JPH0723526A - Method and device for suppressing excitation surge for transformer - Google Patents

Method and device for suppressing excitation surge for transformer

Info

Publication number
JPH0723526A
JPH0723526A JP5152521A JP15252193A JPH0723526A JP H0723526 A JPH0723526 A JP H0723526A JP 5152521 A JP5152521 A JP 5152521A JP 15252193 A JP15252193 A JP 15252193A JP H0723526 A JPH0723526 A JP H0723526A
Authority
JP
Japan
Prior art keywords
phase
transformer
voltage
magnetic flux
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5152521A
Other languages
Japanese (ja)
Other versions
JP3416989B2 (en
Inventor
Toru Katsuno
徹 勝野
Kenji Okubo
堅司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15252193A priority Critical patent/JP3416989B2/en
Publication of JPH0723526A publication Critical patent/JPH0723526A/en
Application granted granted Critical
Publication of JP3416989B2 publication Critical patent/JP3416989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an inexpensive power supply for nullifying the remanence by applying an AC attenuation voltage and to facilitate the work for connecting the power supply with a transformer. CONSTITUTION:An AC single phase power supply 3 is connected across one 22 of three-phase windings 21, 22, 23 of a transformer 100 equipped with a tripod core 10. When the transformer 100 is exited with an AC attenuation voltage from the power supply 3, a flux attenuating with time while inverting the sign alternately can be superposed for two core legs 11, 13 as well as the core leg 12 applied with the voltage. Consequently, the remanence component decreases as the flux component attenuates and the AC attenuation voltage goes zero and thereby the remanence is nullified for three core legs 11, 12, 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器、特に三相変
圧器を電源に投入する際の励磁突流を低減するための変
圧器励磁突流抑制方法とその装置、特に励磁突流が増大
する主な要因である残留磁束を低減することによって励
磁突流を低減する変圧器励磁突流抑制方法とその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transformer exciting-current suppressing method and apparatus for reducing the exciting-rush current when a transformer, particularly a three-phase transformer, is turned on to a power source. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for suppressing a transformer exciting magnetic current by reducing the residual magnetic flux, which is another factor, to reduce the exciting magnetic current.

【0002】[0002]

【従来の技術】周知のように、変圧器を電源に投入する
ときに、投入位相によって異なるが、定格電流の数倍な
いし数十倍の励磁突流が流れ、その後時間とともに減衰
して定常状態になるという過渡現象の生じることが知ら
れている。励磁突流の大きさは投入位相だけではなく、
その前に電源が遮断されたときに、変圧器の鉄心に残る
残留磁束量によっても大きく変化することが知られてい
る。
2. Description of the Related Art As is well known, when a transformer is turned on, an exciting rush current of several times to several tens of times the rated current flows, which varies depending on the closing phase, and then decays with time to reach a steady state. It is known that a transient phenomenon of The magnitude of the exciting rush is not limited to the input phase,
It is known that when the power supply is cut off before that, the amount of residual magnetic flux remaining in the iron core of the transformer also greatly changes.

【0003】特に三相変圧器の場合、遮断位相や投入位
相に係わらず殆どの場合に励磁突流が発生することが知
られており、電力系統に使用される電力用変圧器、電気
炉や誘導炉に電力を供給するための工業用変圧器などの
数千kVA又はそれ以上の大容量の変圧器の殆どが三相
であり、励磁突流の発生による系統電圧の変化は単に対
象とする変圧器が設置されている変電所や工場でけでは
なく広範囲に影響を与えるものである。
In particular, in the case of a three-phase transformer, it is known that an exciting rush current is generated in almost all cases regardless of the cut-off phase and the closing phase. Most of the large-capacity transformers of several thousand kVA or more such as industrial transformers for supplying electric power to the furnace are three-phase, and the change in the system voltage due to the occurrence of the magnetizing surge is simply the target transformer. It affects not only the substations and factories where is installed but also a wide range.

【0004】このようなことから、変圧器を電源に投入
するときの励磁突流を低減するために種々の対策が採用
されている。励磁突流低減の対策の一つとして、残留磁
束を低減又は実質的に零にするものがある。残留磁束を
零にしても励磁突流がなくなるわけではないが、確実に
かつ容易に低減することができるという特長を持ってい
る。残留磁束を低減又は零にする方法は、変圧器の巻線
に三相交流を印加し、その後漸次その電圧を零になるま
で小さくしていく方法であり、原理的には磁気テープの
消磁に採用されている方法と同じである。この方法によ
れば、最初に印加する電圧をある値以上にしておけば実
質的に残留磁束を零にすることができる。
For these reasons, various measures have been adopted in order to reduce the magnetizing surge when the transformer is turned on. One of the measures for reducing the excitation rush current is to reduce or substantially reduce the residual magnetic flux. Even if the residual magnetic flux is reduced to zero, the exciting rush current does not disappear, but it has the feature that it can be reliably and easily reduced. The method of reducing or reducing the residual magnetic flux is to apply three-phase alternating current to the windings of the transformer, and then gradually reduce the voltage until it becomes zero. The method used is the same. According to this method, the residual magnetic flux can be substantially reduced to zero by setting the voltage applied first to a certain value or more.

【0005】これに用いる三相電源は電圧を時間ととも
に低減してゆく必要があることから変圧器が接続される
電力系統などとは別の専用の電源が使用される。
Since the three-phase power source used for this purpose needs to reduce the voltage with time, a dedicated power source different from the power system to which the transformer is connected is used.

【0006】[0006]

【発明が解決しようとする課題】前述のように、三相変
圧器の鉄心の残留磁束を低減又は零にするためには専用
の三相電源が使用されている。三相電源は単相電源に比
べて高価であり、三相電源を変圧器に接続するときにも
3つの端子の接続が必要になり接続作業に時間がかかる
という問題がある。
As described above, a dedicated three-phase power source is used to reduce or reduce the residual magnetic flux in the iron core of the three-phase transformer. The three-phase power source is more expensive than the single-phase power source, and even when the three-phase power source is connected to the transformer, it is necessary to connect three terminals, and there is a problem that connection work takes time.

【0007】この発明の目的は、このような問題を解決
し、安価でかつ端子接続作業の時間が低減できる変圧器
励磁突流抑制方法とその装置を提供することにある。
An object of the present invention is to solve the above problems and to provide a method and an apparatus for suppressing a transformer magnetizing rush current which is inexpensive and can reduce the time required for terminal connection work.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、三相三脚鉄心を備えた変圧器
を、単相交流電源でその電圧を時間とともに低減させな
がら零になるまで励磁するものとし、また、三相三脚鉄
心を備えた変圧器を、系統に投入される前にあらかじめ
単相交流電源でその電圧を時間とともに減衰させながら
零になるまで励磁して鉄心の残留磁束を低減し、その後
で系統に投入するものとし、また、変圧器の巻線が三角
結線されてなり、この三角結線の3つの端子のうちの2
つの端子間に単相交流電源が接続されるものとし、ま
た、変圧器の巻線が星形結線されてなり、この星形結線
の3つの端子のうちの1つの端子と中性点端子との間に
単相交流電源が接続されるものとし、また、変圧器の巻
線が星形結線されてなり、この星形結線の3つの端子の
うちの1つの端子が単相交流電源の一方に、残る2つの
端子が他方に接続されるものとする。
In order to solve the above-mentioned problems, according to the present invention, a transformer provided with a three-phase tripod iron core becomes zero while reducing its voltage with a single-phase AC power source over time. Also, a transformer equipped with a three-phase, three-leg iron core is excited by a single-phase AC power supply before it is applied to the system, and its voltage is attenuated with time until it reaches zero and the core remains. The magnetic flux shall be reduced and then applied to the system, and the transformer winding shall be connected in a triangular shape, and 2 out of 3 terminals of this triangular connection shall be used.
A single-phase AC power supply shall be connected between the two terminals, and the transformer winding shall be star-connected, and one of the three terminals of this star-shaped connection and the neutral point terminal shall be connected. A single-phase AC power supply shall be connected between these terminals, and the transformer winding shall be star-connected, and one of the three terminals of this star-connection shall be one of the single-phase AC power supplies. Then, the remaining two terminals shall be connected to the other.

【0009】[0009]

【作用】この発明の構成において、三相三脚鉄心を備え
た変圧器を、単相交流電源でその電圧を時間とともに減
衰させながら零になるまで励磁すると、印加する電圧が
単相であっても直接励磁される相以外の相に電圧が分担
し合ったり、磁束が鉄心脚間で分流しあったりして結局
3つの相ともに印加電圧に対応した交番磁束が発生し、
この磁束の振幅が減衰してゆくとともに残留磁束も低減
し、印加電圧が零になるとともに3本の鉄心脚ともに残
留磁束を零にすることができる。
In the structure of the present invention, when a transformer provided with a three-phase, three-leg iron core is excited by a single-phase AC power source until it becomes zero while attenuating the voltage with time, even if the applied voltage is single-phase. The voltage is shared among the phases other than the directly excited phase, and the magnetic flux is shunted between the iron core legs, so that an alternating magnetic flux corresponding to the applied voltage is generated in all three phases.
The amplitude of this magnetic flux is attenuated and the residual magnetic flux is reduced, and the applied voltage becomes zero and the residual magnetic flux can be made zero in all three iron core legs.

【0010】電圧を印加する巻線が三角結線の場合に
は、3つの端子のうちの2つの端子間に単相交流電源を
接続することによって、印加されない端子を挟む2つの
相の鉄心脚には電圧が直接印加される相の鉄心脚に流れ
る磁束の略2分の1ずつの磁束が分かれて流れる。電圧
を印加する巻線が星形結線のときには、3つの端子のう
ちの1つと中性点との間に単相交流電源を接続すると、
電圧が印加された相の鉄心脚に磁束が流れ、他の鉄心脚
にはこの磁束が約2分の1ずつ分流する。また、中性点
が引き出されない場合には、星形結線の3つの端子のう
ちの1つの端子を単相交流電源の一端に、他の2つの端
子を一括して他端に接続することによっても前述と同じ
作用を果たすことができ、この接続構成は中性点端子が
引き出されている場合にも適用することができる。
When the winding to which the voltage is applied has a triangular connection, a single-phase AC power source is connected between two terminals of the three terminals so that the two-phase iron core legs sandwich the terminals to which no voltage is applied. The magnetic flux is divided into approximately one half of the magnetic flux flowing in the iron core leg of the phase to which the voltage is directly applied. When the winding to which the voltage is applied has a star connection, connecting a single-phase AC power supply between one of the three terminals and the neutral point
A magnetic flux flows in the iron core leg of the phase to which the voltage is applied, and this magnetic flux is shunted to the other iron core legs by about half. If the neutral point is not extracted, connect one of the three terminals of the star connection to one end of the single-phase AC power supply, and connect the other two terminals to the other end together. Can also achieve the same effect as described above, and this connection configuration can be applied even when the neutral point terminal is drawn out.

【0011】[0011]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す模式図である。この図に
おいて、変圧器100は鉄心10とこの鉄心10の3本
の鉄心脚11,12,13にそれぞれ巻回される巻線2
1,22,23からなっている。もちろん、巻線として
はこの組の他に少なくとももう1組がそれぞれの鉄心脚
11,12,13に巻回されていて、2組の巻線で一次
側と二次側を形成するのであるが、残留磁束や励磁突流
を問題にするときには他の巻線は直接関係しないので図
示を省略してある。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a schematic diagram showing an embodiment of the present invention. In this figure, a transformer 100 includes a core 10 and windings 2 wound around three core legs 11, 12, and 13 of the core 10.
It consists of 1, 22, 23. Of course, in addition to this set, at least another set is wound around each of the iron core legs 11, 12, and 13, and two sets of windings form the primary side and the secondary side. , The other windings are not directly related when the residual magnetic flux or the exciting magnetic rush current is a problem, so that the illustration thereof is omitted.

【0012】巻線11,12,13は三角結線されてお
り、それぞれの端子は図示のように左からu,v,wと
名付ける。単相交流電源3はv端子とw端子間に接続し
てある。他の相の端子間でも良いが後述するようにこの
端子間に接続するのが一番良い。単相交流電源3によっ
て印加される減衰交流電圧Eはv端子とw端子間に印加
されるから、v相の巻線22には電圧Eが印加され、u
相とw相との巻線21,23は直列接続された状態で電
圧Eが印加される。したがって、この電圧Eによって誘
起される各鉄心脚11,12,13の磁束Φu ,Φv
Φw の間には次式が成立する。ただし、ΦE は印加電圧
Eによって誘起される磁束である。
The windings 11, 12, and 13 are connected in a triangular shape, and their terminals are named u, v, and w from the left as shown in the figure. The single-phase AC power supply 3 is connected between the v terminal and the w terminal. Although it may be between terminals of other phases, it is best to connect between these terminals as described later. Since the attenuated AC voltage E applied by the single-phase AC power supply 3 is applied between the v terminal and the w terminal, the voltage E is applied to the v-phase winding 22, and u
The voltage E is applied to the windings 21 and 23 of the phase and the w phase connected in series. Therefore, the magnetic fluxes Φ u , Φ v of each iron core leg 11, 12, 13 induced by the voltage E,
The following equation holds between Φ w . However, Φ E is the magnetic flux induced by the applied voltage E.

【0013】[0013]

【数1】Φv =ΦE [Equation 1] Φ v = Φ E

【0014】[0014]

【数2】Φu +Φw =−ΦE Φu とΦw との分流比率はそれぞれの鉄心脚の磁気抵抗
によって決まる。図のように中央に位置するv相の鉄心
脚12に電圧Eが印加されるように接続すると、u相と
w相の鉄心脚11,13は鉄心脚12に対して対称関係
にあるので、その磁気抵抗は略等しくなる。したがっ
て、Φu とΦw とは実質的に等しくなるので次式が成立
する。前述のように図1の接続が一番良いとしたのはこ
の理由によるものである。
## EQU2 ## Φ u + Φ w = −Φ E The shunt ratio between Φ u and Φ w is determined by the magnetic resistance of each iron core leg. When connecting so that the voltage E is applied to the v-phase iron core 12 located at the center as shown in the figure, since the u-phase and w-phase iron cores 11 and 13 have a symmetrical relationship with respect to the iron core 12, The magnetic resistances are almost equal. Therefore, since Φ u and Φ w are substantially equal to each other, the following equation holds. This is the reason why the connection of FIG. 1 is the best as described above.

【0015】[0015]

【数3】Φu =Φw =−(1/2)ΦE 交流電圧Eは、印加された後時間経過とともに波高値が
減衰していく減衰交流電圧である。したがって、前述の
2つの式のΦu 、Φv 、Φw も相似の波形で減衰する減
衰交番磁束である。ただ、磁束Φの時間微分が電圧Eに
なることから、磁束Φは電圧Eに対して位相が90°異
なる。
## EQU3 ## Φ u = Φ w =-(1/2) Φ E The AC voltage E is a damped AC voltage whose peak value is attenuated with the passage of time after being applied. Therefore, Φ u , Φ v , and Φ w in the above two equations are also damping alternating magnetic fluxes that attenuate with similar waveforms. However, since the time derivative of the magnetic flux Φ becomes the voltage E, the phase of the magnetic flux Φ differs from the voltage E by 90 °.

【0016】周知のように、残留磁束がある場合に、減
衰交番磁束を重畳させると磁束は零に収束して残留磁束
が消滅する。したがって、交流減衰電圧Eが印加される
前に鉄心脚11,12,13に残っていた残留磁束は、
交流減衰電圧Eが印加されこれが減衰して実質的に零に
なった時点では零の状態になる。そのため、その後に変
圧器100を系統に投入したときの励磁突流は残留磁束
が残っている場合に比べて小さくなる。前述のように、
三相変圧器の場合、少なくとも1つの相では励磁突流が
大きくなるような残留磁束が存在するものなので、前述
のように残留磁束を零にすることによってかなりの励磁
突流の低減が可能になる。
As is well known, when there is a residual magnetic flux, if the damping alternating magnetic flux is superimposed, the magnetic flux converges to zero and the residual magnetic flux disappears. Therefore, the residual magnetic flux remaining in the iron core legs 11, 12, and 13 before the AC damping voltage E is applied is
When the AC damping voltage E is applied and attenuated to become substantially zero, the state becomes zero. Therefore, the exciting rush current when the transformer 100 is subsequently put into the system becomes smaller than that in the case where the residual magnetic flux remains. As aforementioned,
In the case of a three-phase transformer, since there is a residual magnetic flux that makes the exciting magnetic surge large in at least one phase, it is possible to considerably reduce the exciting magnetic flux by making the residual magnetic flux zero as described above.

【0017】今、各鉄心脚の飽和磁束をΦs 、系統の電
圧に対応する定常時の磁束の波高値をΦm 、残留磁束を
Φr とするとき、発生し得る最大励磁電流IEMは次式と
なる。ただし、kは鉄心脚が飽和しているときの励磁電
流IE の磁束Φに対する比例係数である。
Now, when the saturation magnetic flux of each iron core leg is Φ s , the peak value of the magnetic flux in the steady state corresponding to the system voltage is Φ m , and the residual magnetic flux is Φ r , the maximum exciting current I EM that can be generated is It becomes the following formula. However, k is a proportional coefficient with respect to the magnetic flux Φ of the exciting current I E when the iron core leg is saturated.

【0018】[0018]

【数4】IEM=k(Φr +2Φm −Φs ) 仮に、Φr =0.7Φs 、Φm =0.8Φs とすると、
EM=k(1.3Φs)になる。また、Φr =0とする
と、IEM=k(0.6Φs )となり、残留磁束Φr を零
にすることによって励磁突流最大値は約半分になる。こ
れらの概略の値は実際とそれほど掛け離れたものではな
いので、残留磁束を零にすることによって発生し得る最
大励磁突流が約半分になるといって大きな間違いはな
い。
I EM = k (Φ r + 2Φ m −Φ s ) If Φ r = 0.7Φ s and Φ m = 0.8Φ s , then
I EM = k (1.3Φ s ) Further, when Φ r = 0, I EM = k (0.6Φ s ), and when the residual magnetic flux Φ r is set to zero, the maximum exciting rush current value becomes about half. Since these approximate values are not so far apart from the actual values, it is safe to say that the maximum exciting rush current that can be generated by reducing the residual magnetic flux to zero will be about half.

【0019】図2はこの発明の別の実施例を示す模式図
であり、図1と類似なので同じ部材には共通の符号を付
けて説明を省略する。図2の図1に対する違いは巻線2
4,25,26が星形結線であることと、これにともな
って単相交流電源3の接続端子が違うことである。図2
では単相交流電源3はV端子と中性点O端子との間に接
続したもので、この間に減衰交流電圧Eが印加される。
V相の巻線25には減衰交流電圧Eがそのまま印加され
るのでこれに対応する磁束ΦE が生ずる。U相とW相の
巻線24,26には直接電圧は印加されないが、鉄心脚
12の磁束ΦV(=ΦE )が鉄心脚11,13に分流し
てΦU 、ΦW となりそれぞれの巻線24,26にはこの
磁束に対応する電圧が誘起される。これらの磁束によっ
て残留磁束が零になるのは図1の場合と同様である。
FIG. 2 is a schematic view showing another embodiment of the present invention. Since it is similar to FIG. 1, the same members are designated by the same reference numerals and the description thereof will be omitted. The difference between FIG. 2 and FIG. 1 is winding 2
4, 25 and 26 are star-shaped connections, and the connection terminals of the single-phase AC power supply 3 are different accordingly. Figure 2
Then, the single-phase AC power supply 3 is connected between the V terminal and the neutral point O terminal, and the attenuated AC voltage E is applied between them.
Since the attenuated AC voltage E is directly applied to the V-phase winding 25, a magnetic flux Φ E corresponding to this is generated. Although no voltage is directly applied to the U-phase and W-phase windings 24 and 26, the magnetic flux Φ V (= Φ E ) of the iron core leg 12 is shunted to the iron core legs 11 and 13 to become Φ U and Φ W , respectively. A voltage corresponding to this magnetic flux is induced in the windings 24 and 26. Similar to the case of FIG. 1, the residual magnetic flux becomes zero due to these magnetic fluxes.

【0020】星形結線の巻線では中性点O端子が引き出
されているとは限らない。中性点が埋め込みの変圧器の
場合には、単相交流電源3はV端子とU、W両端子を一
括した端子間に接続する。このような結線の場合、巻線
24と26とは並列接続になりこれが巻線25と直列接
続されたことになるので巻線25と巻線24,26との
電圧分担比は2:1になることから、V相の巻線25に
は減衰交流電圧Eの3分の2の電圧(2/3)Eが、U
相とW相の巻線24,26には(1/3)Eがそれぞれ
印加されることになり、これに対応する磁束Φがそれぞ
れの鉄心脚11,12,13に流れる。電圧Eや磁束Φ
の各相ごとの分担比は図2の場合と同じなので、図2の
減衰交流電圧Eの値の1.5倍の電圧を印加すれば鉄心
脚11,12,13に発生する磁束も図2と同じにな
る。
In the star-shaped winding, the neutral point O terminal is not always drawn out. In the case of a transformer having a buried neutral point, the single-phase AC power supply 3 is connected between the V terminal and the terminals that combine both U and W terminals. In the case of such connection, the windings 24 and 26 are connected in parallel, which means that they are connected in series with the winding 25, so that the voltage sharing ratio between the winding 25 and the windings 24 and 26 is 2: 1. Therefore, the voltage (2/3) E, which is two-thirds of the attenuated AC voltage E, is applied to the winding 25 of the V phase by U
(1/3) E is applied to the phase-and W-phase windings 24 and 26, and the magnetic flux Φ corresponding to this is applied to the respective iron core legs 11, 12, and 13. Voltage E and magnetic flux Φ
Since the sharing ratio for each phase is the same as that in the case of FIG. 2, the magnetic flux generated in the iron core legs 11, 12, and 13 is also applied by applying a voltage 1.5 times the value of the attenuated AC voltage E of FIG. Will be the same as

【0021】[0021]

【発明の効果】この発明は前述のように、三相変圧器に
単相交流電源を接続し、減衰交流電圧を印加することに
よって、変圧器鉄心を構成する3本の鉄心脚それぞれに
減衰交番磁束を発生させることができるので、それぞれ
の鉄心脚の残留磁束は時間とともに低減し、減衰交流電
圧が零になったときには残留磁束も零になる。使用する
交流電源は単相でよいので安価であり変圧器への接続作
業も容易になるという効果が得られる。
As described above, according to the present invention, a three-phase transformer is connected to a single-phase AC power source, and a damping AC voltage is applied to the three-phase transformer. Since the magnetic flux can be generated, the residual magnetic flux of each iron core leg decreases with time, and the residual magnetic flux also becomes zero when the attenuated AC voltage becomes zero. Since the AC power supply to be used may be a single phase, it is inexpensive and the effect of facilitating the connection work to the transformer can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す模式図FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】この発明の別の実施例を示す模式図FIG. 2 is a schematic diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100 変圧器 10 鉄心 11,12,13 鉄心脚 21,22,23 巻線 24,25,26 巻線 3 単相交流電源 100 transformer 10 iron core 11, 12, 13 iron core leg 21, 22, 23 winding 24, 25, 26 winding 3 single-phase AC power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】三相三脚鉄心を備えた変圧器を、単相交流
電源でその電圧を時間とともに低減させながら零になる
まで励磁することを特徴とする変圧器励磁突流抑制装
置。
1. A transformer-excited surge current suppressor characterized in that a transformer provided with a three-phase tripod core is excited by a single-phase AC power source until the voltage becomes zero while reducing the voltage thereof over time.
【請求項2】三相三脚鉄心を備えた変圧器を、系統に投
入する前にあらかじめ単相交流電源でその電圧を時間と
ともに減衰させながら零になるまで励磁して鉄心の残留
磁束を低減し、その後で系統に投入することを特徴とす
る変圧器励磁突流抑制方法。
2. A transformer provided with a three-phase three-leg iron core is excited by a single-phase AC power source in advance before being put into the system while the voltage is attenuated until it becomes zero while reducing the residual magnetic flux of the iron core. Then, the method for suppressing the transformer excited magnetic current is characterized in that the current is applied to the system.
【請求項3】変圧器の巻線が三角結線されてなり、この
三角結線の3つの端子のうちの2つの端子間に単相交流
電源が接続されることを特徴とする請求項1又は2記載
の変圧器励磁突流抑制方法とその装置。
3. The transformer winding is triangularly connected, and a single-phase AC power supply is connected between two terminals of the three terminals of the triangular connection. Method and apparatus for suppressing transformer magnetizing rush current described.
【請求項4】変圧器の巻線が星形結線されてなり、この
星形結線の3つの端子のうちの1つの端子と中性点端子
との間に単相交流電源が接続されることを特徴とする請
求項1又は2記載の変圧器励磁突流抑制方法とその装
置。
4. A transformer winding is star-connected, and a single-phase AC power supply is connected between one of the three terminals of the star-connection and the neutral terminal. 3. A transformer excitation surge current suppression method and device according to claim 1 or 2.
【請求項5】変圧器の巻線が星形結線されてなり、この
星形結線の3つの端子のうちの1つの端子が単相交流電
源の一方に、残る2つの端子が他方に接続されることを
特徴とする請求項1又は2記載の変圧器励磁突流抑制方
法とその装置。
5. A transformer winding is star-connected, wherein one of the three terminals of this star-connection is connected to one of the single-phase AC power supplies and the remaining two terminals are connected to the other. The method and apparatus for suppressing a transformer excited rush current according to claim 1 or 2, characterized in that.
JP15252193A 1993-06-24 1993-06-24 Transformer excitation sudden flow suppression method and device Expired - Lifetime JP3416989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15252193A JP3416989B2 (en) 1993-06-24 1993-06-24 Transformer excitation sudden flow suppression method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15252193A JP3416989B2 (en) 1993-06-24 1993-06-24 Transformer excitation sudden flow suppression method and device

Publications (2)

Publication Number Publication Date
JPH0723526A true JPH0723526A (en) 1995-01-24
JP3416989B2 JP3416989B2 (en) 2003-06-16

Family

ID=15542261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15252193A Expired - Lifetime JP3416989B2 (en) 1993-06-24 1993-06-24 Transformer excitation sudden flow suppression method and device

Country Status (1)

Country Link
JP (1) JP3416989B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117432A3 (en) * 2008-03-17 2009-12-23 Asic Advantage Inc. Integrated multi-transformer
WO2010086793A1 (en) * 2009-01-29 2010-08-05 Codensa S.A. Esp Winding connection to supply three-phase power from a two-phase feeding and 2x3 distribution transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117432A3 (en) * 2008-03-17 2009-12-23 Asic Advantage Inc. Integrated multi-transformer
US7956491B2 (en) 2008-03-17 2011-06-07 Asic Advantage Inc. Integrated multi-transformer
WO2010086793A1 (en) * 2009-01-29 2010-08-05 Codensa S.A. Esp Winding connection to supply three-phase power from a two-phase feeding and 2x3 distribution transformer

Also Published As

Publication number Publication date
JP3416989B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
US6101113A (en) Transformers for multipulse AC/DC converters
US5781428A (en) Transformer for 12-pulse series connection of converters
JP2536813B2 (en) Three-phase autotransformer
JPH0328142B2 (en)
KR20130020712A (en) Eco-friendly energy-saving hybrid harmonic cancellation device and the energy-saving methods
US5163173A (en) Variable impedance transformer with equalizing winding
US5537089A (en) Three phase transformer with reduced harmonic currents
JP3416989B2 (en) Transformer excitation sudden flow suppression method and device
KR20010083809A (en) Apparatus for reducing the harmonic component in the power line
JP5026029B2 (en) Current balancer and low voltage distribution system
KR102043260B1 (en) Smart hybrid transformer with enhanced harmonic attenuation and large current phase recovery
JPH07254520A (en) Three-phase on-load voltage and phase adjusting transformer
JPH09223628A (en) Method of demagnetizing core of electromagnetic induction apparatus and electromagnetic induction apparatus having demagnetizing unit
JPH1132437A (en) Three-phase four-wire low voltage distribution system
JP2007242484A (en) Transformer circuit, and method for preventing its current zero point transition phenomenon
WO2006068495A2 (en) Device for reducing harmonics
de Castro Cezar et al. Elimination of inrush current using a new prefluxing method. Application to a single-phase transformer
JPH0462444B2 (en)
JPH11266586A (en) Ac-to-dc power converter
US10345831B2 (en) Methods and systems for using a tapped transformer to generate voltage sags
Novák Elimination of three-phase transformer inrush current through core forced magnetization and simultaneous closing
Corrodi et al. Influence of a circuit breaker's grading capacitor on controlled transformer switching
JPS5834922B2 (en) Tansoutanmakihen Atsukino Denatsuchiyouseihoshiki
JPH06295832A (en) Three-phase transformer
JPS60112121A (en) Phase adjusting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

EXPY Cancellation because of completion of term