JPH07234470A - Silver halide emulsion - Google Patents

Silver halide emulsion

Info

Publication number
JPH07234470A
JPH07234470A JP4799194A JP4799194A JPH07234470A JP H07234470 A JPH07234470 A JP H07234470A JP 4799194 A JP4799194 A JP 4799194A JP 4799194 A JP4799194 A JP 4799194A JP H07234470 A JPH07234470 A JP H07234470A
Authority
JP
Japan
Prior art keywords
silver halide
grains
content
mol
agx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4799194A
Other languages
Japanese (ja)
Other versions
JP3383397B2 (en
Inventor
Mitsuo Saito
光雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP04799194A priority Critical patent/JP3383397B2/en
Priority to DE1995623796 priority patent/DE69523796T2/en
Priority to EP19950102622 priority patent/EP0670515B1/en
Publication of JPH07234470A publication Critical patent/JPH07234470A/en
Application granted granted Critical
Publication of JP3383397B2 publication Critical patent/JP3383397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • G03C1/0053Tabular grain emulsions with high content of silver chloride
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • G03C1/14Methine and polymethine dyes with an odd number of CH groups
    • G03C1/16Methine and polymethine dyes with an odd number of CH groups with one CH group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03511Bromide content
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03517Chloride content
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03523Converted grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03535Core-shell grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03558Iodide content
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/01100 crystal face

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

PURPOSE:To obtain a silver halide emulsion good in the reproducibility of manufacture and superior in uniformity among the grains, sensitivity, graininess, and spectral sensitizability by forming specified flat grains in a specified amount of the silver halide grains. CONSTITUTION:The flat silver halide grains having principal faces {100} and an aspect ratio (diameter/thickness) of >=1.5 are contained in >=30% of the projection areas of the total silver halide grains. The difference between the contents of Cl<-> or Br<-> acrossing a gap in the central part of each grains is 10-100mol%, and that in the content of I<-> is 5-100mol%, and one or more halogen composition gap faces are formed by adding a solution of halogen salt different by >=10mol% in Cl<-> or Br<->, and by >=5mol% in I<-> from the halogen ion composition of a host silver halide nucleus to this nucleus, thus permitting uniform defects to be formed among each grain and to obtain silver halide emulsion to be improved in the reproducibility of the manufacture and enhanced in spectral sensitizability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は写真の分野において有用
であるハロゲン化銀(以後、「AgX」と記す)乳剤に
関し、特に主平面が{100}面である平板状粒子を含
有するAgX乳剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver halide (hereinafter referred to as "AgX") emulsion useful in the field of photography, and particularly to an AgX emulsion containing tabular grains having {100} faces as major faces. Regarding

【0002】[0002]

【従来の技術】平板状AgX乳剤粒子を写真感光材料に
用いた場合、非平板状AgX粒子に比べて色増感性、シ
ャープネス、光散乱特性、カバリングパワー、現像進行
性、粒状性等が改良される。この為に、互いに平行な双
晶面を有し、主平面が{111}面である平板状粒子が
多用されるようになった。しかし、AgX粒子に増感色
素を多量に吸着させた場合、{100}面を有する粒子
の方が通常、色増感特性がよい。従って主平面が{10
0}面である平板状粒子の開発が望まれている。主平面
の形状が直角平行四辺形の該{100}平板状粒子は特
開昭51−88017号、特公昭64−8323号、欧
州特許0,534,395A1号に記載がある。しか
し、これらの粒子はいずれも中心部に不連続なハロゲン
組成ギャップ面を有せず、均一ハロゲン組成型もしく
は、なだらかなハロゲン組成変化型である。この場合、
該平板粒子の作り分けが困難で、製造バラツキが大き
く、かつ、サイズ分布の広いAgX乳剤となる。また、
感度、粒状性、画質において満足のいく粒子ではなかっ
た。中心部にハロゲン組成ギャップ面を有する該平板状
粒子に関しては特願平5−96250号に記載されてい
る。しかし、その欠陥形成の粒子間均一性、製造再現
性、感度、粒状性が十分ではなかった。また、該粒子の
分光増感感度が十分ではなかった。
2. Description of the Related Art When tabular AgX emulsion grains are used in a photographic light-sensitive material, color sensitization, sharpness, light scattering characteristics, covering power, development progress and graininess are improved as compared with non-tabular AgX grains. It For this reason, tabular grains having twin planes parallel to each other and having a {111} plane as a main plane have been frequently used. However, when a large amount of the sensitizing dye is adsorbed on the AgX grains, the grains having {100} faces generally have better color sensitizing properties. Therefore, the main plane is {10
Development of tabular grains having a 0} plane is desired. The {100} tabular grains whose main plane shape is a right-angled parallelogram are described in JP-A-51-88017, JP-B-64-8323 and EP-A-0,534,395A1. However, none of these grains has a discontinuous halogen composition gap surface in the center, and is of a uniform halogen composition type or a gentle halogen composition change type. in this case,
It is difficult to properly prepare the tabular grains, the production variation is large, and the AgX emulsion has a wide size distribution. Also,
The particles were not satisfactory in terms of sensitivity, graininess and image quality. The tabular grains having a halogen composition gap surface in the center are described in Japanese Patent Application No. 5-96250. However, the inter-particle uniformity of defect formation, manufacturing reproducibility, sensitivity, and graininess were not sufficient. Further, the spectral sensitization sensitivity of the grains was not sufficient.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は製造再
現性がよく、粒子間均一性がより優れ、感度、粒状性、
分光増感特性のより優れたAgX乳剤を提供することに
ある。
The object of the present invention is to provide good production reproducibility, more excellent interparticle uniformity, sensitivity, graininess,
An object is to provide an AgX emulsion having more excellent spectral sensitization characteristics.

【0004】[0004]

【課題を解決するための手段】本発明の目的は次項によ
って達成された。 (1) 少なくとも分散媒とハロゲン化銀粒子を有するハロ
ゲン化銀乳剤において、該ハロゲン化銀粒子の投影面積
の合計の30%以上が主平面が{100}面で、アスペ
クト比(直径/厚さ)が1.5以上の平板状粒子であ
り、かつ、該粒子の中心部が下記(a)、(b)である
ハロゲン組成ギャップ面を1つ以上有することを特徴と
するハロゲン化銀乳剤。 (a) 該ギャップがCl- 含率またはBr- 含率で10〜
100モル%差、またはI- 含率で5〜100モル%差
である。 (b) 該ギャップがホストハロゲン化銀核に、該核のハロ
ゲンイオン組成とCl-含率、またはBr- 含率で10
モル%以上、またはI- 含率で5モル%以上異なるハロ
ゲン塩溶液を添加することにより生ずるハロゲンコンバ
ージョン反応により実質的に形成されたギャップ面であ
る。
The objects of the present invention have been achieved by the following items. (1) In a silver halide emulsion having at least a dispersion medium and silver halide grains, 30% or more of the total projected area of the silver halide grains has a {100} plane as a main plane and an aspect ratio (diameter / thickness). ) Is a tabular grain having a grain size of 1.5 or more, and the central portion of the grain has one or more halogen composition gap faces having the following (a) and (b). (a) The gap has a Cl - content or a Br - content of 10 to 10
The difference is 100 mol%, or the difference in I content is 5 to 100 mol%. (b) The gap is in the host silver halide nucleus, and the halogen ion composition of the nucleus and the Cl content or the Br content is 10.
It is a gap surface formed substantially by a halogen conversion reaction caused by adding a halogen salt solution different in mol% or more, or in I - content by 5 mol% or more.

【0005】(2) 少なくとも分散媒とハロゲン化銀粒子
を有するハロゲン化銀乳剤において、該ハロゲン化銀粒
子の投影面積の合計の30%以上が主平面が{100}
面で、アスペクト比(直径/厚さ)が1.5以上の平板
状粒子であり、かつ、該平板状粒子が下記(a)〜
(b)であるコア部とシェル部を有することを特徴とす
るハロゲン化銀乳剤。 (a) コア部のCl- 含率が60モル%以上で、シェル部
のBr- 含率が30モル%以上であり、かつ、(シェル
部のCl- 含率/コア部のCl- 含率)が0.8以下で
ある。 (b) シェル部は少なくともコア部の主平面上に実質的に
均一に積層されており、厚さは3原子層以上である。
(2) In a silver halide emulsion having at least a dispersion medium and silver halide grains, 30% or more of the total projected area of the silver halide grains has a main plane of {100}.
Surface is a tabular grain having an aspect ratio (diameter / thickness) of 1.5 or more, and the tabular grain has the following (a) to
(B) A silver halide emulsion having a core part and a shell part. (a) of the core Cl - in content: 60 mol% or more, the shell portions Br - and the content: 30 mol% or more and, (Cl shell portion - content / the core portion Cl - content: ) Is 0.8 or less. (b) The shell portion is laminated substantially uniformly on at least the main plane of the core portion, and has a thickness of 3 atomic layers or more.

【0006】その他、本発明の好ましい態様は次の通
り、 (3) 該ハロゲン塩溶液のハロゲン組成が、次の関係を満
足することを特徴とする前記(1)記載のハロゲン化銀
乳剤。該ハロゲン組成のハロゲン化銀の溶解度が該ホス
ト核のハロゲン組成のハロゲン化銀の溶解度より、同一
条件下において、より小さい。 (4) 該粒子の中心部にハロゲン組成ギャップ面を1つ以
上有し、該ギャップがCl- 含率またはBr- 含率で1
0〜100モル%差、またはI- 含率で5〜100モル
%差であることを特徴とする前記(2)記載のハロゲン
化銀乳剤。
Other preferred embodiments of the present invention are as follows: (3) The silver halide emulsion according to (1) above, wherein the halogen composition of the halogen salt solution satisfies the following relationship. The solubility of silver halide having the halogen composition is smaller than that of silver halide having the halogen composition of the host nucleus under the same conditions. (4) The grain has at least one halogen composition gap surface in the center thereof, and the gap has a Cl content or a Br content of 1 or less.
The silver halide emulsion according to (2) above, which has a difference of 0 to 100 mol% or a difference of 5 to 100 mol% in I - content.

【0007】次に本発明を更に詳細に説明する。前記
(1)、(2)において、投影面積とはAgX乳剤粒子
を互いに重ならない状態で、かつ、平板状粒子は主平面
が基板面と平行になる状態で基板上に配置した時の粒子
の投影面積を指す。本発明のAgX乳剤は少なくとも分
散媒とAgX粒子を有するAgX乳剤であり、該AgX
粒子の投影面積の合計の30%以上、好ましくは60〜
100%、より好ましくは80〜100%が主平面が
{100}面で、アスペクト比(直径/厚さ)が1.5
以上、好ましくは2以上、より好ましくは3〜25、更
に好ましくは3〜10の平板状粒子である。
Next, the present invention will be described in more detail. In the above (1) and (2), the projected area means the size of the grains when the AgX emulsion grains do not overlap each other and the tabular grains are arranged on the substrate in a state where the main plane is parallel to the substrate surface. Refers to the projected area. The AgX emulsion of the present invention is an AgX emulsion having at least a dispersion medium and AgX grains.
30% or more of the total projected area of the grains, preferably 60 to
100%, more preferably 80 to 100%, the main plane is the {100} plane and the aspect ratio (diameter / thickness) is 1.5.
The number of tabular grains is not less than 2, preferably not less than 2, more preferably 3 to 25, still more preferably 3 to 10.

【0008】該平板状粒子の直径とは粒子を電子顕微鏡
で観察した時、粒子の投影面積と等しい面積を有する円
の直径を指すものとする。また厚さは平板状粒子の主平
面間の距離を指す。該厚さは0.5μm以下が好まし
く、0.03〜0.3μmがより好ましく、0.05〜
0.2μmが更に好ましい。該平板状粒子の円相当投影
粒径は10μm以下が好ましく、0.2〜5μmがより
好ましい。該平板状粒子のハロゲン組成に特に制限はな
く、あらゆる組成が可能であるが、I- 含率は20モル
%以下が好ましく、0〜10モル%がより好ましい。該
粒子の直径分布は単分散であることが好ましく、該分布
の変動係数(標準偏差/平均直径)は0〜0.4が好ま
しく、0〜0.3がより好ましく0〜0.2が更に好ま
しい。
The diameter of the tabular grain means the diameter of a circle having an area equal to the projected area of the grain when the grain is observed with an electron microscope. The thickness refers to the distance between the main planes of tabular grains. The thickness is preferably 0.5 μm or less, more preferably 0.03 to 0.3 μm, and 0.05 to
0.2 μm is more preferable. The tabular grains have a circle-equivalent projected particle size of preferably 10 μm or less, more preferably 0.2 to 5 μm. The halogen composition of the tabular grains is not particularly limited, and any composition is possible, but the I content is preferably 20 mol% or less, more preferably 0 to 10 mol%. The diameter distribution of the particles is preferably monodisperse, and the coefficient of variation (standard deviation / average diameter) of the distribution is preferably 0 to 0.4, more preferably 0 to 0.3, still more preferably 0 to 0.2. preferable.

【0009】該平板状粒子の主平面の形状は、直角平
行四辺形で、その隣接辺比率〔1つの粒子の(長辺の長
さ/短辺の長さ)〕が1〜10、好ましくは1〜5、よ
り好ましくは1〜2の態様、直角平行四辺形の4つの
角の内の1つ以上が非等価的に欠落した形(詳細は特願
平4−145031号、同5−264059号の記載を
参考にすることができる)である態様、主平面を構成
する4つの辺の内の少なくとも相対する2つの辺が外側
に凸の曲線である態様、直角平行四辺形の4つの角の
内の1つ以上が、図1に示す如く、直方体状に欠落した
態様、該4つの角が等価的に欠落した〔1つの粒子内
で主平面の(最大欠落部面積/最小欠落部面積)<2の
態様、を挙げることができる。、、がより好まし
く、、で該欠落部に{111}面を有する平板状粒
子がより好ましい。平板粒子の全表面に対する{11
1}面の面積比率は0〜40%が好ましく、0.5〜2
0%がより好ましい。
The main plane of the tabular grains is a right-angled parallelogram, and the ratio of adjacent sides [(length of long side / length of short side) of one grain] is 1 to 10, preferably. 1 to 5, more preferably 1 to 2, a shape in which one or more of four corners of a right-angled parallelogram are non-equivalently omitted (details are described in Japanese Patent Application Nos. 4-145031 and 5-264059). No.) can be referred to), an aspect in which at least two opposite sides of the four sides constituting the main plane are curved curves outwardly convex, four angles of a right-angled parallelogram As shown in FIG. 1, one or more of the two are missing in a rectangular parallelepiped shape, and the four corners are equivalently missing [(maximum missing area / minimum missing area of the main plane within one particle. ) <2 aspect can be mentioned. , And more preferably, and tabular grains having a {111} plane in the lacking part are more preferable. {11 for all surfaces of tabular grains
The area ratio of the 1} plane is preferably 0 to 40%, and 0.5 to 2
0% is more preferable.

【0010】次に前記(1)の態様について記す。該平
板状粒子は次の(a)、(b)の特徴を有する。(a)
該平板状粒子の中心部にハロゲン組成ギャップ面を有
し、該ギャップがCl- 含率またはBr- 含率で10〜
100モル%差、好ましくは30〜100モル%差、よ
り好ましくは50〜100モル%差である。またはI-
含率で5〜100モル%差、好ましくは10〜100モ
ル%差、より好ましくは30〜100モル%差である。
(b)該ギャップ面がホストAgX核に、該核のハロゲ
ンイオン組成とCl- 含率またはBr- 含率で10モル
%以上、好ましくは30〜100モル%、より好ましく
は50〜100モル%、またはI- 含率で5モル%以
上、好ましくは10〜100モル%、より好ましくは3
0〜100モル%だけ異なるハロゲン塩溶液を添加する
ことにより生ずるハロゲンコンバージョン反応により実
質的に形成されたギャップ面である。ここで実質的にと
は、該ハロゲン塩溶液と同時に添加されるAg+ 溶液の
モル量a1 が該ハロゲン塩溶液の添加モル量a2 との関
係が、a1 /a2 <0.9、好ましくはa1 /a2 =0
〜0.6、より好ましくは0〜0.3、更に好ましくは
0〜0.1であることを指す。
Next, the aspect (1) will be described. The tabular grains have the following characteristics (a) and (b). (A)
The tabular grain has a halogen composition gap surface in the center thereof, and the gap has a Cl content or a Br content of 10 to 10.
The difference is 100 mol%, preferably 30 to 100 mol%, more preferably 50 to 100 mol%. Or I -
The content is 5 to 100 mol% difference, preferably 10 to 100 mol% difference, and more preferably 30 to 100 mol% difference.
(B) The gap surface is in the host AgX nucleus in terms of halogen ion composition and Cl content or Br content of the nucleus of 10 mol% or more, preferably 30 to 100 mol%, more preferably 50 to 100 mol%. , Or I - content of 5 mol% or more, preferably 10 to 100 mol%, more preferably 3
It is a gap surface formed substantially by a halogen conversion reaction caused by adding halogen salt solutions that differ by 0 to 100 mol%. Here, "substantially" means that the molar amount a 1 of the Ag + solution added at the same time as the halogen salt solution and the molar amount a 2 of the halogen salt solution added are a 1 / a 2 <0.9. , Preferably a 1 / a 2 = 0
To 0.6, more preferably 0 to 0.3, still more preferably 0 to 0.1.

【0011】該ハロゲン塩溶液のハロゲン組成は次の関
係を満足することがより好ましい。該ハロゲン組成のA
gXの溶解度b1 と該ホスト核のハロゲン組成のAgX
の溶解度b2 が同一条件において、(b1 /b2 )が好
ましくは1より小、より好ましくは0.8以下、更に好
ましくは10-5〜0.3である。該ハロゲンコンバージ
ョン反応は1回以上、好ましくは1〜4回、より好まし
くは1〜2回行うことができる。具体例を示すと次の通
りである。AgNO3 液と、ハロゲン塩溶液(以後「X
- 塩液」と記す)を分散媒溶液中に、攪拌しながら添加
し、AgX1 核を形成する。次にX- 塩液を添加し、ハ
ロゲンコンバージョン反応を行なわせ、(AgX1 |A
gX2 )核を形成する。これで核形成終了とすることも
できるし、更にAgNO3 またはAgNO3 とX- 塩液
を添加し、(AgX1 |AgX2|AgX3 )核を形成
することもできる。または、更にX- 塩液を添加し、ハ
ロゲンコンバージョン反応を行なわせ、(AgX1 |A
gX2 |AgX3 |AgX4 )核を形成することもでき
るし、そのくり返しを行なうこともできる。該AgX1
とAgX3 は同じハロゲン組成であってもよいし、異な
っていてもよい。最も好ましいハロゲン組成を選んで用
いることができる。
The halogen composition of the halogen salt solution more preferably satisfies the following relationship. A of the halogen composition
Solubility b 1 of gX and AgX of halogen composition of the host nucleus
(B 1 / b 2 ) is preferably less than 1, more preferably 0.8 or less, still more preferably 10 −5 to 0.3 under the same solubility b 2 of. The halogen conversion reaction can be carried out once or more, preferably 1 to 4 times, more preferably 1 to 2 times. A specific example is as follows. AgNO 3 solution and halogen salt solution (hereinafter "X
- "Salt solution") is added to the dispersion medium solution with stirring to form AgX 1 nuclei. Next, X - salt solution is added to carry out a halogen conversion reaction, and (AgX 1 | A
gX 2 ) form nuclei. This can be the end of nucleation, or AgNO 3 or AgNO 3 and X - salt solution can be further added to form (AgX 1 | AgX 2 | AgX 3 ) nuclei. Alternatively, X - salt solution is further added to carry out a halogen conversion reaction, and (AgX 1 | A
The gX 2 | AgX 3 | AgX 4 ) nuclei can be formed or can be repeated. The AgX 1
And AgX 3 may have the same halogen composition or different halogen compositions. The most preferable halogen composition can be selected and used.

【0012】該コンバージョン反応を行なわせる為に添
加するハロゲン塩溶液の添加モル量は該ホスト核のAg
1 のモル量の0.01倍以上が好ましく、0.1倍以
上がより好ましい。該(AgX1 |AgX2 |Ag
3 )核の場合のギャップ面AgX2 相の厚さは0.1
原子層以上が好ましく、1原子層以上がより好ましい。
該コンバージョン反応を行なわせることにより、該平板
状粒子生成の原因となる結晶欠陥が形成される。該Ag
1 のサイズは0.2μm以下が好ましく、0.02〜
0.1μmがより好ましい。
The molar amount of the halogen salt solution added to carry out the conversion reaction is Ag of the host nucleus.
The molar amount of X 1 is preferably 0.01 times or more, more preferably 0.1 times or more. The (AgX 1 | AgX 2 | Ag
In the case of X 3 ) nuclei, the thickness of the gap plane AgX 2 phase is 0.1.
The atomic layer or more is preferable, and the atomic layer or more is more preferable.
By carrying out the conversion reaction, crystal defects causing the formation of the tabular grains are formed. The Ag
The size of X 1 is preferably 0.2 μm or less, and is 0.02 to
0.1 μm is more preferable.

【0013】次に該粒子の調製法について詳述する。ま
ず核形成過程から順に説明する。 (1) 核形成 少なくとも分散媒と水を有する分散媒溶液中でAg+
- を反応させてまずホストハロゲン化銀核AgX1
を形成する。次にX- 塩液を添加し、AgX1核の表面
にハロゲンコンバージョン反応を起こさせ、平板状粒子
生成原因となる結晶欠陥を実質的に形成する。該欠陥を
形成する為には該反応条件を{100}面形成雰囲気に
する必要がある。その詳細に関しては特願平5−962
50号の記載を参考にすることができる。その為に{1
00}面形成促進剤を共存させることができる。その共
存量は該核への飽和吸着量の5%以上が好ましく、10
〜300%がより好ましい。該晶癖制御剤は該共存によ
り、該核形成条件下におけるAgX粒子の平衡晶癖銀電
位を10mV以上、好ましくは30〜200mVだけ下
げる化合物を指す。
Next, the method for preparing the particles will be described in detail. First, the nucleation process will be described in order. (1) Nucleation Ag + and X are reacted in a dispersion medium solution containing at least a dispersion medium and water to first form a host silver halide nucleus AgX 1 nucleus. Next, an X - salt solution is added to cause a halogen conversion reaction on the surface of the AgX 1 nucleus to substantially form a crystal defect that causes tabular grain formation. In order to form the defects, the reaction condition must be a {100} plane forming atmosphere. For details, refer to Japanese Patent Application No. 5-962.
The description of No. 50 can be referred to. Therefore {1
00} surface formation promoter can coexist. The coexisting amount is preferably 5% or more of the saturated adsorption amount to the nucleus, and 10
~ 300% is more preferable. The crystal habit controlling agent refers to a compound which, by the coexistence, lowers the equilibrium crystal habit silver potential of AgX particles under the nucleation condition by 10 mV or more, preferably 30 to 200 mV.

【0014】具体的には、〔{100}面の面積/{1
11}面の面積〕比の同じ粒子が、該化合物を共存させ
ることにより、より低い該銀電位下で得られることを指
す。該晶癖制御剤としては欧州特許0,534,395
A1記載の化合物の他、メチオニン含率の高いゼラチン
(好ましくは10μmol/g以上、より好ましくは3
0〜200μmol/g)、AgX乳剤用として公知の
水溶性分散媒(全般に関してはResearch Disclosure 、
307巻、アイテム307105、1989年11月の
記載を参考にすることができ、特に特公昭52−163
65号、特開昭59−8604号、Journal of Imaging
Science、31巻、148〜156(1987)記載の
分散媒がより好ましい)を挙げることができる。
Specifically, the area of the [{100} plane / {1
It means that particles having the same [11} plane area] ratio can be obtained under the lower silver potential by allowing the compound to coexist. As the crystal habit controlling agent, European Patent 0,534,395
In addition to the compounds described in A1, gelatin with a high methionine content (preferably 10 μmol / g or more, more preferably 3
0 to 200 μmol / g), a water-soluble dispersion medium known for AgX emulsions (research disclosure for general,
Volume 307, Item 307105, November 1989 can be referred to, especially Japanese Patent Publication No. 52-163.
No. 65, JP-A-59-8604, Journal of Imaging
Science, Volume 31, 148 to 156 (1987) are more preferable).

【0015】該核形成温度は5〜70℃が好ましく、1
0〜50℃がより好ましい。核のサイズは小さい方が次
の熟成がより容易に進行する。その点からは核形成を低
温で行なうことが好ましい。一方、ハロゲンコンバージ
ョン反応を起こさせ、該欠陥を形成する為には、エネル
ギーが必要であり、高温が必要である。両者とも満足さ
せる為には、AgX1 核の形成とX- 塩液の添加を低温
にし、次に好ましくは2℃以上、より好ましくは5〜3
0℃だけ温度を上昇させればよい。
The nucleation temperature is preferably 5 to 70 ° C., 1
0-50 degreeC is more preferable. The smaller the size of the nucleus, the easier the next ripening proceeds. From that point, it is preferable to perform nucleation at a low temperature. On the other hand, in order to cause the halogen conversion reaction to form the defects, energy is required and high temperature is required. In order to satisfy both of them, the formation of AgX 1 nuclei and the addition of the X - salt solution are carried out at a low temperature, then preferably 2 ° C or higher, more preferably 5 to 3
It is sufficient to raise the temperature by 0 ° C.

【0016】このようにして(AgX1 |AgX2 )核
を形成した後、次に熟成過程に入ることもできるが、更
にAg+ 塩液、またはAg+ 塩液とX- 塩液を添加し、
(AgX1 |AgX2 |AgX3 )核を形成することが
より好ましい。ここでX1 とX3 は実質的に同じハロゲ
ン組成であることが好ましい。それは次の熟成過程で、
平板粒子上へAgX2 の沈積が集中し、平板粒子に更に
多数の欠陥が生ずることを防止できる為である。AgX
3 相が存在すると、熟成時にX2 はX3 により希釈され
る為、該欠陥形成が防止される。ここで実質的に同じと
は、Cl- 、Br- およびI- 含率差が好ましくは30
モル%以内、より好ましくは0〜10モル%であること
を指す。AgX3 の添加量はAgX2 量の1倍以上が好
ましく、5〜300倍がより好ましい。
After the (AgX 1 | AgX 2 ) nuclei are formed in this way, the aging process can be started next, but Ag + salt solution, or Ag + salt solution and X - salt solution is added. ,
More preferably, (AgX 1 | AgX 2 | AgX 3 ) nuclei are formed. Here, it is preferable that X 1 and X 3 have substantially the same halogen composition. It is the next aging process,
This is because it is possible to prevent the accumulation of AgX 2 deposits on the tabular grains and to generate more defects in the tabular grains. AgX
When three phases are present, X 2 is diluted with X 3 during aging, so that the defect formation is prevented. Here, “substantially the same” means that the difference in Cl , Br and I content is preferably 30.
It is within mol%, more preferably 0 to 10 mol%. The addition amount of AgX 3 is preferably 1 time or more, and more preferably 5 to 300 times the amount of AgX 2 .

【0017】(該欠陥数/粒子)=C1 が多すぎると、
最終的に得られる粒子はx、y、z軸方向に成長促進さ
れた低アスペクト比の厚い粒子となる。ここで、x、y
軸は主平面に平行で、直交し、z軸は主平面に垂直であ
る。従って、厚い粒子の生成頻度が少なく、かつ、平板
粒子の生成頻度が高くなるように、該欠陥形成量を制御
すればよい。該欠陥形成量はAgX1 とAgX2 のハロ
ゲン組成ギャップ差が大きくなる程、また(AgX2
AgX1 )のモル比が大きくなる程、増加する。分散媒
濃度は通常、0.1〜10重量%、pHは1〜12、好
ましくは2〜7が用いられる。該欠陥形成はI- 含率差
ではなく、Br- またはCl- 含率差で形成されること
がより好ましい。該電位は銀イオン選択電極(例えば銀
電極)と飽和カロメル電極間の電位差を求める、いわゆ
るポテンショメトリック法で求めることができる。
(Number of defects / particles) = If C 1 is too large,
The finally obtained particles are thick particles having a low aspect ratio, which are growth-promoted in the x-, y-, and z-axis directions. Where x, y
The axes are parallel and orthogonal to the major plane and the z-axis is perpendicular to the major plane. Therefore, the defect formation amount may be controlled so that the generation frequency of thick grains is low and the generation frequency of tabular grains is high. The larger the difference in halogen composition gap between AgX 1 and AgX 2 , the greater the defect formation amount becomes (AgX 2 /
It increases as the molar ratio of AgX 1 ) increases. The dispersion medium concentration is usually 0.1 to 10% by weight, and the pH is 1 to 12, preferably 2 to 7. The defect formation is I - not the content: difference, Br - or Cl - it is more preferably formed by content: difference. The potential can be determined by a so-called potentiometric method, which is a potential difference between a silver ion selective electrode (for example, a silver electrode) and a saturated calomel electrode.

【0018】(2) 熟成 核形成時に平板状粒子核のみを作り分けることはむずか
しい。従って次の熟成過程で平板状粒子以外の粒子をオ
ストワルド熟成により消滅させる。温度は核形成温度よ
り10℃以上高くすることが好ましく、通常は50〜9
0℃が用いられる。熟成により非平板核は消失し、平板
状粒子上に沈積する。該熟成で非平板核の殆んど(数で
好ましくは70%以上、好ましくは95〜100%)を
消失させることもできるが、その他、次の手法も好まし
く用いることができる。熟成時にAgX2 が平板粒子上
に沈積し、平板状粒子に更に多数の欠陥が生ずることを
防止する為に、核形成後に前記AgX3 の組成を有する
微粒子を添加することが好ましい。および/またはAg
+ 塩液とX3 - 塩液を添加しながら熟成することが好ま
しい。該AgX2 が該AgX3 により希釈され、平板粒
子に新たに欠陥が実質的に生じなくなる添加量で添加す
ることが好ましい。
(2) Aging It is difficult to prepare only tabular grain nuclei during nucleation. Therefore, grains other than tabular grains are eliminated by Ostwald ripening in the next ripening process. The temperature is preferably higher than the nucleation temperature by 10 ° C. or higher, usually 50 to 9
0 ° C is used. Non-tabular nuclei disappear by aging and deposit on tabular grains. Almost all of the non-tabular nuclei (preferably 70% or more in number, preferably 95 to 100%) can be eliminated by the aging, but the following method can also be preferably used. In order to prevent AgX 2 from being deposited on the tabular grains during aging and causing more defects in the tabular grains, it is preferable to add fine particles having the composition of AgX 3 after the nucleation. And / or Ag
+ Salt solution and X 3 - is preferably ripening while adding salt solution. It is preferable that the AgX 2 is diluted with the AgX 3 and added in an amount such that no new defects are substantially generated in the tabular grains.

【0019】ここで実質的にとは、既に存在する欠陥量
の50%以下が好ましく、0〜20%がより好ましく、
0〜10%が更に好ましい。その他、これらの手法を併
用して用いることもできる。例えば、まず熟成で非平板
核の10%以上、好ましくは20〜95%を熟成で消失
させた後、残りの非平板核をAg+ 塩液とX- 塩液を低
過飽和度添加しながら、消失させる方法、または、Ag
+ 塩液とX- 塩液を低過飽和度添加しながら、平板粒子
をエッジ方向に優先的に成長させ、非平板粒子とのサイ
ズ差を大きくした後、熟成し、非平板状粒子を消失させ
ることもできる。ここで低過飽和度とは、(該欠陥を有
しない粒子の成長速度/平板粒子のエッジ方向の成長速
度)=d1 が好ましくは0.5以下、より好ましくは
0.1以下、更に好ましくは0以下の状態を指す。
Here, “substantially” means preferably 50% or less, more preferably 0 to 20%, of the already existing defect amount,
0 to 10% is more preferable. In addition, these methods can be used in combination. For example, first, 10% or more, preferably 20 to 95% of the non-platen nucleus is aged to be eliminated, and then the remaining non-platen nucleus is added with a low supersaturation degree of Ag + salt solution and X - salt solution. Method to eliminate or Ag
+ Tabular grains are preferentially grown in the edge direction while adding a low supersaturation degree of salt solution and X - salt solution to increase the size difference from non-tabular grains and then aged to eliminate non-tabular grains. You can also Here, the low supersaturation degree means that (growth rate of grains having no defect / growth rate of tabular grains in the edge direction) = d 1 is preferably 0.5 or less, more preferably 0.1 or less, and further preferably Indicates a state of 0 or less.

【0020】(3) 成長 前記熟成後に、必要に応じて粒子を所望のサイズにまで
更に成長させることができる。この場合、1)Ag+
液とX- 塩液を添加して成長させるイオン添加法、2)
予めAgX微粒子を形成し、該微粒子を添加して成長さ
せる微粒子添加法、3)両者の併用法、を挙げることが
できる。該平板状粒子内のハロゲン組成構造に関しては
特願平5−96250号の記載を参考にすることができ
る。
(3) Growth After the aging, the particles can be further grown to a desired size, if necessary. In this case, 1) an ion addition method of growing by adding Ag + salt solution and X - salt solution, 2)
Examples thereof include a method of forming AgX fine particles in advance and adding the fine particles to grow the particles, 3) a combination method of both. Regarding the halogen composition structure in the tabular grains, the description in Japanese Patent Application No. 5-96250 can be referred to.

【0021】次に前記態様(2)について記す。該平板
状粒子は下記(a1)、(b1)記載の特徴を有するコ
ア部とシェル部を有する。(a1):図2の(1)、
(2)において、コア部AgX5 のCl- 含率が60モ
ル%以上、好ましくは70〜99.99モル%、より好
ましくは90〜99、95モル%であり、シェル部Ag
6 のBr- 含率が30モル%以上、好ましくは50〜
100モル%、より好ましくは70〜100モル%であ
る。更に(シェル部のCl- 含率/コア部のCl-
率)が0.8以下、好ましくは0〜0.5、より好まし
くは0〜0.2である。(b1):シェル部は少なくと
もコア部の主平面上に実質的に均一に積層されており、
厚さは3原子層以上、好ましくは5〜700原子層、よ
り好ましくは5〜300原子層を指す。ここで実質的に
均一とは1つの粒子内における該積層厚さのバラツキの
変動係数が0.4以下、好ましくは0〜0.3、より好
ましくは0〜0.1を指す。更に好ましくはコア部のす
べての表面上に実質的に均一に積層された態様を挙げる
ことができる。更に好ましくは、該主平面上の該積層厚
が粒子間においても実質的に均一である態様を挙げるこ
とができる。更に好ましくはコア部のすべての表面上の
積層厚が粒子間においても実質的に均一である態様を挙
げることができる。これらの実質的に均一とは前記規定
に従う。
Next, the aspect (2) will be described. The tabular grains have a core part and a shell part having the characteristics described in (a1) and (b1) below. (A1): (1) in FIG.
In (2), Cl core portion AgX 5 - content: 60 mol% or more, preferably from 70 to 99.99 mol%, more preferably 90~99,95 mole%, the shell section Ag
The Br content of X 6 is 30 mol% or more, preferably 50 to
It is 100 mol%, more preferably 70 to 100 mol%. Furthermore (Cl shell portion - Cl of content: / core section - content) is 0.8 or less, preferably 0 to 0.5, more preferably 0 to 0.2. (B1): the shell portion is laminated substantially uniformly on at least the main plane of the core portion,
The thickness is 3 atomic layers or more, preferably 5 to 700 atomic layers, and more preferably 5 to 300 atomic layers. Here, “substantially uniform” means that the variation coefficient of variation in the laminated thickness within one particle is 0.4 or less, preferably 0 to 0.3, and more preferably 0 to 0.1. More preferably, an embodiment in which the core portion is laminated substantially uniformly on all surfaces can be mentioned. More preferably, it is possible to cite an embodiment in which the laminated thickness on the main plane is substantially uniform even among particles. More preferably, an embodiment in which the laminated thickness on all surfaces of the core part is substantially uniform even among particles can be mentioned. The above-mentioned "substantially uniform" complies with the above definition.

【0022】更には該シェル部のBr- 含率の粒子間の
変動係数(該Br- 含率の粒子間分布の標準偏差/平均
Br- 含率)が、好ましくは0.4以下、より好ましく
は0〜0.3、更に好ましくは0〜0.1である態様が
好ましい。また、図2の(1)図と(2)図で、シェル
層が2層以上の多重構造になっていて、粒子表面から内
部に進むにつれ、Br- 含率が順に低下した態様をあげ
ることができる。コア部とシェル部の接合面のBr-
率ギャップは70モル%以下が好ましく、5〜35モル
%がより好ましい。該含率差が大きすぎると、該積層時
にコア部が溶解し、平板状粒子の形状がくずれることが
ある為である。更には該シェル部がI-を20モル%以
下、好ましくは0.1〜10モル%含有する態様をあげ
ることができる。
Furthermore the Br of the shell portion - variation coefficient between the particles of the content: (the Br - standard deviation of the particle distribution among content: / Mean Br - content:) is preferably 0.4 or less, more preferably Is preferably 0 to 0.3, more preferably 0 to 0.1. In addition, in FIGS. 2A and 2B, the shell layer has a multi-layer structure of two or more layers, and the Br content gradually decreases from the surface to the inside of the particle. You can The Br content gap of the joint surface between the core portion and the shell portion is preferably 70 mol% or less, more preferably 5 to 35 mol%. This is because if the content difference is too large, the core portion may dissolve during the lamination, and the shape of the tabular grains may collapse. Furthermore, the shell portion may contain I − in an amount of 20 mol% or less, preferably 0.1 to 10 mol%.

【0023】該I- 含率はシェル部において表面から内
部にかけて順に低下した態様がより好ましく、表面から
10原子層以内、好ましくは5原子層以内に局在した態
様がより好ましい。I- は少なくとも粒子の主平面上で
実質的に均一に分布していることが好ましく、粒子間に
おいても実質的に均一であることが好ましい。更には該
シェル部がSCN- を好ましくは0.1モル%以上、よ
り好ましくは1〜50モル%含有する態様を挙げること
ができる。SCN- は表面から10原子層以内、より好
ましくは3原子層以内に局在した態様が好ましい。SC
- は少なくとも主平面上で実質的に均一に分布してい
ることが好ましく、粒子間においても実質的に均一であ
ることが好ましい。これらの実質的に均一とは、好まし
くは0.4以下、より好ましくは0〜0.3、更に好ま
しくは0〜0.1を指す。
It is more preferable that the I - content in the shell portion decreases in order from the surface to the inside, and it is more preferable that the I - content is localized within 10 atomic layers, preferably within 5 atomic layers from the surface. It is preferable that I is substantially uniformly distributed at least on the main planes of the particles, and it is preferable that I is also substantially uniform among the particles. Furthermore, the shell part may contain SCN − in an amount of preferably 0.1 mol% or more, and more preferably 1 to 50 mol%. It is preferable that SCN is localized within 10 atomic layers, more preferably within 3 atomic layers from the surface. SC
It is preferable that N is substantially uniformly distributed at least on the main plane, and it is preferable that N is also substantially uniform among particles. The term “substantially uniform” means preferably 0.4 or less, more preferably 0 to 0.3, and further preferably 0 to 0.1.

【0024】このような粒子構造は次の利点を有する。
AgX粒子の大部分(好ましくは60%以上、より好ま
しくは75〜98%)がAgClである為に現像進行が
はやく、かつ、単位現像液量あたりの感光材料の処理量
が多い。従って現像液の廃液量を低減できる。一方、A
gX粒子表面がAgClの場合にはその分極率が小さい
為に、主としてファン−デア−ワールスカで吸着する増
感色素の吸着が弱くなるという欠点を有するが、該粒子
の場合、粒子表面のBr- 含率を高めてある為に増感色
素の吸着は強化されている。更には必要に応じて表面の
- 含率を高めて増感色素の吸着力を高めてある。Br
- とI- は粒子表面および表面近傍に局在させている
為、少ない含率で最高の目的が得られている。また、粒
子表面のBr- やI- はAgX粒子の溶解度を下げ、化
学増感時および乳剤や感光材料の保存時のかぶり増加を
防ぐ働きをもする。即ち、粒子表面特性は従来のAgB
rI粒子系に近い。
Such a particle structure has the following advantages.
Since most of the AgX particles (preferably 60% or more, more preferably 75 to 98%) are AgCl, development progresses quickly, and the processing amount of the photosensitive material per unit developing solution amount is large. Therefore, the amount of waste developer can be reduced. On the other hand, A
When the surface of the gX particle is AgCl, the polarizability thereof is small, so that the adsorption of the sensitizing dye mainly adsorbed by the Van der Waalska is weak, but in the case of the particle, Br − of the particle surface is −. Adsorption of the sensitizing dye is enhanced due to the increased content. Further, if necessary, the surface I - content is increased to enhance the adsorption power of the sensitizing dye. Br
Since- and I - are localized on the surface of the particle and in the vicinity of the surface, the highest purpose is obtained with a small content. Further, Br and I on the grain surface lower the solubility of AgX grains and also have a function of preventing an increase in fog during chemical sensitization and during storage of emulsions and light-sensitive materials. That is, the particle surface characteristics are the same as those of conventional AgB.
It is close to the rI particle system.

【0025】現像処理速度を上げる場合、初期現像速度
を上げると、潜像とかぶり核の差別化が低下し、低感、
高かぶり化する。一方、後期現像速度を上げても、その
影響は小さい。該粒子は、初期現像よりも後期現像速度
をより加速させる為、その欠点は少ない。また、粒子表
面の大部分(好ましくは60%以上、より好ましくは8
0〜100%、更に好ましくは95〜100%)が{1
00}面である為に粒子表面の分極率が{111}面に
比べて大きい為に増感色素吸着能が強化されている。そ
れは表面がX- イオンばかりの{111}面よりも、A
+ とX- イオンから成る{100}面の方がハイトラ
ー・ロンドン分散力や誘起双極子モーメントが大きいこ
とに基づいている。従って、従来の{111}面系に比
べて、粒子表面のI- 含率やBr- 含率をより減らすこ
とができる。
When the development processing speed is increased, if the initial development speed is increased, the differentiation between the latent image and the fog nucleus is reduced, resulting in low feeling,
Higher fog. On the other hand, even if the late development speed is increased, the effect is small. Since the particles accelerate the late development rate more than the initial development, the defects thereof are less. Most of the particle surface (preferably 60% or more, more preferably 8% or more).
0 to 100%, more preferably 95 to 100%) is {1
Since it is the {00} plane, the polarizability of the grain surface is larger than that of the {111} plane, so that the sensitizing dye adsorption ability is enhanced. It has a surface A, rather than a {111} plane with only X - ions.
This is based on the fact that the Heitler-London dispersive force and the induced dipole moment are larger in the {100} plane composed of g + and X ions. Therefore, the I content and Br content of the grain surface can be further reduced as compared with the conventional {111} plane system.

【0026】該{100}面が{111}面よりも分光
増感効率が高いことに関しては特願平5−264059
号の記載を参考にすることができる。{100}面と
{111}面の該ファン・デア・ワールス相互作用力の
比較は、該面と平行な方向への誘電率の大きさで簡便的
に比較することができる。該{100}面の誘電率と
{111}面の誘電率は、AgX単結晶を用いてコンデ
ンサーを形成し、{100}面に平行な方向の誘電率と
{111}面に平行な方向の誘電率を測定することによ
り求めることができる。この時、AgX単結晶のイオン
電導成分は該測定周波数を上げることにより除いて測定
することができる。その他、AgX単結晶の清浄な{1
00}面と{111}面に対する透明光の反射率nを求
め、n2 =誘電率、の関係よりそれぞれの面高周波域誘
電率を求め、比較することもできる。
Regarding the fact that the {100} plane has higher spectral sensitization efficiency than the {111} plane, Japanese Patent Application No. 5-264059.
You can refer to the description of the issue. The comparison of the Van der Waals interaction forces of the {100} plane and the {111} plane can be simply compared by the magnitude of the dielectric constant in the direction parallel to the plane. The dielectric constant of the {100} plane and the dielectric constant of the {111} plane are obtained by forming a capacitor using AgX single crystal, and measuring the dielectric constant in the direction parallel to the {100} plane and the dielectric constant in the direction parallel to the {111} plane. It can be determined by measuring the dielectric constant. At this time, the ion conductive component of the AgX single crystal can be removed and measured by increasing the measurement frequency. In addition, a clean AgX single crystal {1
It is also possible to obtain the reflectance n of the transparent light with respect to the {00} plane and the {111} plane, and obtain the respective surface high-frequency permittivities from the relationship of n 2 = permittivity, and make a comparison.

【0027】該表面層のI- はAg+ 塩液とX- 塩液の
同時混合添加法により混入させることもできるし、粒子
成長後にX- 塩液のみを添加することによって、混入す
ることもできる。しかし、後者の方がI- を表面により
局在化させることができる為に、より少ない添加量で目
的の効果を得ることができ、好ましい。図2の構造の粒
子を形成する為には、平板粒子のすべての表面をほぼ均
等にAgX6 層を成長させる必要がある。その為にはA
+ 塩液とX- 塩液の高過飽和添加、および/またはX
- 塩液の高過飽和添加すればよい。それらを種々の添加
速度で添加し、生成した粒子のハロゲン組成構造を調
べ、最も好ましい添加条件を求めればよい。
[0027] of the surface layer I - the Ag + salt solution and X - can either be mixed by the simultaneous mixing method of adding liquid salt, X after grain growth - by adding a salt solution but also it is incorporated it can. However, the latter is preferred because I can be localized on the surface, and the desired effect can be obtained with a smaller addition amount. In order to form the grains having the structure shown in FIG. 2, it is necessary to grow the AgX 6 layer almost uniformly on all surfaces of the tabular grains. For that, A
g + salt solution and X - High supersaturation addition of salt solution, and / or X
- it may be high supersaturation addition of salt solution. The most preferable addition conditions may be determined by adding them at various addition rates, examining the halogen composition structure of the produced particles.

【0028】粒子の分析方法としては、該平板粒子の断
面を電子ビームで走査励起し、該断面の各部分のハロゲ
ン原子のエミッション(例えば特性X線)を検知する方
法(走査分析電顕法)、二次イオン mass spectroscopy
法、を挙げることができ、日本写真学会誌、53巻、1
25〜131(1990)の記載を参考にすることがで
きる。それらを高流量で添加すると、該AgX6 相の形
成が粒子間で不均一になる。また、粒子表面のI- 分布
が不均一になる。この場合、該添加を反応溶液中に存在
する多孔体、好ましくは中空管型ゴム弾性体多孔膜を通
して添加する方法(詳細は特開平3−21339号、同
4−193336号、同4−229852号、特願平4
−240283号に記載されている)、特開平4−28
3741号、特願平4−302605号記載の均一混合
化法の1つ以上、好ましくは2つ以上併用して用いるこ
とが好ましい。
As a grain analyzing method, a section of the tabular grain is scan-excited with an electron beam to detect emission of halogen atoms (for example, characteristic X-ray) in each section of the section (scanning electron microscope method), Secondary ion mass spectroscopy
The law can be mentioned, Journal of the Photographic Society of Japan, vol. 53, 1
25-131 (1990) can be referred to. When they are added at a high flow rate, the formation of the AgX 6 phase becomes non-uniform among particles. In addition, the I distribution on the particle surface becomes non-uniform. In this case, the addition is carried out through a porous body existing in the reaction solution, preferably a hollow tubular rubber elastic body porous membrane (for details, see JP-A-3-21339, 4-193336, 4-229852). Issue, Japanese Patent Application No. 4
No. 240283), JP-A-4-28.
It is preferable to use one or more, preferably two or more of the uniform mixing methods described in Japanese Patent Application No. 3741 and Japanese Patent Application No. 4-302605.

【0029】図2の前記構造の粒子は、Cl- 濃度が1
-3mol/リットル以上、好ましくは10-2.5〜10-1mo
l/リットルの条件下で形成することが好ましい。その他
のハロゲン組成構造の粒子の場合も、該Cl- 濃度下で
形成することが好ましい。それは該平板状粒子形成は立
方体粒子生成条件下で行なうことが好ましいこと、およ
び該Cl- 濃度条件は立方体粒子生成条件に相当する為
である。該過剰Cl-は一種の晶癖制御剤と見なすこと
ができる。AgCl含率が99.5%以上である該平板
状粒子を−100℃以下に冷却し、該粒子の透過型電子
顕微鏡写真像を観察すると図3に示すような転位線が観
察されることが多い。
The particles of the above structure in FIG. 2 have a Cl concentration of 1
0 -3 mol / liter or more, preferably 10 -2.5 to 10 -1 mo
It is preferably formed under the condition of 1 / l. Also in the case of grains having other halogen composition structures, it is preferable to form them at the Cl concentration. This is because it is preferable that the tabular grain formation is carried out under the cubic grain formation condition, and the Cl - concentration condition corresponds to the cubic grain formation condition. The excess Cl can be regarded as a kind of crystal habit controlling agent. When the tabular grains having an AgCl content of 99.5% or more are cooled to −100 ° C. or less and the transmission electron micrograph image of the grains is observed, dislocation lines as shown in FIG. 3 may be observed. Many.

【0030】その他、前記(1)〜(4)の平板状粒子
の該ギャップの隣接相間におけるイオウ、セレン、テル
ル、SCN- 、SeCN- 、TeCN- 、CN- 、Ag
+ 以外の金属イオン、および該金属イオンの錯体(リガ
ンドとしてはX- リガンド、CN- リガンド、イソシア
ノ、ニトロシル、チオニトロシル、アミン、ヒドロキシ
ルを挙げることができる)の少なくとも1種以上の含有
率差が好ましくは0.1〜100モル%差、より好まし
くは1〜100モル%差、更に好ましくは10〜100
モル%差である態様を挙げることができる。Ag+ 以外
の金属イオンの代表例として周期律表の第8族金属イオ
ン、Cu、Zn、Cd、In、Sn、Au、Hg、P
b、Cr、Mnの各金属イオンを挙げることができる。
[0030] Other, wherein (1) to sulfur in between flat of the gap of the particles adjacent phase (4), selenium, tellurium, SCN -, SeCN -, TeCN -, CN -, Ag
The content difference of at least one kind of metal ion other than + and a complex of the metal ion (as the ligand, X - ligand, CN - ligand, isocyano, nitrosyl, thionitrosyl, amine and hydroxyl) can be mentioned. Preferably 0.1 to 100 mol% difference, more preferably 1 to 100 mol% difference, further preferably 10 to 100 mol% difference.
An embodiment in which there is a mol% difference can be mentioned. As representative examples of metal ions other than Ag + , Group 8 metal ions of the periodic table, Cu, Zn, Cd, In, Sn, Au, Hg, P
Examples thereof include metal ions of b, Cr and Mn.

【0031】その他、これらの不純物イオンをAgX粒
子全体にドープした態様、AgX粒子内の特定場所にド
ープした態様、粒子表面から0.1μm以内に局在させ
てドープさせた態様を挙げることができる。この場合の
ドープ濃度は10-8〜10-1モル/モルAgXが好まし
く、10-7〜10-2モル/モルAgXがより好ましい。
これらの不純物イオンの具体的化合物例、AgX相への
ドープ方法の詳細に関しては Research Disclosure、3
07巻、アイテム307105、11月、1989年、
米国特許5166045号、同4933272号、同5
164292号、同5132203号、同426992
7号、同4847191号、同4933272号、同4
981781号、同5024931号、特開平4−30
5644号、同4−321024号、同1−18364
7号、同2−20853号、同1−285941号、同
3−118536号の記載を参考にすることができる。
In addition, there can be mentioned a mode in which the entire AgX particles are doped with these impurity ions, a mode in which the AgX particles are doped in a specific place, and a mode in which the impurities are localized within 0.1 μm from the particle surface and doped. . In this case, the dope concentration is preferably 10 -8 to 10 -1 mol / mol AgX, more preferably 10 -7 to 10 -2 mol / mol AgX.
For specific examples of these impurity ions and details of the method of doping the AgX phase, see Research Disclosure, 3
Volume 07, Item 307105, November, 1989,
US Pat. Nos. 5,166,045, 4,933,272 and 5,
No. 164292, No. 5132203, No. 426992
No. 7, No. 4847191, No. 4933272, No. 4
No. 981781, No. 5024931, Japanese Patent Laid-Open No. 4-30
No. 5644, No. 4-321024, No. 1-18364
The descriptions of No. 7, No. 2-20853, No. 1-285941, and No. 3-118536 can be referred to.

【0032】前記(1)〜(4)の態様の平板状粒子の
製造方法、構造に関するその他の詳細は特開平5−31
3273号、同5−281640号、特願平5−962
50号、同5−248218号、同5−264059
号、同5−117624号、同4−214109号およ
び前記均一混合化法の記載を参考にすることができる。
該粒子および前記AgX6 層の成長時に、予め調製した
好ましくは0.2μm以下、より好ましくは0.02〜
0.1μm直径のAgX微粒子を添加して成長させる方
法を好ましく用いることができる。前記イオン添加法に
比べて、平板状粒子のエッジ方向への選択成長性がより
高く、かつ、より広いCl- 濃度、pH領域(Cl-
度は10-1〜10-3モル/リットル領域が好ましく、p
Hは3〜8が好ましく、温度は30〜90℃がより好ま
しい)で、高アスペクト比の平板状粒子を与える為によ
り好ましい。
Other details regarding the method and structure for producing the tabular grains of the above-mentioned modes (1) to (4) are described in JP-A-5-31.
No. 3273, No. 5-281640, Japanese Patent Application No. 5-962
No. 50, No. 5-248218, No. 5-264059.
No. 5, No. 5-117624, No. 4-214109, and the description of the homogeneous mixing method can be referred to.
During the growth of the particles and the AgX 6 layer, it is preferably 0.2 μm or less prepared in advance, and more preferably 0.02 μm or less.
A method of growing by adding AgX fine particles having a diameter of 0.1 μm can be preferably used. Compared with the ion addition method, the selective growth property of tabular grains in the edge direction is higher, and the Cl concentration and pH range are wider (Cl concentration is 10 −1 to 10 −3 mol / liter region). Preferably p
H is preferably 3 to 8 and the temperature is more preferably 30 to 90 ° C.), and is more preferable in order to give tabular grains having a high aspect ratio.

【0033】該粒子成長時に前記{100}面形成促進
剤を前記規定に従って共存させることができる。または
{111}面形成促進剤を共存させることができる。該
晶癖制御剤は該共存により、生成するAgX粒子の前記
平衡晶癖電位を10mV以上、好ましくは30〜200
mVだけ上げる化合物を指す。この場合、前記の態様
の粒子がより容易に得ることができる。具体的化合物例
に関しては米国特許第4399215号、同44143
06号、同4400463号、同4713323号、同
4804621号、同4783398号、同49524
91号、同4983508号、Journal of Imaging Sci
ence、33巻、13(1989年)、同34巻、44
(1990年)、Journalof Photographic Science,3
6巻、182(1988年)の記載を参考にすることが
できる。
At the time of grain growth, the {100} plane formation promoter can be made to coexist according to the above rules. Alternatively, a {111} plane formation accelerator can coexist. The crystal habit controlling agent causes the equilibrium crystal habit potential of the AgX particles produced by the coexistence to be 10 mV or more, preferably 30 to 200.
Refers to compounds that raise mV. In this case, the particles of the above aspect can be obtained more easily. Regarding specific compound examples, US Pat. Nos. 4,399,215 and 44143.
No. 06, No. 4400463, No. 4713323, No. 4804621, No. 4783398, No. 49524.
91, 4983508, Journal of Imaging Sci
ence, 33, 13 (1989), 34, 44
(1990), Journal of Photographic Science, 3
Reference can be made to the description in Volume 6, 182 (1988).

【0034】該粒子の大部分が{100}面である為、
粒子表面のAg+ に対するゼラチンの吸着基(例えばメ
チオニン基)の吸着が強い。この為に分光増感色素やか
ぶり防止剤や他の写真用添加剤の吸着が疎外されること
がある。この場合、最適のメチオニン含率の分散媒ゼラ
チンを選ぶことができる。具体的には感光材料のAgX
乳剤層中のゼラチンの平均メチオニン含率が好ましくは
0〜50μmol/g、より好ましくは3〜30μmol/gの
態様をとることができる。該AgX乳剤に化学増感剤を
10-2〜10-8モル/モルAgX、増感色素を飽和吸着
量の好ましくは5〜100%で添加し、増感することが
できる。該平板状粒子の分光増感色素として、特に粒子
表面のCl- 濃度が10〜100モル%の場合、米国特
許4987064号記載の増感色素を好ましく用いるこ
とができる。
Since most of the grains are {100} planes,
The adsorption group of gelatin (eg, methionine group) is strongly adsorbed to Ag + on the surface of the grain. Therefore, the adsorption of the spectral sensitizing dye, the antifoggant and other photographic additives may be excluded. In this case, the dispersion medium gelatin having the optimum methionine content can be selected. Specifically, the photosensitive material AgX
The average methionine content of gelatin in the emulsion layer is preferably 0 to 50 μmol / g, and more preferably 3 to 30 μmol / g. The chemical sensitizer can be added to the AgX emulsion at 10 -2 to 10 -8 mol / mol AgX, and the sensitizing dye can be added at a saturated adsorption amount of preferably 5 to 100% for sensitization. As the spectral sensitizing dye for the tabular grains, the sensitizing dye described in U.S. Pat. No. 4,987,064 can be preferably used, especially when the Cl - concentration on the grain surface is 10 to 100 mol%.

【0035】核に該ハロゲン組成ギャップを形成する粒
子形成法としては前記の態様の他、i){100}面形
成域で該核形成→熟成し、{111}面形成域で成長さ
せる、ii) {111}面形成域で該核形成→熟成し、
{111}面形成域で成長させる、iii){111}面形
成域で該核形成→熟成し、{100}面形成域で成長さ
せる方法を挙げることができる。ii) は{111}双晶
粒子(主として1重双晶と平行2重双晶粒子)を与え、
iii)は{100}双晶粒子を与える。iii)の条件は通
常、刃状転位を形成するが、それが該平板状粒子を与え
ないことから、単なる刃状転位は該平板状粒子生成原因
にはなりえないように思われる。該粒子のエッジ方向の
成長様式はヨード含率の異なる0.5〜3mol%差A
gX層を付加成長させ、(i)その低温発光を観察する
方法〔例えば Journal of Imaging Science 、31巻、
15〜26(1987)の記載を参考にすることができ
る〕や、(ii) 該粒子の直接法低温透過型電子顕微鏡写
真像で該ヨード含率ギャップ面を観察する方法、により
確認することができる。例えば図4(a)〜(c)の態
様が観察される。
As the grain forming method for forming the halogen composition gap in the nuclei, in addition to the above-described embodiment, i) the nucleation → ripening in the {100} plane forming region and growing in the {111} plane forming region, ii ) In the {111} plane forming region, the nucleation → aging,
Examples thereof include a method of growing in the {111} plane forming region, iii) a method of growing in the {100} plane forming region by nucleating and aging the {111} plane forming region. ii) gives {111} twin grains (mainly single twin and parallel double twin grains),
iii) gives {100} twinned grains. The condition iii) usually forms edge dislocations, but since it does not give the tabular grains, it seems that mere edge dislocations cannot be the cause of the tabular grain formation. The growth mode of the particles in the edge direction is 0.5 to 3 mol% difference A with different iodine contents.
A method of additionally growing a gX layer and (i) observing its low temperature luminescence [eg, Journal of Imaging Science, Vol. 31,
15-26 (1987)], or (ii) a method of observing the iodine content gap face with a direct method low-temperature transmission electron micrograph image of the particles. it can. For example, the aspects of FIGS. 4A to 4C are observed.

【0036】得られた粒子をホスト粒子とし、該粒子の
エッジおよび/またはコーナーにエピタキシャル粒子を
形成して用いてもよい。また、該粒子をコアとして内部
に転位線を有する粒子を形成してもよい。その他、該粒
子をサブストレートとして、サブストレートと異なるハ
ロゲン組成のAgX層を積層させ、種々の既知のあらゆ
る粒子構造の粒子を作ることもできる。これらに関して
は後述の文献の記載を参考にすることができる。また、
得られた乳剤粒子に対し、通常、化学増感核が付与され
る。
The obtained particles may be used as host particles, and epitaxial particles may be formed on the edges and / or corners of the particles before use. Further, particles having dislocation lines inside may be formed using the particles as a core. In addition, by using the particles as a substrate and stacking an AgX layer having a halogen composition different from that of the substrate, particles having various known particle structures can be prepared. Regarding these, it is possible to refer to the description of the literature described later. Also,
Chemical sensitization nuclei are usually imparted to the obtained emulsion grains.

【0037】この場合、該化学増感核の生成場所と数/
cm2 が制御されていることが好ましい。これに関しては
特開平2−838号、同2−146033号、同1−2
01651号、同3−121445号、特開昭64−7
4540号、特願平3−73266号、同3−1407
12号、同3−115872号の記載を参考にすること
ができる。
In this case, the number and location of the chemically sensitized nuclei are generated.
It is preferred that cm 2 be controlled. Regarding this, JP-A-2-838, 2-146033 and 1-2.
No. 01651, No. 3-121445, JP-A-64-7
No. 4540, Japanese Patent Application Nos. 3-73266 and 3-1407.
No. 12 and No. 3-115872 can be referred to.

【0038】また、該平板粒子をコアとして、浅内潜乳
剤を形成して用いてもよい。また、コア/シェル型粒子
を形成することもできる。これについては特開昭59−
133542号、同63−151618号、米国特許第
3,206,313号、同3,317,322号、同
3、761,276号、同4,269,927号、同
3,267,778号の記載を参考にすることができ
る。本発明の方法で製造したAgX乳剤粒子を他の1種
以上のAgX乳剤とブレンドして用いることもできる。
ブレンド比率は1.0〜0.01の範囲で適宜、最適比
率を選んで用いることができる。
A shallow inner latent emulsion may be formed by using the tabular grains as a core. It is also possible to form core / shell type particles. Regarding this, JP-A-59-
133542, 63-151618, U.S. Pat. Nos. 3,206,313, 3,317,322, 3,761,276, 4,269,927, 3,267,778. Can be referred to. The AgX emulsion grains produced by the method of the present invention can also be used as a blend with one or more other AgX emulsions.
The blending ratio can be appropriately selected and used in the range of 1.0 to 0.01.

【0039】これらの乳剤に粒子形成から塗布工程まで
の間に添加できる添加剤に特に制限はなく、従来公知の
あらゆる写真用添加剤を好ましくは10-8〜10-1 mol
/molAgXの添加量で添加することができる。例えばA
gX溶剤、AgX粒子へのドープ剤(例えば第8族貴金
属化合物、その他の金属化合物、カルコゲン化合物、S
CN化物等)、分散媒、かぶり防止剤、増感色素(青、
緑、赤、赤外、パンクロ、オルソ用等)、強色増感剤、
化学増感剤(イオウ、セレン、テルル、金および第8族
貴金属化合物、リン化合物、ロダン化合物、還元増感剤
の単独およびその2種以上の併用)、かぶらせ剤、乳剤
沈降剤、界面活性剤、硬膜剤、染料、色像形成剤、カラ
ー写真用添加剤、可溶性銀塩、潜像安定剤、現像剤(ハ
イドロキノン系化合物等)、圧力減感防止剤、マット剤
等を挙げることができる。
There are no particular restrictions on the additives that can be added to these emulsions during the period from grain formation to the coating step, and any of the heretofore known photographic additives are preferably used, preferably 10 -8 to 10 -1 mol.
It can be added in an amount of / molAgX. For example, A
gX solvent, dopant for AgX particles (for example, Group 8 noble metal compounds, other metal compounds, chalcogen compounds, S
CN compound, etc.), dispersion medium, antifoggant, sensitizing dye (blue,
Green, red, infrared, panchromatic, ortho), supersensitizer,
Chemical sensitizers (sulfur, selenium, tellurium, gold and Group 8 noble metal compounds, phosphorus compounds, rhodan compounds, reduction sensitizers singly and in combination of two or more thereof), fogging agents, emulsion precipitants, surfactants Agents, hardeners, dyes, color image forming agents, color photographic additives, soluble silver salts, latent image stabilizers, developers (hydroquinone compounds, etc.), pressure desensitizing agents, matting agents, etc. it can.

【0040】本発明のAgX乳剤粒子および製造方法で
製造したAgX乳剤は従来公知のあらゆる写真感光材料
に用いることができる。例えば、黒白ハロゲン化銀写真
感光材料〔例えば、Xレイ感材、印刷用感材、印画紙、
ネガフィルム、マイクスフィルム、直接ポジ感材、超微
粒子乾板感材(LSIフォトマスク用、シャドーマスク
用、液晶マスク用)〕、カラー写真感光材料(例えばネ
ガフィルム、印画紙、反転フィルム、直接ポジカラー感
材、銀色素漂白法写真など)に用いることができる。更
に拡散転写型感光材料(例えば、カラー拡散転写要素、
銀塩拡散転写要素)、熱現像感光材料(黒白、カラ
ー)、高密度 digital記録感材、ホログラフィー用感材
などをあげることができる。
The AgX emulsion grains of the present invention and the AgX emulsion produced by the production method can be used in all conventionally known photographic light-sensitive materials. For example, black-and-white silver halide photographic light-sensitive material [for example, X-ray sensitive material, printing sensitive material, photographic paper,
Negative film, microphone film, direct positive photosensitive material, ultrafine particle dry plate photosensitive material (for LSI photomask, shadow mask, liquid crystal mask)], color photographic light-sensitive material (eg negative film, photographic paper, reversal film, direct positive color feeling) Materials, silver dye bleaching method photographs, etc.). Further, a diffusion transfer type photosensitive material (for example, a color diffusion transfer element,
Examples thereof include a silver salt diffusion transfer element), a photothermographic material (black and white, color), a high-density digital recording light-sensitive material, and a holographic light-sensitive material.

【0041】塗布銀量は0.01g/m2以上の好ましい
値を選ぶことができる。該写真感光材料の構成(例え
ば、層構成銀/発色材モル比、各層間の銀量比等)、露
光、現像処理および写真感光材料の製造装置、写真用添
加剤の乳化分散等に関しても制限はなく、従来公知のあ
らゆる態様、技術を用いることができる。従来公知の写
真用添加剤、写真感光材料およびその構成、露光と現像
処理、および写真感光材料製造装置等に関しては下記文
献の記載を参考にすることができる。
The silver coating amount can be selected to be a preferable value of 0.01 g / m 2 or more. There is also a restriction on the constitution of the photographic light-sensitive material (for example, layer composition silver / color-forming material molar ratio, silver amount ratio between the layers, etc.), exposure, development processing and photographic light-sensitive material manufacturing equipment, and emulsion dispersion of photographic additives. However, any conventionally known modes and techniques can be used. Regarding the conventionally known photographic additives, photographic light-sensitive materials and their constitutions, exposure and development treatments, photographic light-sensitive material manufacturing apparatus, etc., the descriptions in the following documents can be referred to.

【0042】リサーチ・ディスクロージャー(Research
Disclosure)、176巻(アイテム17643)(12
月、1978年)、同307巻(アイテム30710
5、11月、1989年)ダフィン(Duffin) 著、写真
乳剤化学(Photographic Emulsion Chemistry)、Focal
Press, New York (1966年)、ビル著(E.J.Bir
r)、写真用ハロゲン化銀乳剤の安定化(Stabilization
of Photographic Silver Halide Emulsions)、フォーカ
ル・プレス(Focal Press)、ロンドン(1974年)、
ジェームス編(T.H.James)、写真過程の理論(The Theo
ry of PhotographicProcess) 第4版、マクラミン(Mac
millan)、ニューヨーク(1977年)
Research Disclosure
Disclosure), Volume 176 (Item 17643) (12
Mon, 1978), volume 307 (item 30710)
May, November, 1989) Duffin, Photographic Emulsion Chemistry, Focal
Press, New York (1966), by Bill (EJBir
r), Stabilization of photographic silver halide emulsions
of Photographic Silver Halide Emulsions), Focal Press, London (1974),
James (TH James), Theory of the Photographic Process (The Theo
ry of PhotographicProcess) 4th Edition, Macramin (Mac
millan), New York (1977)

【0043】グラフキデ著(P.Glafkides)、写真の化学
と物理(Chimie et Physique Photographiques) 、第5
版、エディション・ダ・リジンヌヴェル(Edition de
I' Usine Nouvelle, パリ(1987年)同第2版、ポ
ウル・モンテル、パリ(1957年)、ゼリクマンら
(V.L.Zalikman at al.)、写真乳剤の調製と塗布(Maki
ngand Coating Photographic Emulsion) 、Focal Press
(1964年)、ホリスター(K.R.Hollister)ジャー
ナル・オブ・イメージング・サイエンス(Journalof Im
aging science) 、31巻、p.148〜156(19
87年)、マスカスキー(J.E.Maskasky) 、同30巻、
p.247〜254(1986年)、同32巻、160
〜177(1988年)、同33巻、10〜13(19
89年)
P. Glafkides, Chemistry and Physics of Photography (Chimie et Physique Photographiques), No. 5.
Edition, Edition da Lysine Never (Edition de
I'Usine Nouvelle, Paris (1987) Second Edition, Paul Montel, Paris (1957), Zelikmann et al. (VL Zalikman at al.), Preparation and coating of photographic emulsions (Maki
ngand Coating Photographic Emulsion), Focal Press
(1964), KR Hollister Journal of Imaging Science (Journal of Im
aging science), Vol. 31, p. 148-156 (19
1987), Muskasky (JEMaskasky), volume 30,
p. 247-254 (1986), 32 volumes, 160
~ 177 (1988), 33 volumes, 10-13 (19)
1989)

【0044】フリーザーら編、ハロゲン化銀写真過程の
基礎(Die Grundlagen Der Photographischen Prozesse
Mit Silverhalogeniden) 、アカデミッシェ・フェルラ
ークゲゼルシャフト(Akademische Verlaggesellschaf
t) 、フランクフルト(1968年)。日化協月報19
84年、12月号、p.18〜27、日本写真学会誌、
49巻、7〜12(1986年)、同52巻、144〜
166(1989年)、同52巻、41〜48(198
9年)、特開昭58−113926〜113928号、
同59−90841号、同58−111936号、同6
2−99751号、同60−143331号、同60−
143332号、同61−14630号、同62−62
51号、同63−220238号、同63−15161
8号、同63−281149号、同59−133542
号、同59−45438号、同62−269958号、
同63−305343号、同59−142539号、同
62−253159号、同62−266538号、同6
3−107813号、同64−26839号、同62−
157024号、同62−192036号、
Freezer et al., The Basics of Silver Halide Photographic Process (Die Grundlagen Der Photographischen Prozesse
Mit Silverhalogeniden), Akademische Verlaggesellschaf
t), Frankfurt (1968). JCIA Monthly Report 19
1984, December issue, p. 18-27, Journal of the Photographic Society of Japan,
Volume 49, 7-12 (1986), Volume 52, 144-
166 (1989), 52 volumes, 41-48 (198)
9), JP-A-58-113926 to 113928,
59-90841, 58-111936, 6
2-99751, 60-143331, 60-
143332, 61-14630, 62-62.
No. 51, No. 63-220238, No. 63-15161.
No. 8, No. 63-281149, No. 59-133542.
No. 59-45438, No. 62-269958,
63-305343, 59-142539, 62-253159, 62-266538, 6
No. 3-107813, No. 64-26839, No. 62-
No. 157024, No. 62-192036,

【0045】特開平1−297649号、同2−127
635号、同1−158429号、同2−42号、同2
−24643号、同1−146033号、同2−838
号、同2−28638号、同3−109539号、同3
−175440号、同3−121443号、同2−73
245号、同3−119347号、米国特許第4,63
6,461号、同4,942,120号、同4,26
9,927号、同4,900,652号、同4,97
5,354号、欧州特許第0355568A2号、特願
平2−326222号、同2−415037号、同2−
266615号、同2−43791号、同3−1603
95号、同2−142635号、同3−146503
号、同4−77261号。本発明の乳剤は特開昭62−
269958号、同62−266538号、同63−2
20238号、同63−305343号、同59−14
2539号、同62−253159号、特開平1−13
1541号、同1−297649号、同2−42号、同
1−158429号、同3−226730号、同4−1
51649号、特願平4−179961号、欧州特許0
508398A1の実施例の感光材料の構成乳剤として
好ましく用いることができる。
Japanese Unexamined Patent Publication Nos. 1-297649 and 2-127
No. 635, No. 1-158429, No. 2-42, No. 2
No. 24643, No. 1-146033, No. 2-838.
No. 2, No. 28286, No. 3-109539, No. 3
-175440, 3-121443, 2-73
No. 245, No. 3-119347, and U.S. Pat. No. 4,63.
6,461, 4,942,120, 4,26
9,927, 4,900,652, 4,97
5,354, European Patent No. 0355568A2, Japanese Patent Application Nos. 2-326222, 2-415037, and 2-
No. 266615, No. 2-43791, No. 3-1603
No. 95, No. 2-142635, No. 3-146503.
No. 4-77261. The emulsion of the present invention is disclosed in JP-A-62-1
269958, 62-266538, 63-2
No. 20238, No. 63-305343, No. 59-14
No. 2539, No. 62-253159, JP-A-1-13.
1541, 1-297649, 2-42, 1-158429, 3-226730, 4-1
No. 51649, Japanese Patent Application No. 4-179961, European Patent 0
It can be preferably used as a constituent emulsion of the light-sensitive material of Example 508398A1.

【0046】[0046]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明の実施態様はこれに限定されるものではな
い。 実施例1 反応容器にゼラチン水溶液〔H2 O 1.2リットル、
メチオニン含率48μmol/gの脱イオン化アルカリ処理
ゼラチン(EA−Gel)22g、NaCl0.5gを
含みHNO3 でpH4.0に調節〕を入れ、30℃で攪
拌しながらAg−1液〔100ml中にAgNO3 を20
g、平均分子量2万の低分子量ゼラチン(2MGel)
を0.6g、HNO3 (1N)液0.2mlを含む〕、と
X−1液〔100ml中にNaClを7g、2MGel、
を0.6g含む〕を50ml/分で30秒間、同時混合添
加、AgCl核を形成した。次にX−2液(100ml中
にKBr1.4gと2MGel、を0.8g含む。即
ち、Br- 含率100%である。)を100ml/分で反
応溶液中に存在する中空管型ゴム弾性体多孔膜(孔数1
4 個、添加時の開孔直径0.1mm)を通して20秒
間、添加した。次に温度を40℃に昇温し、Ag−1液
とX−1液を50ml/分で90秒間、同時混合添加し
た。即ち、(AgCl|AgBr|AgCl)核を形成
した。次にNaOH1N液でpH5.0とし、NaCl
水溶液(NaClを2.1g含む)を添加し、温度を1
5分間で70℃に上げた。
EXAMPLES The present invention will now be described in more detail by way of examples, but the embodiments of the present invention are not limited thereto. Example 1 An aqueous gelatin solution [H 2 O 1.2 liter,
22 g of deionized alkali-treated gelatin (EA-Gel) having a methionine content of 48 μmol / g and 0.5 g of NaCl were added and pH was adjusted to 4.0 with HNO 3 ], and Ag-1 liquid [in 100 ml was stirred at 30 ° C.]. 20 AgNO 3
g, low molecular weight gelatin with an average molecular weight of 20,000 (2 MGel)
, 0.6 g of HNO 3 (1N) solution 0.2 ml], and X-1 solution [7 g of NaCl in 100 ml, 2 MGel,
Was added at a rate of 50 ml / min for 30 seconds to form an AgCl nucleus. Then X-2 solution (KBr1.4G and 2MGel in 100 ml, the containing 0.8g i.e., Br -.. A content: 100%) of the hollow tube-type rubber present in the reaction solution at 100ml / min Elastic porous membrane (Number of pores 1
0 4 pieces were added for 20 seconds through the opening diameter of 0.1 mm at the time of addition. Next, the temperature was raised to 40 ° C., and Ag-1 solution and X-1 solution were simultaneously mixed and added at 50 ml / min for 90 seconds. That is, (AgCl | AgBr | AgCl) nuclei were formed. Next, adjust the pH to 5.0 with 1N NaOH solution and
Aqueous solution (containing 2.1 g of NaCl) was added and the temperature was adjusted to 1
Raised to 70 ° C in 5 minutes.

【0047】15分間熟成した後、Ag−1液とX−1
液を10ml/分、直線流量加速0.1ml/分で47分間
pCl=1.45に保ちながら同時混合添加した。8分
間更に熟成した。添加液組成は約AgCl.994.006
あった。Ag−1液とX−3液(100ml中にKBr
4.2g、NaCl 5.0gを含む。即ち、Br-
率は約29モル%である。)を50ml/分で1分間、中
空管型弾性体多孔膜を通して添加した。次にAg−1液
とX−4液(100ml中にKBr8.4g、NaCl
2.9gを含む。即ち、Br- 含率は約59モル%であ
る。)を50ml/分で該多孔膜を通して1分間添加し
た。次にX−5液(100ml中にKIを20g含む)を
40ml/分で12秒間添加した。3分間熟成した後、温
度を40℃に下げ、増感色素1を飽和吸着量の70%だ
け添加した。7分間攪拌した後、沈降剤を加え、温度を
28℃に下げ、pH4.0とし、乳剤を沈降させた。沈
降乳剤を水洗し、38℃でゼラチン溶液を加え、乳剤を
再分散させ、pH6.1、pCl 2.8とした。
After aging for 15 minutes, Ag-1 solution and X-1
The solution was simultaneously mixed and added at 10 ml / min and linear flow rate acceleration of 0.1 ml / min for 47 minutes while maintaining pCl = 1.45. It was further aged for 8 minutes. The composition of the additive solution was about AgCl .994 B .006 . Solution Ag-1 and solution X-3 (KBr in 100 ml)
It contains 4.2 g and 5.0 g of NaCl. That is, the Br - content is about 29 mol%. ) Was added at 50 ml / min for 1 minute through the hollow tubular elastic porous membrane. Next, Ag-1 solution and X-4 solution (8.4 g of KBr in 100 ml, NaCl
Contains 2.9 g. That is, the Br - content is about 59 mol%. ) Was added at 50 ml / min through the porous membrane for 1 minute. Then, X-5 solution (containing 20 g of KI in 100 ml) was added at 40 ml / min for 12 seconds. After aging for 3 minutes, the temperature was lowered to 40 ° C., and the sensitizing dye 1 was added by 70% of the saturated adsorption amount. After stirring for 7 minutes, a precipitating agent was added, the temperature was lowered to 28 ° C., the pH was adjusted to 4.0, and the emulsion was allowed to settle. The precipitated emulsion was washed with water, a gelatin solution was added at 38 ° C., and the emulsion was redispersed to pH 6.1 and pCl 2.8.

【0048】乳剤の1部をサンプリングし、乳剤粒子の
レプリカのTEM像(透過型電子顕微鏡写真像)を観察
した。それによると全AgX粒子の投影面積の93%
が、主平面が{100}面、直角平行四辺形で、アスペ
クト比が3以上の平板状粒子であり、該平板状粒子の平
均粒径は1.4μm、平均アスペクト比6.2で、直径
分布の変動係数(直径分布の標準偏差/平均直径)は
0.2であった。該実験を10回、くり返し行なった
所、該平均粒径、平均アスペクト比のバラツキの変動係
数は0.03以下であった。
A part of the emulsion was sampled and a TEM image (transmission electron micrograph image) of a replica of the emulsion grains was observed. According to it, 93% of the projected area of all AgX particles
Is a right-angled parallelogram whose main plane is a {100} plane and has an aspect ratio of 3 or more. The tabular grains have an average particle diameter of 1.4 μm, an average aspect ratio of 6.2, and a diameter. The coefficient of variation of distribution (standard deviation of diameter distribution / average diameter) was 0.2. When the experiment was repeated 10 times, the variation coefficient of variation in the average particle diameter and the average aspect ratio was 0.03 or less.

【0049】[0049]

【化1】 [Chemical 1]

【0050】比較例1 実施例1でX−2液の添加の代りに、Ag−2液(10
0ml中にAgNO32gを含む)とX−21液(100m
l中にKBrを1.4g含む)を62ml/分で40mlだ
け、同時混合添加した。他は実施例1と同じにした。従
って生成粒子のハロゲン組成構造は実施例1とほぼ同じ
である。)得られたAgX粒子のレプリカのTEM像を
観察した所、全AgX粒子の投影面積の90%が、主平
面が{100}面、直角平行四辺形で、アスペクト比が
3以上の平板状粒子であり、該平板状粒子の平均粒径は
1.37μm、平均アスペクト比6.0で、直径分布の
変動係数は0.23であった。該実験を10回、くり返
し行なった所、該平均粒径、平均アスペクト比のバラツ
キの変動係数は0.05であった。従って、比較例1に
比べて実施例1の方が該粒子の製造再現性がよかった。
Comparative Example 1 Instead of adding the X-2 solution in Example 1, the Ag-2 solution (10
AgNO 3 containing 2g) and X-21 solution in 0 ml (100 m
40 ml of 62 ml / min was simultaneously mixed and added. Others were the same as in Example 1. Therefore, the halogen composition structure of the produced particles is almost the same as that of the first embodiment. ) Observation of TEM images of the obtained replicas of AgX particles shows that 90% of the projected area of all AgX particles is a tabular grain having a main plane of {100} plane, a right parallelogram and an aspect ratio of 3 or more. The average particle size of the tabular grains was 1.37 μm, the average aspect ratio was 6.0, and the variation coefficient of the diameter distribution was 0.23. When the experiment was repeated 10 times, the variation coefficient of variation in the average particle diameter and the average aspect ratio was 0.05. Therefore, the production reproducibility of the particles was better in Example 1 than in Comparative Example 1.

【0051】比較例2 比較例1でX−3液とX−4液をX−32液(100ml
中にNaCl 7g含む)とし、X−5液の添加を省く
以外は比較例1と同じにして、乳剤粒子を調製した。こ
の粒子の表面はAgClであり、生成粒子組成はAgC
.994Br.006である。該粒子のTEM像を観察した
所、全AgX粒子の投影面積の90%が主平面が{10
0}面で、アスペクト比が3以上の平板状粒子であり、
該平板状粒子の平均粒径は1.4μm、平均アスペクト
比6.1、直径分布の変動係数は0.24であった。
Comparative Example 2 The X-3 solution and the X-4 solution in Comparative Example 1 were mixed with the X-32 solution (100 ml).
The emulsion grains were prepared in the same manner as Comparative Example 1 except that 7 g of NaCl was included in the solution) and the addition of the X-5 solution was omitted. The surface of this particle is AgCl, and the composition of the produced particle is AgC.
l .994 Br .006 . Observation of the TEM image of the particles showed that 90% of the projected area of all the AgX particles was {10
0} plane, tabular grains having an aspect ratio of 3 or more,
The tabular grains had an average particle size of 1.4 μm, an average aspect ratio of 6.1, and a coefficient of variation of diameter distribution of 0.24.

【0052】実施例1と比較例2の乳剤にそれぞれ次の
増感処理を施し、増粘剤、塗布助剤を加えてTACベー
ス上に保護層と共に塗布した。次に乾燥し、塗布試料
A、Bとした。増感処理:実施例1と比較例2の乳剤を
55℃とし、NaCl液を加え、pCl 2.2とし
た。ハイポを2.5×10-5モル/モルAgXだけ添加
し、塩化金酸を10-5モル/モルAgXだけ添加し、熟
成した後、かぶり防止剤(4−hydroxy −6−methyl−
1,3,3a,7−tetraazaindene)を3×10-3モル
/モルAgXだけ添加し、温度を40℃にした。該塗布
試料をマイナス青フイルター(520nm以上の光を通
す)を通して10-2秒間の露光をし、現像し、停止液、
定着液、水洗液を通し、乾燥させた。該写真特性の結果
は(感度値/粒状度)の比較において(実施例1(10
0)>比較例2(52))であり、本発明の図2(a)
の構造の粒子の優位性が確認された。塗布試料Aを切断
し、その断面の走査分析電顕解析を行なった所、平板粒
子表面を約0.02μm厚で均一に高Br- 含率層が覆
っており、I- は粒子表面上に均一に存在しており、そ
れらの粒子内、粒子間分布の変動係数はいずれも0.1
5以内であった。また該Br- 含率の粒子間分布の変動
係数も0.15以下であった。
The emulsions of Example 1 and Comparative Example 2 were each subjected to the following sensitization treatment, a thickener and a coating aid were added, and the emulsion was coated on a TAC base together with a protective layer. Next, it was dried to obtain coating samples A and B. Sensitization treatment: The emulsions of Example 1 and Comparative Example 2 were heated to 55 ° C., and NaCl solution was added to obtain pCl 2.2. Hypo was added by 2.5 × 10 -5 mol / mol AgX and chloroauric acid was added by 10 -5 mol / mol AgX, and after aging, an antifoggant (4-hydroxy-6-methyl-
1,3,3a, 7-tetraazaindene) was added in an amount of 3 × 10 −3 mol / mol AgX and the temperature was raised to 40 ° C. The coated sample was exposed for 10 -2 seconds through a minus blue filter (light having a wavelength of 520 nm or more), developed, and stopped.
The fixing solution and the washing solution were passed through and dried. The results of the photographic characteristics are shown in Example 1 (10
0)> Comparative Example 2 (52)), which is shown in FIG.
The superiority of the particles having the structure of was confirmed. When coating sample A was cut and the cross section was subjected to scanning analysis and electron microscopic analysis, the tabular grain surface was uniformly covered with a high Br - content layer with a thickness of about 0.02 μm, and I was present on the grain surface. They exist uniformly, and the coefficient of variation of their intra-particle and inter-particle distribution is 0.1.
It was within 5. The coefficient of variation of the interparticle distribution of the Br - content was also 0.15 or less.

【0053】実施例2 実施例1で、Ag−1液とX−1液を10ml/分、直線
流量加速0.1ml/分で37分間添加する所を、予め調
製したAgCl微粒子乳剤(平均直径0.06μm、双
晶および転位を含有する粒子の数比率は0.1%以下)
を添加することに代える以外は、実施例1と同じにし
た。該添加はまず0.15モルを添加し、10分後に残
りの0.366モルを添加した。その後、20分間、更
に熟成した。最終的に得られた粒子は平均直径1.48
μm、平均アスペクト比7.3で、直径分布の変動係数
は0.2であった。該乳剤に実施例1と同じ増感処理を
施し、塗布試料Cを作り、同じ露光、現像処理を行なっ
た。(感度/粒状度)比は実施例1を100として、1
05であり、より優っていた。
Example 2 In Example 1, the Ag-1 solution and the X-1 solution were added at 10 ml / min and a linear flow rate acceleration of 0.1 ml / min for 37 minutes. 0.06 μm, the number ratio of grains containing twins and dislocations is 0.1% or less)
Same as Example 1 except that was added. Regarding the addition, 0.15 mol was added first, and after 10 minutes, the remaining 0.366 mol was added. Then, it was further aged for 20 minutes. The finally obtained particles have an average diameter of 1.48.
The average distribution was 0.2 μm, the average aspect ratio was 7.3, and the variation coefficient of the diameter distribution was 0.2. The emulsion was subjected to the same sensitization treatment as in Example 1 to prepare a coated sample C, and the same exposure and development treatments were performed. The (sensitivity / granularity) ratio is 1 with Example 1 being 100.
It was 05, which was superior.

【0054】[0054]

【発明の効果】該欠陥形成がホスト核に対し、実質的に
ハロゲン塩液の添加のみによりなされる為、反応系がよ
りシンプル化される。従って粒子間でより均一な該欠陥
形成が成され、製造再現性がよく、最終的に、より直径
分布の狭い、感度、粒状性の優れた平板状粒子が得られ
る。図2の構造の平板状粒子は分光増感特性に優れ、か
つ、現像処理性に優れる。
EFFECTS OF THE INVENTION Since the formation of the defects is performed only by adding a halogen salt solution to the host nucleus, the reaction system is further simplified. Therefore, the defects are formed more uniformly among the grains, the production reproducibility is good, and finally tabular grains having a narrower diameter distribution and excellent sensitivity and graininess are obtained. The tabular grains having the structure shown in FIG. 2 have excellent spectral sensitization characteristics and development processability.

【図面の簡単な説明】[Brief description of drawings]

【図1】平板状粒子の主平面の形状例を示す。FIG. 1 shows an example of the shape of the main plane of a tabular grain.

【図2】(a)、(b)は平板状粒子の断面の好ましい
ハロゲン組成構造例を示す。AgX5 とAgX6 は(A
gX6 のCl- 含率/AgX5 のCl- 含率)が0.8
以下の関係の相を指す。
2 (a) and 2 (b) show examples of preferable halogen composition structure in a cross section of a tabular grain. AgX 5 and AgX 6 are (A
Cl of gX 6 - Cl of content: / AgX 5 - content:) 0.8
Refers to the following relationship phases:

【図3】(a)、(b)はAgCl含率が99.6モル
%以上である平板状粒子の粒子構造を示す−130℃に
おける透過型電子顕微鏡写真像である。
3 (a) and 3 (b) are transmission electron microscope photographic images at -130 ° C. showing the grain structure of tabular grains having an AgCl content of 99.6 mol% or more.

【図4】平板状粒子の成長前、成長後の主平面形状例を
示す。
FIG. 4 shows examples of main plane shapes before and after growth of tabular grains.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも分散媒とハロゲン化銀粒子を
有するハロゲン化銀乳剤において、該ハロゲン化銀粒子
の投影面積の合計の30%以上が主平面が{100}面
で、アスペクト比(直径/厚さ)が1.5以上の平板状
粒子であり、かつ、該粒子の中心部が下記(a)、
(b)であるハロゲン組成ギャップ面を1つ以上有する
ことを特徴とするハロゲン化銀乳剤。 (a)該ギャップがCl- 含率またはBr- 含率で10
〜100モル%差、またはI- 含率で5〜100モル%
差である。 (b)該ギャップがホストハロゲン化銀核に、該核のハ
ロゲンイオン組成と、Cl- 含率、またはBr- 含率で
10モル%以上、またはI- 含率で5モル%以上異なる
ハロゲン塩溶液を添加することにより生ずるハロゲンコ
ンバージョン反応により実質的に形成されたギャップ面
である。
1. In a silver halide emulsion having at least a dispersion medium and silver halide grains, 30% or more of the total projected area of the silver halide grains has a {100} plane as a main plane and an aspect ratio (diameter / diameter). Tabular grains having a thickness of 1.5 or more, and the central part of the grains is the following (a),
(B) A silver halide emulsion having one or more halogen composition gap faces. (A) The gap has a Cl content or a Br content of 10
~ 100 mol% difference or 5-100 mol% in I - content
It is the difference. (B) A halogen salt in which the gap differs from the host silver halide nucleus with the halogen ion composition of the nucleus in terms of Cl content or Br content of 10 mol% or more, or I content of 5 mol% or more. It is a gap surface formed substantially by a halogen conversion reaction caused by adding a solution.
【請求項2】 少なくとも分散媒とハロゲン化銀粒子を
有するハロゲン化銀乳剤において、該ハロゲン化銀粒子
の投影面積の合計の30%以上が主平面が{100}面
で、アスペクト比(直径/厚さ)が1.5以上の平板状
粒子であり、かつ、該平板状粒子が下記(a)、(b)
であるコア部とシェル部を有することを特徴とするハロ
ゲン化銀乳剤。 (a)コア部のCl- 含率が60モル%以上で、シェル
部のBr- 含率が30モル%以上であり、かつ、(シェ
ル部のCl- 含率/コア部のCl含率)が0.8以下で
ある。 (b)シェル部は少なくともコア部の主平面上に実質的
に均一に積層されており、厚さは3原子層以上である。
2. A silver halide emulsion having at least a dispersion medium and silver halide grains, wherein 30% or more of the total projected area of the silver halide grains has a {100} plane as a main plane and an aspect ratio (diameter / diameter). Tabular grains having a thickness of 1.5 or more, and the tabular grains are the following (a) and (b):
A silver halide emulsion having a core portion and a shell portion of (A) The Cl - content of the core part is 60 mol% or more, the Br - content of the shell part is 30 mol% or more, and (Cl - content of the shell part / Cl content of the core part) Is 0.8 or less. (B) The shell portion is laminated substantially uniformly on at least the main plane of the core portion, and has a thickness of 3 atomic layers or more.
JP04799194A 1994-02-23 1994-02-23 Silver halide emulsion Expired - Fee Related JP3383397B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04799194A JP3383397B2 (en) 1994-02-23 1994-02-23 Silver halide emulsion
DE1995623796 DE69523796T2 (en) 1994-02-23 1995-02-23 Process for the preparation of silver halide emulsion
EP19950102622 EP0670515B1 (en) 1994-02-23 1995-02-23 Process for the preparation of silver halide emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04799194A JP3383397B2 (en) 1994-02-23 1994-02-23 Silver halide emulsion

Publications (2)

Publication Number Publication Date
JPH07234470A true JPH07234470A (en) 1995-09-05
JP3383397B2 JP3383397B2 (en) 2003-03-04

Family

ID=12790795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04799194A Expired - Fee Related JP3383397B2 (en) 1994-02-23 1994-02-23 Silver halide emulsion

Country Status (3)

Country Link
EP (1) EP0670515B1 (en)
JP (1) JP3383397B2 (en)
DE (1) DE69523796T2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670514A3 (en) * 1994-02-25 1996-01-17 Eastman Kodak Co High chloride (100) tabular grain emulsions with modified edge structures.
US5885762A (en) * 1997-10-21 1999-03-23 Eastman Kodak Company High chloride tabular grain emulsions and processes for their preparation
US5906913A (en) * 1997-10-21 1999-05-25 Eastman Kodak Company Non-uniform iodide high chloride {100} tabular grain emulsion
US5879874A (en) * 1997-10-31 1999-03-09 Eastman Kodak Company Process of preparing high chloride {100} tabular grain emulsions
US5908740A (en) * 1997-11-21 1999-06-01 Eastman Kodak Company Process for preparing high chloride (100) tabular grain emulsions
US5905022A (en) * 1997-11-24 1999-05-18 Eastman Kodak Company Chloride bromide and iodide nucleation of high chloride (100) tabular grain emulsion
US5888718A (en) * 1997-11-25 1999-03-30 Eastman Kodak Company Modified peptizer for preparing high chloride (100) tabular grain emulsions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312959B1 (en) * 1987-10-16 1992-08-05 Fuji Photo Film Co., Ltd. Silver halide photographic emulsion
JP2794247B2 (en) * 1992-05-12 1998-09-03 富士写真フイルム株式会社 Silver halide emulsion

Also Published As

Publication number Publication date
JP3383397B2 (en) 2003-03-04
EP0670515B1 (en) 2001-11-14
EP0670515A2 (en) 1995-09-06
DE69523796D1 (en) 2001-12-20
DE69523796T2 (en) 2002-05-16
EP0670515A3 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US4945037A (en) Silver halide photographic emulsion and method for manufacture thereof
JP3025585B2 (en) Silver halide emulsion
EP0391560B1 (en) Process for the preparation of photographic silver halide emulsions having tabular grains
JP3383397B2 (en) Silver halide emulsion
EP0645670B1 (en) Silver halide emulsion
JP2794247B2 (en) Silver halide emulsion
JPS63151618A (en) Silver halide emulsion
JP2840897B2 (en) Silver halide emulsion and method for producing the same
JP3388914B2 (en) Silver halide emulsion
JP3142983B2 (en) Silver halide emulsion
JP3325954B2 (en) Silver halide emulsion
US5420005A (en) Silver halide emulsion
JP3425481B2 (en) Method for producing silver halide emulsion
JP3041377B2 (en) Silver halide emulsion and light-sensitive material containing the emulsion
JP2603168B2 (en) Method for producing silver halide photographic emulsion
JP2779719B2 (en) Silver halide emulsion
JP2709799B2 (en) Method for producing silver halide emulsion
JPH06332090A (en) Manufacture of silver halide emulsion
JPH11249248A (en) Silver halide emulsion
JPH0996881A (en) Production of silver halide emulsion
JPH07104405A (en) Manufacture of silver halide emulsion
JPH0882883A (en) Production of silver halide particles and silver halide emulsion
JPH07128767A (en) Silver halide photographic sensitive material
JPH11218866A (en) Silver halide emulsion and silver halide photographic sensitive material
JPH09179227A (en) Silver halide photographic emulsion and silver halide photographic sensitive material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees