238334A JP6051017A JP5101794A JPH07238334A JP H07238334 A JPH07238334 A JP H07238334A JP 6051017 A JP6051017 A JP 6051017A JP 5101794 A JP5101794 A JP 5101794A JP H07238334 A JPH07238334 A JP H07238334A
Authority
JP
Japan
Prior art keywords
sliding
nuclear power
power plant
nickel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6051017A
Other languages
Japanese (ja)
Other versions
JP3489633B2 (en
Inventor
Kunio Miyazaki
邦夫 宮崎
Masatoshi Inagaki
正寿 稲垣
Noriyuki Onaka
紀之 大中
Masateru Suwa
正輝 諏訪
Jiro Kuniya
治郎 国谷
Tomomi Shiraki
智美 白木
Masato Koshiishi
正人 越石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05101794A priority Critical patent/JP3489633B2/en
Publication of JPH07238334A publication Critical patent/JPH07238334A/en
Application granted granted Critical
Publication of JP3489633B2 publication Critical patent/JP3489633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain a sliding member capable of reducing exposure dose and increasing the safty of nuclear power plant by using an iron-base alloy, dispersedly containing specific amounts of vanadium carbide in a matrix, as a fixed member and also using a nickel-base alloy of specific composition as a movable member. CONSTITUTION:Sliding parts for nuclear power plant can be produced by using an iron-base alloy (stainless steel, etc.), dispersedly containing fine grains of vanadium carbide in a matrix by 1-10% by volume ratio, as a fixed member and also using a nickel-base alloy, consisting of, by weight ratio, 13-22% chromium, 3-10% molybdenum, 3-8% aluminum, 0.5-5% titanium, 1-5% zirconium, <=0.5% carbon, <=1.0% silicon, and the balance nickel, as a movable member. Further, the fixing member and the movable member can be work-hardened by means of cold working at 5-40%. By this method, the sliding member for nuclear plant, excellent in corrosion resistance and impact resistance and having high reliability at the time of high speed driving, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラント用摺動
部品に係り、特に原子炉制御棒駆動装置に使用されるガ
イド用ピン及びローラからなる摺動部品とそれに好適な
耐摩耗性の摺動部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding part for a nuclear power plant, and more particularly to a sliding part including guide pins and rollers used in a nuclear reactor control rod driving device and a suitable wear resistant sliding part. A moving member.

【0002】[0002]

【従来の技術】従来、原子力プラントにおける摺動部材
にはコバルト基の合金が使用されており、制御棒のガイ
ド用ピン及びローラにもヘインズ及びステライト等のコ
バルト合金が適用されている。これらの合金はコバルト
を主成分とし、クロムを28〜30%、炭素を1〜2.
5%、さらにタングステン、鉄、ニッケルを少量含有し
ており、高クロムであるために耐食性が良く、また高炭
素であるために硬さが高く、耐摩耗性に優れている。し
かしながら、この合金部材が高温高圧の原子炉水中にお
かれると、コバルトが炉水中に溶出し、これが燃料被覆
管表面に付着して放射化され、再び溶出して炉水中を循
環する。その結果、プラント定期検査や補修時における
被爆線量が増大し、運転休止期間が長期化してプラント
の稼働率を低下させる。
2. Description of the Related Art Conventionally, cobalt-based alloys have been used for sliding members in nuclear power plants, and cobalt alloys such as Haynes and Stellite have also been applied to guide pins and rollers of control rods. These alloys contain cobalt as a main component, chromium is 28 to 30%, and carbon is 1 to 2.
It contains 5%, and also contains a small amount of tungsten, iron and nickel, and has high corrosion resistance due to high chromium content, and high hardness due to high carbon content, and excellent abrasion resistance. However, when this alloy member is placed in high-temperature and high-pressure reactor water, cobalt elutes in the reactor water, is deposited on the surface of the fuel cladding tube and is activated, and elutes again to circulate in the reactor water. As a result, the exposure dose during plant periodic inspections and repairs increases, and the operation suspension period is lengthened and the plant operating rate is reduced.

【0003】このようなコバルトの溶出による線量の増
大を防止するには、コバルト基合金に替わる摺動材料を
適用する必要が有る。コバルトを成分元素としない摺動
材料は、既に特公昭59−52228号公報に開示され
ている。これは固定部材に鉄基合金、可動部材にニッケ
ル基合金を用いたものであるが、耐摩耗性がコバルト基
合金に及ばないため、機械的荷重の高い摺動部では摩耗
による寸法変化が大きくなり、長期間の使用に耐えられ
ない。また、特公昭58−23454号公報にはクロ
ム、ニオブを添加したニッケル基合金が開示されている
が、ステライトに比べ衝撃値が低くスクラム時の衝撃荷
重に対する信頼性に難点があった。
In order to prevent such an increase in dose due to the elution of cobalt, it is necessary to apply a sliding material replacing the cobalt-based alloy. A sliding material not containing cobalt as a component element has already been disclosed in Japanese Patent Publication No. 59-52228. This uses an iron-based alloy for the fixed member and a nickel-based alloy for the movable member, but wear resistance does not reach that of the cobalt-based alloy, so dimensional changes due to wear are large in sliding parts with high mechanical loads. It cannot be used for a long time. Further, Japanese Patent Publication No. 58-23454 discloses a nickel-based alloy to which chromium and niobium are added, but the impact value is lower than that of stellite, and there is a problem in reliability with respect to impact load during scram.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来材料の難点を解決するためになされたもので、高温
水中、高荷重下で原子炉制御棒の円滑な駆動を長期間に
わたって保証し、かつスクラム時の高速駆動による衝撃
荷重に対しても信頼性が高く、またコバルトの溶出がな
く、被爆線量を低減し原子力プラントの安全性を高める
ことができる摺動部品及び摺動部材を提供することを課
題とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above drawbacks of conventional materials, and guarantees smooth driving of a reactor control rod under high load in high temperature water for a long period of time. In addition, sliding parts and members that are highly reliable against impact loads due to high-speed driving during scrum, do not elute cobalt, reduce exposure dose and enhance safety of nuclear power plants. The challenge is to provide.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、基質中にバナジウムカーバイドの微粒
子を体積比で1〜10%分散含有した鉄基合金を固定部
材とし、かつ重量比でクロム13〜22%、モリブデン
3〜10%、アルミニウム3〜8%、チタン0.5〜5
%、ジルコニウム1〜5%、炭素0.5%以下、ケイ素
1.0%以下、残部ニッケルから成るニッケル基合金を
可動部材とする原子力プラント用摺動部品としたもので
ある。上記固定部材は、冷間加工を5〜40%施して加
工硬化してもよい。
In order to solve the above-mentioned problems, in the present invention, an iron-based alloy containing fine particles of vanadium carbide dispersed in a substrate in an amount of 1 to 10% by volume is used as a fixing member, and a weight ratio is set. Chromium 13-22%, molybdenum 3-10%, aluminum 3-8%, titanium 0.5-5.
%, Zirconium 1 to 5%, carbon 0.5% or less, silicon 1.0% or less, and the balance nickel-based alloy as a movable member for a nuclear power plant sliding component. The fixing member may be subjected to cold working by 5 to 40% for work hardening.

【0006】また、本発明では、原子力プラント用摺動
部品に用いる摺動部材として、基質部が耐食性を有する
鉄基合金より成り、該基質中にバナジウムカーバイドの
微粒子を体積比で1〜10%分散含有したもの、又はこ
れを更に冷間加工を5〜40%施して加工硬化した摺動
部材としたものであり、また、重量比でクロム13〜2
2%、モリブデン3〜10%、アルミニウム3〜8%、
チタン0.5〜5%、ジルコニウム1〜5%、炭素0.
5%以下、ケイ素1.0%以下、残部ニッケルから成る
摺動部材としたものである。
Further, according to the present invention, as a sliding member used for a sliding part for a nuclear power plant, the substrate portion is made of an iron-based alloy having corrosion resistance, and vanadium carbide fine particles are contained in the substrate in a volume ratio of 1 to 10%. Dispersed and contained, or a sliding member that is work hardened by further subjecting this to cold working by 5 to 40%, and chromium 13 to 2 in weight ratio.
2%, molybdenum 3-10%, aluminum 3-8%,
Titanium 0.5-5%, zirconium 1-5%, carbon 0.
The sliding member is composed of 5% or less, silicon 1.0% or less, and the balance nickel.

【0007】[0007]

【作用】金属材料の摩耗現象はきわめて複雑であり、使
用環境や荷重条件によって摩耗損傷のしかたが著しく異
なる。そのため、全ての条件で普遍的に優れた材料は望
めないのが実状である。しかし、ある定められた条件下
では耐摩耗性の優劣を評価し適切な材料を選定すること
ができる。原子力プラントの制御棒駆動装置は、従来の
水圧駆動式のものから電動モータによる微動駆動が可能
な新しいタイプのものに変わりつつある。
[Function] The wear phenomenon of a metal material is extremely complicated, and the manner of wear and damage varies remarkably depending on the use environment and load conditions. Therefore, the reality is that a universally excellent material cannot be expected under all conditions. However, it is possible to evaluate the superiority and inferiority of wear resistance and select an appropriate material under certain prescribed conditions. The control rod drive device of a nuclear power plant is changing from a conventional hydraulic drive type to a new type that can be finely driven by an electric motor.

【0008】この新タイプの制御棒駆動装置では、中空
ピストンの動きを円滑にするため、ローラが使用される
が、従来の制御棒用ローラに比べ負荷荷重が大きく、よ
り高い信頼性が要求される。このローラにおいて、摩耗
はピストンと接する外周囲とローラ支持用の固定ピンと
接する内周囲で生ずる。この場合、摩耗は水中における
無潤滑摩耗であり、ローラとピンの相対的なすべり運動
による凝着摩耗あるいはアブレッシブ摩耗となる。これ
らの摩耗形態を示す場合、接触部で凝着やひっかきによ
る塑性変形が生じ、材料表面に塑性流動層が形成され
る。繰返し摺動を受けることによって、最終的に塑性流
動層の一部が剪断分離し摩耗粉となる。
In this new type of control rod drive device, a roller is used in order to make the movement of the hollow piston smooth, but the load load is larger than that of the conventional control rod roller, and higher reliability is required. It In this roller, wear occurs on the outer periphery in contact with the piston and on the inner periphery in contact with the fixing pin for supporting the roller. In this case, the wear is unlubricated wear in water, and it is adhesive wear or abrasive wear due to relative sliding motion of the roller and the pin. When these wear forms are exhibited, plastic deformation due to adhesion or scratching occurs at the contact portion, and a plastic fluidized layer is formed on the material surface. By being repeatedly slid, a part of the plastic fluidized bed is finally sheared and separated into wear powder.

【0009】したがって、凝着摩耗やアブレッシブ摩耗
による損傷を少なくするには、接触部での塑性変形を抑
制すべく、合金には一定レベル以上の硬さあるいは強度
が必要とされ、また、合金組織を調整し局部的な変形を
防止する必要がある。しかし、硬さを過度に高くする
と、靱性が低下し衝撃荷重で割れやすくなるので、適正
なレベルに調整する必要がある。また、炉水中で長期間
の使用に耐えるには、十分な耐食性も兼ね備えている必
要がある。
Therefore, in order to reduce the damage due to adhesive wear and abrasive wear, the alloy must have a certain level of hardness or strength in order to suppress plastic deformation at the contact portion, and the alloy structure Must be adjusted to prevent local deformation. However, if the hardness is excessively high, the toughness is lowered and it becomes easy to crack under an impact load, so it is necessary to adjust the hardness to an appropriate level. In addition, in order to withstand long-term use in reactor water, it must also have sufficient corrosion resistance.

【0010】本発明は上記の点を考慮してなされたもの
である。すなわち、固定部材については、可動部材のニ
ッケル基と同質では凝着が生じやすいこと、及び耐食性
及び強度と靱性の調整が比較的容易であることから鉄基
合金を選定した。鉄基合金としては通常のステンレス鋼
が使用できる。上記の鉄基合金の凝着による塑性流動や
脱落を抑制するため、基質中に硬質のバナジウムカーバ
イドを分散析出させた。分散粒子をバナジウムカーバイ
ドとした理由は、硬さがビッカース(Hv)で1000
以上と硬いことと、溶解凝固時に初相として結晶粒内に
均一析出するためである。また、炭素との結合エネルギ
が高く、クロム等の粒界析出型の炭化物形成を抑制する
効果が著しいためである。
The present invention has been made in consideration of the above points. That is, for the fixed member, an iron-based alloy was selected because it is likely to cause cohesion in the same quality as the nickel base of the movable member and it is relatively easy to adjust corrosion resistance and strength and toughness. Usual stainless steel can be used as the iron-based alloy. Hard vanadium carbide was dispersed and precipitated in the substrate in order to suppress the plastic flow and the falling off due to the adhesion of the iron-based alloy. The reason why the dispersed particles are made of vanadium carbide is that the hardness is 1000 in Vickers (Hv).
This is because it is hard as described above and is uniformly precipitated in the crystal grains as the initial phase during melting and solidification. Further, it is because the bond energy with carbon is high, and the effect of suppressing the formation of grain boundary precipitation type carbides such as chromium is remarkable.

【0011】また、その量を体積比で1〜10%とした
のは、1%未満では耐摩耗性に対する効果が十分でな
く、10%以上では相手材である可動部材への摩耗損傷
がかえって大きくなり、靱性の低下が生ずるためであ
る。さらに、基質部が軟らかく、バナジウムカーバイド
との差が大きい場合には、冷間加工を行うことによって
基質部の硬さを高めることが、耐摩耗性の向上に極めて
有効であることを実験的に見出した。その場合、加工率
5%以上で顕著な耐摩耗性向上がみられ、40%以上に
なるとその効果が飽和する。固定部材はC0.2〜1.
5%、Si2〜6%、Mn5〜15%、Cr15〜25
%、Ni7.5〜12%及びV0.5〜5.0%を含有
するFe基合金が好ましい。特に、C0.2〜1.0
%、Si3〜4.5%、Mn6〜10%、Cr16〜2
1%、Ni8〜9.5%、V1〜4%を含有するものが
好ましい。
The volume ratio is set to 1 to 10% because when it is less than 1%, the effect on the wear resistance is not sufficient, and when it is 10% or more, the wear damage to the movable member which is the counterpart material is rather returned. This is because it becomes large and the toughness decreases. Further, when the substrate part is soft and the difference from vanadium carbide is large, it is experimentally found that increasing the hardness of the substrate part by performing cold working is extremely effective in improving wear resistance. I found it. In that case, a remarkable improvement in wear resistance is observed at a processing rate of 5% or more, and the effect is saturated at a processing rate of 40% or more. The fixing member is C0.2-1.
5%, Si 2-6%, Mn 5-15%, Cr 15-25
%, A Fe-based alloy containing 7.5-12% Ni and 0.5-5.0% V is preferred. In particular, C0.2-1.0
%, Si3 to 4.5%, Mn6 to 10%, Cr16 to 2
Those containing 1%, Ni 8 to 9.5%, and V 1 to 4% are preferable.

【0012】可動部材については、高温高圧水中に対す
る耐食性の観点からニッケルを主成分とし、これにクロ
ムを添加しベース金属とした。クロムは13%未満では
耐食性が十分でなく、23%以上では脆くなり耐衝撃性
が低下することから、13〜22%(好ましくは16〜
20%)とした。アルミニウムとチタンはγ′相(Ni
3 Al、Ti)の析出により硬さを付与するもので、本
合金において重要な元素である。このγ′相はニッケル
の結晶粒内に均一に析出するため、場所による硬さの不
均一さがなくなり、接触部での塑性変形を防止し、かつ
ニッケル母相と結晶上の整合性を有しているので、脱落
しにくく耐摩耗性が向上する。アルミニウムは3%未満
ではγ′相の析出が十分でなく、また8%を超えると脆
くなるため、3〜8%(好ましくは5〜7%)とする必
要がある。
The movable member was made of nickel as a main component and chromium was added to it as a base metal from the viewpoint of corrosion resistance to high temperature and high pressure water. If chromium is less than 13%, the corrosion resistance is not sufficient, and if it is 23% or more, it becomes brittle and the impact resistance decreases, so 13 to 22% (preferably 16 to
20%). Aluminum and titanium have a γ'phase (Ni
3 It gives hardness by precipitation of Al and Ti) and is an important element in this alloy. Since this γ'phase is uniformly precipitated in the nickel crystal grains, the unevenness of hardness depending on the location is eliminated, plastic deformation at the contact part is prevented, and the nickel matrix has a crystallographic consistency. Therefore, it is hard to fall off and wear resistance is improved. If the content of aluminum is less than 3%, the γ'phase is not sufficiently precipitated, and if it exceeds 8%, it becomes brittle, so it is necessary to set it to 3 to 8% (preferably 5 to 7%).

【0013】チタンはNi3 Alのアルミニウムと置換
し、γ′相の硬さを高めるために添加する。すなわち、
Ni3 Al単相の硬さは400〜450Hv程度であ
り、耐摩耗性に寄与する析出相としては硬さ不足であ
る。しかし、Tiを添加すると、Ni3 Al中に固溶し
て硬さが増加し、耐摩耗性が向上する。添加量としては
0.3%未満ではその効果が少なく、3%以上になると
効果が飽和することから、0.3〜3%(好ましくは
0.5〜1.5%)とした。ニオブやタンタルもチタン
と同様の効果を有するので、チタンの替わりあるいは併
用して同様の添加量で用いてもよい。モリブデンはニッ
ケル母相の固溶強化と耐食性に寄与するもので、3%未
満では効果がなく、8%を超えると合金が脆くなるの
で、3〜8%(好ましくは4〜6%)とした。タングス
テンもモリブデンと同様に、ニッケル母相の固溶強化に
寄与するので、8%以下でモリブデンの一部又は全部を
これに置き換えることができる。炭素は0.5%以上に
なると衝撃値を著しく低下させる。また、ケイ素は1.
0%以下(好ましくは0.01〜0.5%)で、1.0
%以上になると衝撃値を著しく低下させる。
Titanium replaces aluminum of Ni 3 Al and is added to enhance the hardness of the γ'phase. That is,
The hardness of the Ni 3 Al single phase is about 400 to 450 Hv, which is insufficient as the precipitation phase that contributes to wear resistance. However, when Ti is added, it forms a solid solution in Ni 3 Al to increase the hardness and improve the wear resistance. If the addition amount is less than 0.3%, the effect is small, and if it is 3% or more, the effect is saturated, so the content is set to 0.3 to 3% (preferably 0.5 to 1.5%). Since niobium and tantalum also have the same effect as titanium, titanium may be used instead of or in combination with titanium in the same amount. Molybdenum contributes to solid solution strengthening of the nickel matrix and corrosion resistance. If it is less than 3%, it has no effect, and if it exceeds 8%, the alloy becomes brittle, so 3 to 8% (preferably 4 to 6%) was set. . Similar to molybdenum, tungsten also contributes to solid solution strengthening of the nickel matrix, so that 8% or less can replace part or all of molybdenum. When carbon exceeds 0.5%, the impact value is remarkably reduced. Also, silicon is 1.
0% or less (preferably 0.01 to 0.5%), 1.0
%, The impact value is significantly reduced.

【0014】要するに、無潤滑での摺動摩耗に対して、
析出相が母相と結晶学的な整合性を有し、析出相を支え
る母相が靱性を保持しかつあるレベル以上の硬さを有す
ることが重要なのである。ジルコニウムは凝固時にニッ
ケルと反応し、共晶組織を得るために必要な成分であ
り、適量の共晶組織を導入することによって、耐摩耗性
を向上することができる。ジルコニウムの添加量が1%
未満では耐摩耗性への効果が十分でなく、5%をこえる
と合金が脆くなるので1〜5%(好ましくは1〜3%)
とした。以上示したところの鉄基合金を固定部材とし、
ニッケル基合金を可動部材として組合せることにより、
摩耗損傷の少ない摺動部品を提供することができる。C
は強化元素として必要であり、0.15%以下が好まし
く、特に0.03〜0.1%が好ましい。FeはTi、
C、Zr等の元素を母合金で加えることもあり、3%以
下とすることが好ましい。Mnは加工性を高めるので、
加えることができ1%以下が好ましい。Bは放射性を有
しないものを選別して含有することが好ましく、0.1
%以下が好ましい。Niは特に65〜75%とするのが
よい。
In short, against sliding wear without lubrication,
It is important that the precipitation phase has crystallographic compatibility with the matrix phase, and that the matrix phase supporting the precipitation phase retains toughness and has a hardness of a certain level or higher. Zirconium is a component necessary for obtaining a eutectic structure by reacting with nickel during solidification, and the wear resistance can be improved by introducing an appropriate amount of eutectic structure. Addition amount of zirconium is 1%
If less than 5%, the effect on wear resistance is not sufficient, and if it exceeds 5%, the alloy becomes brittle, so 1-5% (preferably 1-3%).
And Using the iron-based alloy shown above as the fixing member,
By combining a nickel-based alloy as a movable member,
It is possible to provide a sliding component with little wear damage. C
Is necessary as a strengthening element, and is preferably 0.15% or less, particularly preferably 0.03 to 0.1%. Fe is Ti,
Since elements such as C and Zr may be added in the mother alloy, the content is preferably 3% or less. Since Mn enhances workability,
It can be added and is preferably 1% or less. It is preferable that B is selected by containing those having no radioactivity,
% Or less is preferable. Ni is preferably 65 to 75%.

【0015】[0015]

【実施例】以下本発明を実施例に基づいて具体的に説明
する。 実施例1 表1は摺動摩耗試験に供したピン材の化学成分を示す。
No.1は従来の制御棒ガイド用ピンに用いられていたコ
バルト合金を、No.2は特公昭59−52228号公報
に開示されている鉄基合金を示す。また、No.3〜9は
本発明に係る合金を示す。No.1は市販のものを使用
し、No.2〜6は真空溶解後、熱間鍛造しφ5.5mm
のピンに加工した。No.7〜9は熱間鍛造後、冷間加工
を行ないピンに加工した。
EXAMPLES The present invention will be specifically described below based on examples. Example 1 Table 1 shows the chemical composition of the pin material used in the sliding wear test.
No. 1 is a cobalt alloy used for a conventional control rod guide pin, and No. 2 is an iron-based alloy disclosed in Japanese Patent Publication No. 59-52228. Further, Nos. 3 to 9 indicate alloys according to the present invention. No. 1 is a commercially available one, and Nos. 2 to 6 are vacuum melted and hot forged φ5.5 mm
Processed into a pin. No. 7 to 9 were hot forged and then cold worked into pins.

【0016】[0016]

【表1】 [Table 1]

【0017】表2は摺動試験に供したローラ材の化学成
分を示す。No.Aは従来の制御棒ガイド用ローラに用い
られていたコバルト合金を、No.Bは特公昭59−52
228号公報に開示されているニッケル基合金を示す。
No.C〜Dは本発明に係る合金を示す。No.Aは市販の
材料を用い、その他の材料は真空溶解、精密鋳造を行っ
た後仕上げ加工を行った。その後、溶体化と時効の熱処
理を行い表3に示すようなローラに加工した。
Table 2 shows the chemical composition of the roller material used in the sliding test. No. A is the cobalt alloy used for conventional control rod guide rollers, and No. B is the Japanese Examined Patent Publication No. 59-52.
The nickel-based alloy disclosed in Japanese Patent No. 228 is shown.
Nos. C to D indicate alloys according to the present invention. No. A was a commercially available material, and other materials were vacuum-melted, precision-cast, and then finished. After that, solution treatment and heat treatment for aging were performed to process the rollers as shown in Table 3.

【0018】[0018]

【表2】 [Table 2]

【0019】摺動摩耗試験はローラにピンを挿入したも
のを試験機に装着し、ピンを介してステンレス(SUS
316L)製の回転体に押しつけ種々の荷重を負荷して
行った。試験環境は室温水中及び実炉条件を模擬した高
温水中とした。表3は表1に示すピン材と表2に示すロ
ーラ材を組合せ、288℃高温水中で負荷荷重10k
g、走行距離4.2kmの条件で摩耗試験を行った結果
を示す。
In the sliding wear test, a roller with a pin inserted is mounted on a testing machine, and a stainless steel (SUS
316L) was pressed against a rotating body and various loads were applied. The test environment was room temperature water and high temperature water simulating actual reactor conditions. Table 3 is a combination of the pin material shown in Table 1 and the roller material shown in Table 2, and a load of 10k in 288 ° C high temperature water.
The results of an abrasion test performed under the conditions of g and running distance of 4.2 km are shown below.

【0020】aはコバルト基合金の組合せ、bは特公昭
59−52228号公報に示す合金の組合せであり、c
〜iはローラ材に公知の材料を用い、ピン材に本発明の
摺動部材を用いた例であり、jとkが本発明に基づく合
金の組合せである。c〜fに示すように、ピン材にバナ
ジウムカーバイド粒子を分散析出させることにより、摩
耗量を大幅に減少させることができる。また、g〜iに
示すように、これに冷間加工を行い加工硬化することに
よって、さらに摩耗量が減少する。
A is a combination of cobalt-based alloys, b is a combination of alloys shown in JP-B-59-52228, and c is a combination.
The symbols i to i are examples in which known materials are used for the roller material and the sliding member of the present invention is used for the pin material, and j and k are combinations of alloys based on the present invention. As shown in c to f, the amount of wear can be significantly reduced by dispersing and precipitating vanadium carbide particles in the pin material. Further, as indicated by g to i, the amount of wear is further reduced by subjecting this to cold working and work hardening.

【0021】分散粒子の量は体積比で1〜10%が適当
であり、これ以下では効果が十分でなく、これ以上では
靱性が低下する。また、冷間加工量は5〜40%が適当
であり、これ以下ではその硬化が十分でなく、これ以上
では効果が飽和する。さらに、jとkに示すように、ロ
ーラ材にジルコニウムを添加した本発明の合金を仕様す
ることによって、ローラとピンの摩耗量を合計した総摩
耗量を減少することができる。ローラ及びピンともに磨
耗量を10mg以下(より好ましくは5mg以下)にす
るのがこのましい。
The amount of dispersed particles is preferably 1 to 10% by volume, and if the amount is less than this, the effect is not sufficient, and if the amount is more than this, the toughness decreases. Further, the cold working amount is appropriately 5 to 40%, and if it is less than this, the hardening is not sufficient, and if it is more than this, the effect is saturated. Further, as indicated by j and k, by specifying the alloy of the present invention in which zirconium is added to the roller material, the total wear amount of the wear amounts of the roller and the pin can be reduced. It is preferable that the wear amount of both the roller and the pin is 10 mg or less (more preferably 5 mg or less).

【0022】[0022]

【表3】 [Table 3]

【0023】次に、耐腐食性を、288℃で溶存酸素量
8ppmの高温純水中に500h保持した時の腐食減量
試験により、靱性を、シャルビー衝撃試験により試験し
た結果、腐食減量及び吸収エネルギ共にコバルト基合金
に比べて遜色がない。なお、上記の説明は原子炉制御棒
駆動装置に使用されるガイド用ピン及びローラに適用す
る場合について説明したが、本発明はこれに限定される
ものではなく、原子炉に使用されるすべての部品に適用
できるものである。
Next, the corrosion resistance was tested by a corrosion weight loss test at 288 ° C. for 500 hours in high temperature pure water having a dissolved oxygen content of 8 ppm, and the toughness was tested by the Charby impact test. Both are comparable to cobalt-based alloys. In addition, although the above description has described the case of applying to the guide pins and rollers used in the reactor control rod drive device, the present invention is not limited to this, all of the reactor used in the reactor. It can be applied to parts.

【0024】[0024]

【発明の効果】以上に説明したごとく本発明によれば、
合金組成としてコバルトを全く含まないので、制御棒駆
動装置用ローラ及びピンとして使用した場合、高温高圧
の炉水中へのコバルトの溶出がないので、誘導放射化に
よる被爆線量を低く押さえることができる。また、耐摩
耗性に優れているので、摩滅によるピン及びローラの寸
法変化が少なく、精密な駆動が可能となる。さらに耐腐
食性、耐衝撃性に優れているので、長時間の運転や緊急
時の高速駆動に対しても高い信頼性を確保できる等の効
果がある。
As described above, according to the present invention,
Since it does not contain cobalt as an alloy composition at all, when it is used as a roller and pin for a control rod drive device, cobalt does not elute into the reactor water at high temperature and high pressure, so the exposure dose due to induction activation can be kept low. Further, since it has excellent wear resistance, the dimensional change of the pin and the roller due to abrasion is small, and precise driving becomes possible. Furthermore, since it is excellent in corrosion resistance and impact resistance, it has the effect of ensuring high reliability even for long-term operation and high-speed driving in an emergency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諏訪 正輝 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 国谷 治郎 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 白木 智美 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 越石 正人 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masateru Suwa 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Jiro Kuniya 1-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Satomi Shiraki 1-1-1, Sachimachi, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Works, Hitachi (72) Inventor Masato Koshiishi Hitachi City, Ibaraki Prefecture 3-1-1 Sachimachi, Hitachi Ltd., Hitachi Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基質中にバナジウムカーバイドの微粒子
を体積比で1〜10%分散含有した鉄基合金を固定部材
とし、かつ重量比でクロム13〜22%、モリブデン3
〜10%、アルミニウム3〜8%、チタン0.5〜5
%、ジルコニウム1〜5%、炭素0.5%以下、ケイ素
1.0%以下、残部ニッケルから成るニッケル基合金を
可動部材とした原子力プラント用摺動部品。
1. An iron-based alloy containing fine particles of vanadium carbide dispersed in a substrate in an amount of 1 to 10% by volume is used as a fixing member, and 13 to 22% by weight of chromium and 3% of molybdenum are used.
-10%, aluminum 3-8%, titanium 0.5-5
%, Zirconium 1 to 5%, carbon 0.5% or less, silicon 1.0% or less, balance nickel-based alloy as a movable member for a nuclear power plant.
【請求項2】 前記固定部材は、冷間加工を5〜40%
施して加工硬化したことを特徴とする請求項1記載の原
子力プラント用摺動部品。
2. The fixing member is 5-40% cold-worked.
The sliding component for a nuclear power plant according to claim 1, which is applied and work-hardened.
【請求項3】 基質部が耐食性を有する鉄基合金より成
り、該基質中にバナジウムカーバイドの微粒子を体積比
で1〜10%分散含有したことを特徴とする原子力プラ
ント用摺動部材。
3. A sliding member for a nuclear power plant, wherein the substrate portion is made of an iron-based alloy having corrosion resistance, and fine particles of vanadium carbide are dispersed and contained in the substrate in an amount of 1 to 10% by volume.
【請求項4】 前記摺動部材は、冷間加工を5〜40%
施して加工硬化したことを特徴とする請求項3記載の原
子力プラント用摺動部材。
4. The sliding member is cold worked to 5-40%.
The sliding member for a nuclear power plant according to claim 3, which is applied and work-hardened.
【請求項5】 重量比でクロム13〜22%、モリブデ
ン3〜10%、アルミニウム3〜8%、チタン0.5〜
5%、ジルコニウム1〜5%、炭素0.5%以下、ケイ
素1.0%以下、残部ニッケルから成ることを特徴とす
る原子力プラント用摺動部材。
5. A weight ratio of 13 to 22% chromium, 3 to 10% molybdenum, 3 to 8% aluminum, and 0.5 to titanium.
A sliding member for a nuclear power plant, comprising 5%, zirconium 1 to 5%, carbon 0.5% or less, silicon 1.0% or less, and the balance nickel.
JP05101794A 1994-02-25 1994-02-25 Sliding parts for nuclear power plants Expired - Fee Related JP3489633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05101794A JP3489633B2 (en) 1994-02-25 1994-02-25 Sliding parts for nuclear power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05101794A JP3489633B2 (en) 1994-02-25 1994-02-25 Sliding parts for nuclear power plants

Publications (2)

Publication Number Publication Date
JPH07238334A true JPH07238334A (en) 1995-09-12
JP3489633B2 JP3489633B2 (en) 2004-01-26

Family

ID=12875028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05101794A Expired - Fee Related JP3489633B2 (en) 1994-02-25 1994-02-25 Sliding parts for nuclear power plants

Country Status (1)

Country Link
JP (1) JP3489633B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544668B1 (en) * 1999-09-15 2003-04-08 U. T. Battelle, Llc Ductile filler metal alloys for welding nickel aluminide alloys
WO2005024078A1 (en) * 2003-09-09 2005-03-17 Korea Anti-Galling Metal Co., Ltd Anti-galling alloy with finely dispersed precipitates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544668B1 (en) * 1999-09-15 2003-04-08 U. T. Battelle, Llc Ductile filler metal alloys for welding nickel aluminide alloys
WO2005024078A1 (en) * 2003-09-09 2005-03-17 Korea Anti-Galling Metal Co., Ltd Anti-galling alloy with finely dispersed precipitates

Also Published As

Publication number Publication date
JP3489633B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
Crook Cobalt and cobalt alloys
Radu et al. Tribological behavior of Stellite 21 modified with yttrium
SE0850068A1 (en) Process for manufacturing a compound product having an area of durable coating, such a compound product, and the use of a steel material to provide the coating
Bose¹ et al. A review on alloying in tungsten heavy alloys
EP0300362A1 (en) Fe-base build-up alloy excellent in resistance to corrosion and wear
US4818485A (en) Radiation resistant austenitic stainless steel alloys
JPS58174538A (en) Ni-based alloy member and manufacture thereof
Mares Some issues on tailoring possibilities for mechanical properties of particulate reinforced metal matrix composites
JP4063236B2 (en) Valve, manufacturing method thereof, power plant using the same, and valve member
JP3489633B2 (en) Sliding parts for nuclear power plants
CN107429368A (en) Corrosion resistant article and its manufacture method
US4462957A (en) Sliding mechanism
JP3381487B2 (en) Roller for nuclear power plant control rod drive and control rod drive using the same
Bhaduri et al. Optimized postweld heat treatment procedures for 17-4 PH stainless steels
Gupta et al. Dynamic Strain Aging in New Generation Cr-Mo-V Steel for Reactor Pressure Vessel Applications
Hawk et al. Effect of nitrogen alloying on the microstructure and abrasive wear of stainless steels
JP3427634B2 (en) Guide roller for control rod drive of nuclear power plant
Narasimhan et al. Wear characterization of new nickel-base alloys for internal combustion engine valve seat applications
Freche et al. Cobalt-Base Alloys for Space-Power Systems
JPS6249344B2 (en)
Kumar Role of niobium and tantalum in superalloys
JPS5848654A (en) Sliding mechanism
Datta et al. A Review on Present Status of Friction Stir Welding of NiTinol, a Functionally Advanced, Versatile and Widely Used Shape Memory Alloy
JPS5985995A (en) Reactor control rod drive mechanisms
Tsuchiya et al. Reweldability test of irradiated SS316 by the TIG welding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees