JPH07234380A - Projection display system for stereoscopic vision - Google Patents

Projection display system for stereoscopic vision

Info

Publication number
JPH07234380A
JPH07234380A JP6025425A JP2542594A JPH07234380A JP H07234380 A JPH07234380 A JP H07234380A JP 6025425 A JP6025425 A JP 6025425A JP 2542594 A JP2542594 A JP 2542594A JP H07234380 A JPH07234380 A JP H07234380A
Authority
JP
Japan
Prior art keywords
stereoscopic
display system
image
projection display
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6025425A
Other languages
Japanese (ja)
Inventor
Naoki Kawamoto
直紀 川本
Hidekazu Tode
英一 都出
Toshihide Kaneko
俊秀 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6025425A priority Critical patent/JPH07234380A/en
Publication of JPH07234380A publication Critical patent/JPH07234380A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a polarization glasses system projection display system for stereoscopic vision capable of being used in a bright room and causing no cross-talk of two sets of videos provided with parallax even though provided with a reflection mirror in its optical path. CONSTITUTION:A polarizing plate 3 is arranged on a video projection optical unit 1 for left eye so that a plane of polarization becomes perpendicular to the incident surface of the reflection mirror 7, and the polarizing plate 4 is arranged on the video projection optical unit 2 for right eye so that the plane of polarization becomes parallel. Since a video beam 5 for left eye is made incident in the polarization direction perpendicular to the incident surface of the mirror 7, no polarization state of the reflected beam 8 is changed. Similarly, since the video beam 6 for right eye is made incident in the polarization direction parallel to the incident surface of the mirror 7, polarization state of the reflected beam 9 is not changed. The reflected beams 8, 9 arrive at a transmission type screen 10, and an observer separation observes the videos with parallax of the beams 8, 9 by the polarizing plates 12, 13 attached to glasses 11, and the observer recognizes a stereoscopic video without cross-talk.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大画面の立体映像を容易
に得ることができる立体視用投写型ディスプレイシステ
ムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic projection display system capable of easily obtaining a large-screen stereoscopic image.

【0002】[0002]

【従来の技術】従来より立体視を可能とする種々のディ
スプレイシステムが提案されており、図7は従来のフロ
ント型立体視用投写型ディスプレイシステムの構成図で
ある。図において、1、2は映像源と投写レンズを備え
た光学ユニットを示し、各々の投写レンズには互いに直
交する偏光方向を有する偏光板3、4が取り付けられて
いる。この時投影される映像は任意の視差をもった異な
る映像であり光学ユニット1が左目、2が右目に対応す
る。反射型スクリーン14に投影された映像を観測者は
偏光眼鏡11を用いて観測する。偏光眼鏡11の左目1
2には左目用の光学ユニット1と同じ偏光方向、右目1
3には右目用の光学ユニット2と同じ偏光方向を有する
偏光板が取り付けられている。このため視差をもった2
つの映像は完全に分離観測され、立体視が可能となる。
2. Description of the Related Art Conventionally, various display systems capable of stereoscopic viewing have been proposed, and FIG. 7 is a block diagram of a conventional front type projection display system for stereoscopic viewing. In the figure, reference numerals 1 and 2 denote optical units including an image source and a projection lens, and polarizing plates 3 and 4 having polarization directions orthogonal to each other are attached to each projection lens. The image projected at this time is a different image with an arbitrary parallax, and the optical unit 1 corresponds to the left eye and 2 corresponds to the right eye. The observer observes the image projected on the reflective screen 14 using the polarized glasses 11. Left eye 1 of polarized glasses 11
2 has the same polarization direction as the optical unit 1 for the left eye, and 1 for the right eye.
A polarizing plate having the same polarization direction as that of the optical unit 2 for the right eye is attached to 3. Therefore, there is a parallax of 2
The two images are completely separated and observed, enabling stereoscopic viewing.

【0003】また、図8は従来のリア型立体視用投写型
ディスプレイシステムの構成図であり、左目用光学ユニ
ット1には偏光板3、右目用光学ユニット2には偏光板
4を左目用映像光5と右目用映像光6が反射ミラー7の
入射面に対して互いに直交する±45度の偏光方向で入
射するように取り付けられている。映像光5、6は反射
ミラー7で反射された後、透過型スクリーン10に投影
される。観測者は互いに直交する±45度の偏光に対応
するように偏光板12、13が取り付けられた偏光眼鏡
11を用いて左右の映像を分離し、立体視が可能とな
る。
FIG. 8 is a block diagram of a conventional rear-type projection display system for stereoscopic vision. The left-eye optical unit 1 has a polarizing plate 3 and the right-eye optical unit 2 has a polarizing plate 4 for a left-eye image. The light 5 and the right-eye image light 6 are attached so as to be incident on the incident surface of the reflection mirror 7 in polarization directions of ± 45 degrees orthogonal to each other. The image lights 5 and 6 are reflected by the reflection mirror 7 and then projected on the transmissive screen 10. The observer can separate the left and right images using stereoscopic vision by using the polarizing glasses 11 to which the polarizing plates 12 and 13 are attached so as to correspond to the polarized light of ± 45 degrees orthogonal to each other.

【0004】[0004]

【発明が解決しようとする課題】従来のフロント型の立
体視用投写型ディスプレイシステムは以上のように構成
されており、大画面を得易いものの、明るい部屋ではコ
ントラストが低下するために鑑賞に耐えないという問題
がある。
The conventional front projection display system for stereoscopic vision is constructed as described above, and although it is easy to obtain a large screen, the contrast is lowered in a bright room so that it cannot be viewed. There is a problem that there is no.

【0005】また、従来の立体視用投写型ディスプレイ
システムを反射ミラーを備えたリア投写型として使用し
た場合次のような問題が生じる。
Further, when the conventional projection display system for stereoscopic vision is used as a rear projection type having a reflection mirror, the following problems occur.

【0006】図9に示すように、一般に反射ミラー15
の入射面に対して角度X16をなす直線偏光17が入射
した場合(入射面に平行な成分Ap18、垂直な成分A
s19とする)、その反射光20の入射面に平行な成分
Rp21と垂直な成分Rs22および入射面となす角
Y、位相差Dは次式のように表される。 tan(X)=As/Ap …(1) Rp=rp×Ap×exp(idp) …(2) Rs=rs×As×exp(ids) …(3) tan(Y)=(rs/rp)×exp(−iD)×tan(X) …(4) D=dp−ds …(5) ただし、rp:入射面に平行な成分の反射率の絶対値 rs:入射面に垂直な成分の反射率の絶対値 dp:入射面に平行な成分の反射後の位相変化 ds:入射面に垂直な成分の反射後の位相変化 反射光20には式(5)で示される位相差Dが一般的に
発生するため、Dの値により、例えば図10に示すよう
に入射直線偏光17は反射後に楕円偏光に変化する。
As shown in FIG. 9, a reflection mirror 15 is generally used.
When linearly polarized light 17 that forms an angle X16 with respect to the incident surface
s19), the component Rp21 parallel to the incident surface of the reflected light 20, the component Rs22 perpendicular to the incident surface, the angle Y formed by the incident surface, and the phase difference D are expressed by the following equations. tan (X) = As / Ap (1) Rp = rp × Ap × exp (idp) (2) Rs = rs × As × exp (ids) (3) tan (Y) = (rs / rp) × exp (-iD) × tan (X) (4) D = dp-ds (5) where rp: absolute value of reflectance of a component parallel to the incident surface rs: reflection of a component perpendicular to the incident surface Absolute value of the ratio dp: Phase change after reflection of the component parallel to the incident surface ds: Phase change after reflection of the component perpendicular to the incident surface The reflected light 20 generally has the phase difference D shown in Expression (5). Therefore, the incident linearly polarized light 17 changes to elliptically polarized light after being reflected, for example, as shown in FIG. 10, depending on the value of D.

【0007】従来のリア型の立体視用投写型ディスプレ
イシステムにおいて、2つの直交する直線偏光は観測者
の場所で偏光方向が地面に対して±45度になるように
偏光板が配置されている。この時反射ミラーへの偏光角
16は±45度となる。偏光角が±45度の2つの直交
する直線偏光は反射ミラーで反射された後、それぞれ元
の直線偏光に加え、わずかな直交する偏光成分も生じる
と楕円偏光に変化する。その後偏光眼鏡で左右に対応す
る映像に分離するときに楕円偏光には反対側の目に対応
する偏光成分が存在するため、その成分がクロストーク
になり、立体視がくずれるという問題点がある。
In the conventional rear-type projection display system for stereoscopic vision, polarizing plates are arranged so that the polarization directions of two orthogonal linearly polarized lights are ± 45 degrees with respect to the ground at the observer's place. . At this time, the polarization angle 16 to the reflection mirror is ± 45 degrees. Two orthogonal linearly polarized lights having a polarization angle of ± 45 degrees are reflected by a reflecting mirror, and then change to elliptically polarized light when a slight orthogonal polarization component is generated in addition to the original linearly polarized light. After that, when the left and right images are separated by the polarized glasses, there is a polarization component corresponding to the opposite eye in the elliptically polarized light, so that the component causes crosstalk and stereoscopic vision is disturbed.

【0008】本発明は上記のような問題点を解消するた
めになされたもので、明るい部屋での使用が可能で、そ
の光路中に反射ミラーを備えていながら、2組の視差を
有する映像のクロストークの発生しない偏光眼鏡方式立
体視用投写型ディスプレイシステムを得ることを目的と
する。
The present invention has been made to solve the above-mentioned problems, and it can be used in a bright room, and has a pair of parallax images while having a reflecting mirror in its optical path. An object of the present invention is to obtain a stereoscopic projection type display system for polarized glasses which does not cause crosstalk.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1に係る
立体視用投写型ディスプレイシステムは、互いに直交す
る偏光板の偏光方向を反射ミラーの入射面に対して平行
あるいは垂直に入射するように配置したものである。
In a stereoscopic projection display system according to claim 1 of the present invention, the polarization directions of polarizing plates which are orthogonal to each other are made to enter parallel or perpendicularly to the incident surface of a reflection mirror. It was placed in.

【0010】本発明の請求項2に係る立体視用投写型デ
ィスプレイシステムは、上記請求項1と同じ構成である
とともに、反射ミラーとして平行偏光と垂直偏光の反射
率の差が小さい表面鏡を用いたものである。
A projection display system for stereoscopic vision according to claim 2 of the present invention has the same structure as that of claim 1, and uses a surface mirror having a small difference in reflectance between parallel polarized light and vertical polarized light as a reflection mirror. It was what I had.

【0011】本発明の請求項3に係る立体視用投写型デ
ィスプレイシステムは、反射ミラーにおける平行偏光と
垂直偏光の反射率の差により生じるスクリーン面での互
いに直交する2組の映像光の明るさの差を、2組の映像
源の明るさを調節することにより左右両眼で観測する明
るさを同等に補償するようにしたものである。
A projection display system for stereoscopic vision according to a third aspect of the present invention is the brightness of two sets of image lights orthogonal to each other on a screen surface caused by a difference in reflectance between parallel polarized light and vertical polarized light in a reflecting mirror. By adjusting the brightness of the two image sources, the brightness observed by the left and right eyes is equally compensated.

【0012】本発明の請求項4に係る立体視用投写型デ
ィスプレイシステムは、反射ミラーに裏面鏡を使用し、
裏面鏡における平行偏光と垂直偏光の反射率の差により
生じるスクリーン面での互いに直交する2組の映像光の
明るさの差を、2組の映像源の明るさを調節することに
より左右両眼で観測する明るさを同等に補償するように
したものである。
A projection display system for stereoscopic vision according to a fourth aspect of the present invention uses a back mirror as a reflection mirror,
By adjusting the brightness of two sets of image sources, the difference in brightness of two sets of image lights orthogonal to each other on the screen surface caused by the difference in reflectance between parallel polarized light and vertical polarized light on the rear-view mirror is adjusted. It is designed to compensate for the brightness observed at.

【0013】本発明の請求項5に係る立体視用投写型デ
ィスプレイシステムは、スクリーン近傍に位相差板を配
したものである。
A projection display system for stereoscopic vision according to a fifth aspect of the present invention has a retardation plate disposed near the screen.

【0014】本発明の請求項6に係る立体視用投写型デ
ィスプレイシステムは、投写映像用偏光板を備えた投写
レンズ出射口に位相差板を配したものである。
According to a sixth aspect of the present invention, a projection display system for stereoscopic vision has a retardation plate arranged at an exit of a projection lens equipped with a polarizing plate for projected images.

【0015】[0015]

【作用】本発明の請求項1、2に係る立体視用投写型デ
ィスプレイシステムにおいては、偏光面が互いに直交す
る2組の映像光の、反射ミラーへの入射偏光面を入射面
に対して垂直あるいは平行としているので、2組の映像
光は反射ミラーでの反射により直線偏光が崩れることな
く偏光眼鏡に到達する。そのため、2組の映像のクロス
トークの発生を防ぐことができる。
In the projection display system for stereoscopic vision according to the first and second aspects of the present invention, the incident polarization planes of the two sets of image light whose polarization planes are orthogonal to each other to the reflection mirror are perpendicular to the incidence planes. Alternatively, since the two sets of image light are parallel, the two sets of image light reach the polarized glasses without the linearly polarized light being broken by the reflection by the reflecting mirror. Therefore, it is possible to prevent the crosstalk between the two sets of images.

【0016】本発明の請求項2に係る立体視用投写型デ
ィスプレイシステムにおいては、反射ミラーに垂直偏光
と平行偏光の反射率の差が小さい表面鏡を使用している
ため2組の映像の明るさの差を少なくできる。
In the projection display system for stereoscopic vision according to claim 2 of the present invention, since the surface mirror having a small difference in reflectance between the vertically polarized light and the parallel polarized light is used as the reflection mirror, the brightness of two sets of images is Difference can be reduced.

【0017】本発明の請求項3、4に係る立体視用投写
型ディスプレイシステムにおいては、2組の映像源の明
るさを、反射ミラーでの垂直偏光と平行偏光の反射率差
を補償するように調節しているため、2組の映像光の明
るさを同等にできる。
In the projection display system for stereoscopic vision according to claims 3 and 4 of the present invention, the brightness of the two image sources is compensated for the difference in reflectance between the vertically polarized light and the parallel polarized light at the reflection mirror. The brightness of the two sets of image light can be made equal because the brightness is adjusted to.

【0018】本発明の請求項4に係る立体視用投写型デ
ィスプレイシステムにおいては、反射ミラーに位相差発
生の少ない裏面鏡を用いるため、2組の映像のクロスト
ークを少なくできる。
In the projection display system for stereoscopic vision according to the fourth aspect of the present invention, since the rear surface mirror with less phase difference generation is used for the reflection mirror, the crosstalk between two sets of images can be reduced.

【0019】本発明の請求項5に係る立体視用投写型デ
ィスプレイシステムにおいては、偏光面が互いに直交す
る2組の直線偏光が反射ミラーで反射することにより発
生した楕円偏光を、反射ミラーの後方に配した位相差板
により補償し楕円偏光から直線偏光に戻すため、2組の
映像のクロストークの発生を防ぐことができる。
In the projection display system for stereoscopic vision according to claim 5 of the present invention, elliptically polarized light generated by two sets of linearly polarized light whose polarization planes are orthogonal to each other is reflected by the reflecting mirror, and the elliptically polarized light is reflected behind the reflecting mirror. Since the elliptically polarized light is returned to the linearly polarized light by being compensated by the phase difference plate disposed in the above, it is possible to prevent the crosstalk between the two sets of images.

【0020】本発明の請求項6に係る立体視用投写型デ
ィスプレイシステムにおいては、2組の映像光が反射ミ
ラーで反射された後に互いに直交する直線偏光に変化す
るように、投写映像用偏光板より後方で反射ミラーの前
面に位相差板を選択して配置しているため、2組の映像
のクロストークの発生を防ぐことができる。
In the projection display system for stereoscopic vision according to claim 6 of the present invention, the projection image polarization plate is arranged so that the two sets of image light are reflected by the reflection mirrors and then changed into linearly polarized lights orthogonal to each other. Since the retardation film is selected and arranged on the front surface of the reflection mirror further behind, it is possible to prevent the occurrence of crosstalk between two sets of images.

【0021】[0021]

【実施例】【Example】

実施例1.図1は本発明の請求項1による立体視用投写
型ディスプレイシステムの構成図である。図において、
1は左目用映像投影光学ユニット、2は右目用映像投影
光学ユニット、3は左目映像用偏光板、4は左目映像用
偏光板、5は左目用映像光、6は右目用映像光、7は反
射ミラー、8は左目用映像光の反射光、9は右目用映像
光の反射光、10は透過型スクリーン、11は偏光眼
鏡、12は左目映像観測用偏光眼鏡、13は右目映像観
測用偏光眼鏡である。
Example 1. FIG. 1 is a block diagram of a stereoscopic projection display system according to claim 1 of the present invention. In the figure,
1 is a left-eye image projection optical unit, 2 is a right-eye image projection optical unit, 3 is a left-eye image polarization plate, 4 is a left-eye image polarization plate, 5 is a left-eye image light, 6 is a right-eye image light, and 7 is Reflecting mirror, 8 reflected light of image light for left eye, 9 reflected light of image light for right eye, 10 transmissive screen, 11 polarized glasses, 12 polarized glasses for left eye image observation, 13 polarized light for right eye image observation They are glasses.

【0022】左目用映像投影光学ユニット1には反射ミ
ラー7の入射面に対して偏光面が垂直になるように偏光
板3が、右目用映像投影光学ユニット2には偏光面が平
行になるように偏光板4が配されている。左目用映像光
5は7の入射面に垂直な偏光方向で入射するため、たと
え反射ミラーが垂直偏光と平行偏光に対して式(5)で
表される位相差Dを生じるものであってもその反射光8
の偏光状態は変化しない。同様に右目用映像光6は7の
入射面に平行な偏光方向で入射するためその反射光9の
偏光状態は変化しない。その結果8、9は直線偏光が保
存され、かつ互いに直交する偏光角を保ったまま透過型
スクリーン10に到達する。観測者は8、9の視差を持
った映像を眼鏡11に取り付けられた偏光板12、13
で分離観測するが、クロストークのない映像により立体
映像を認識できる。このような偏光方向の組み合せを用
いれば、大きな位相差を発生する任意のミラーを用いて
も良好な立体視を実現できる。
The left-eye image projection optical unit 1 is provided with a polarizing plate 3 so that the plane of polarization is perpendicular to the plane of incidence of the reflection mirror 7, and the right-eye image projection optical unit 2 is provided with a plane of polarization parallel to it. A polarizing plate 4 is arranged on the. Since the left-eye image light 5 is incident in the polarization direction perpendicular to the incident surface of 7, even if the reflection mirror produces the phase difference D represented by the formula (5) with respect to the vertical polarization and the parallel polarization. Its reflected light 8
The polarization state of does not change. Similarly, the right-eye image light 6 is incident in the polarization direction parallel to the incident surface of 7, so that the polarization state of the reflected light 9 does not change. As a result, 8 and 9 reach the transmissive screen 10 while preserving the linearly polarized light and maintaining the polarization angles orthogonal to each other. The observer views the images with parallax of 8 and 9 on the polarizing plates 12 and 13 attached to the glasses 11.
Although it is separated and observed at, the stereoscopic image can be recognized by the image without crosstalk. By using such a combination of polarization directions, good stereoscopic vision can be realized even if an arbitrary mirror that generates a large phase difference is used.

【0023】実施例2.通常、反射ミラーは平行偏光と
垂直偏光に対する反射率が異なる。実施例1に示した立
体視用投写型ディスプレイシステムでは、互いに直交す
る直線偏光を反射ミラーに対して偏光面が平行および垂
直に入射しているため、2組の映像光のクロストークは
抑えられるが、2組の映像光の明るさのバランスがくず
れるという問題が生じる場合がある。本発明請求項2に
よる立体視用投写型ディスプレイシステムは、上記実施
例1と同じ構成を持ち、図1において反射ミラー7に平
行偏光と垂直偏光の反射率差の小さい表面鏡を使用す
る。図2のように、例えばガラス基板23の上にアルミ
24を蒸着し、さらに高分子材でオーバーコート25し
たような表面鏡は、平行、垂直偏光の位相差はあるもの
の、2組の映像光に対する反射率の差が小さいので、左
目用映像光の反射光8と右目用映像光の反射光9の明る
さの差が小さく、左右の映像の明るさの差が小さい立体
映像を実現できる。
Example 2. Usually, the reflection mirror has different reflectances for parallel polarized light and vertical polarized light. In the stereoscopic projection display system according to the first embodiment, the mutually orthogonal linearly polarized lights are incident on the reflection mirror in parallel and perpendicular planes of polarization, so that crosstalk between two sets of image light is suppressed. However, there may be a problem that the brightness balance of the two sets of image light is lost. The projection display system for stereoscopic vision according to claim 2 of the present invention has the same configuration as that of the above-described first embodiment, and uses a surface mirror having a small reflectance difference between parallel polarized light and vertical polarized light as the reflection mirror 7 in FIG. As shown in FIG. 2, for example, a surface mirror in which aluminum 24 is vapor-deposited on a glass substrate 23 and further overcoated with a polymer material 25 has a phase difference between parallel polarized light and vertical polarized light. Since the difference in reflectance is small, the difference in brightness between the reflected light 8 of the left-eye image light and the reflected light 9 of the right-eye image light is small, and a stereoscopic image in which the difference in brightness between the left and right images is small can be realized.

【0024】実施例3.図3は本発明の請求項3による
立体視用投写型ディスプレイシステムの構成図である。
一般的に上記実施例2の表面鏡以外は入射面に対して平
行偏光と垂直偏光とで反射率の差が大きいため、2組の
直交する映像光5、6の偏光角が±45度以外の時はそ
の反射光8と9の明るさのバランスがくずれる。そこ
で、図3において左目用映像光5の偏光方向を反射ミラ
ーの入射面に対して垂直、右目用映像光6の偏光方向を
平行とした場合、垂直偏光の反射率をrs、平行偏光の
反射率をrpとすれば、映像光5の明るさを映像光6の
明るさの(rp/rs)倍になるように、左目用映像源
と右目用映像源をあらかじめ調整しておけば左目用映像
光の反射光8と右目用映像光の反射光9の明るさがほぼ
同じになり、左右の映像の明るさが等しい立体映像を実
現できる。
Example 3. FIG. 3 is a configuration diagram of a stereoscopic projection display system according to claim 3 of the present invention.
Generally, except for the surface mirror of the second embodiment, since the difference in reflectance between the parallel polarized light and the vertical polarized light with respect to the incident surface is large, the polarization angles of the two sets of orthogonal image lights 5 and 6 are other than ± 45 degrees. When, the balance of the brightness of the reflected light 8 and 9 is lost. Therefore, in FIG. 3, when the polarization direction of the image light 5 for the left eye is perpendicular to the incident surface of the reflection mirror and the polarization direction of the image light 6 for the right eye is parallel, the reflectance of the vertically polarized light is rs, and the reflection of the parallel polarized light is If the ratio is rp, if the left eye image source and the right eye image source are adjusted in advance so that the brightness of the image light 5 becomes (rp / rs) times the brightness of the image light 6, The reflected light 8 of the image light and the reflected light 9 of the image light for the right eye have almost the same brightness, and a stereoscopic image in which the brightness of the left and right images is equal can be realized.

【0025】なお、この実施例において2組の直交する
映像光5、6の偏光方向は垂直および平行の場合に限ら
ず、他の角度でもよい。その場合においても2組の映像
反射光8、9の明るさが等しくなるように2組の映像源
の明るさを調節しておけばよい。明るさの調整方法は映
像源が例えばCRTの場合は駆動電流量を調節し、また
液晶パネルを用いる場合はバックライトの明るさを調節
すればよい。またNDフィルター等で出射光量を調節し
てもよい。
In this embodiment, the polarization directions of the two sets of the orthogonal image lights 5 and 6 are not limited to the vertical and parallel directions, but may be other angles. Even in that case, the brightness of the two sets of image sources may be adjusted so that the brightness of the two sets of reflected image light 8 and 9 becomes equal. The brightness can be adjusted by adjusting the amount of drive current when the image source is a CRT, or by adjusting the brightness of the backlight when using a liquid crystal panel. The amount of emitted light may be adjusted with an ND filter or the like.

【0026】実施例4.図4は本発明の請求項4による
立体視用投写型ディスプレイシステムにおける裏面鏡の
構成図である。ミラーの裏面で光を反射させる裏面鏡
(図4)は平行偏光と垂直偏光の反射率の差は大きいも
のの、位相差の発生は小さい。従って、入射映像光の偏
光方向が平行あるいは垂直ちょうどでなくても、クロス
トークの少ない立体映像を実現できる。反射率差より生
じる左右の明るさのアンバランスは実施例3と同様の方
法で左右の明るさを調整すればよい。
Example 4. FIG. 4 is a configuration diagram of a rear surface mirror in a stereoscopic projection display system according to claim 4 of the present invention. The back surface mirror (FIG. 4) that reflects light on the back surface of the mirror has a large difference in reflectance between parallel polarized light and vertical polarized light, but a small phase difference is generated. Therefore, even if the polarization direction of the incident image light is not parallel or perpendicular, a stereoscopic image with less crosstalk can be realized. The left and right brightness unbalance caused by the reflectance difference may be adjusted by the same method as in the third embodiment.

【0027】実施例5.図5は本発明の請求項5による
立体視用投写型ディスプレイシステムの構成図であり、
スクリーン10の前面に位相差板26を配置している。
位相差板26は式(5)で表される位相差Dを補償する
ように選択する。互いに直交する直線偏光に設定されて
いる左目用および右目用映像光5、6の反射光8、9は
反射によりそれぞれ楕円偏光に変化する。しかし、スク
リーン前面に設置した位相差板26を通過することによ
りそれぞれ互いに直交する直線偏光に戻される。観測者
は左右の映像光に対応する向きに偏光板12、13を取
り付けられた偏光眼鏡11によりクロストークなく左右
の映像を分離できる。
Example 5. FIG. 5 is a block diagram of a stereoscopic projection display system according to claim 5 of the present invention.
A retardation plate 26 is arranged on the front surface of the screen 10.
The retardation plate 26 is selected so as to compensate for the retardation D represented by the equation (5). The reflected lights 8 and 9 of the left-eye and right-eye image lights 5 and 6, which are set to be linearly polarized light orthogonal to each other, are changed to elliptically polarized light by reflection. However, by passing through the phase difference plate 26 installed on the front surface of the screen, the linearly polarized lights which are mutually orthogonal are returned. The observer can separate the left and right images without crosstalk by the polarizing glasses 11 having the polarizing plates 12 and 13 attached in the directions corresponding to the left and right image lights.

【0028】なお、この実施例において位相差板26の
位置は反射ミラーより観測者側で映像観測用偏光板1
2、13より手前であればよい。例えば偏光眼鏡11の
偏光板12、13の前方に取り付けてもよい。
In this embodiment, the position of the retardation plate 26 is on the observer side of the reflection mirror and the polarizing plate 1 for image observation is used.
It may be before 2 and 13. For example, the polarizing glasses 11 may be attached in front of the polarizing plates 12 and 13.

【0029】実施例6.図6は本発明の請求項6による
立体視用投写型ディスプレイシステムの構成図であり、
左目用偏光板3の後方に左目用位相差板27、右目用偏
光板4の後方に右目用位相差板28を配置する。位相差
板27、28により左目用映像光5および右目用映像光
6は楕円偏光となり反射ミラー7で反射される。しかし
ながら映像光5、6が反射ミラーで位相差発生作用を受
け、反射後に互いに直交する直線偏光に変化するよう
に、位相差板27、28が選択され配置されているた
め、スクリーン10には2組の直交する直線偏光が到達
する。観測者は左右の映像光に対応する向きに偏光板1
2、13を取り付けられた偏光眼鏡11によりクロスト
ークなく左右の映像を分離できる。
Example 6. FIG. 6 is a block diagram of a stereoscopic projection display system according to claim 6 of the present invention.
A retardation plate 27 for the left eye is arranged behind the polarizing plate 3 for the left eye, and a retardation plate 28 for the right eye is arranged behind the polarizing plate 4 for the right eye. The left-eye image light 5 and the right-eye image light 6 are elliptically polarized by the phase difference plates 27 and 28 and are reflected by the reflection mirror 7. However, since the phase difference plates 27 and 28 are selected and arranged so that the image lights 5 and 6 are subjected to the phase difference generating action by the reflection mirror and are changed into the linearly polarized lights which are orthogonal to each other after being reflected, the screen 10 has a 2 phase difference. A set of orthogonal linearly polarized light arrives. The observer uses the polarizing plate 1 in the direction corresponding to the left and right image lights.
The polarized glasses 11 to which 2 and 13 are attached can separate left and right images without crosstalk.

【0030】なお、この実施例において位相差板27、
28の位置は偏光板3、4の後方で反射ミラー7の手前
であればどこでもよい。
In this embodiment, the phase difference plate 27,
The position of 28 may be anywhere behind the polarizing plates 3 and 4 and before the reflection mirror 7.

【0031】[0031]

【発明の効果】以上のように、本発明の請求項1、2に
よる立体視用投写型ディスプレイシステムによれば、互
いに直交する2組の映像光の偏光方向を反射ミラーに対
して垂直あるいは平行に入射するように設定しているた
め、ミラーでの反射後も直線偏光が保存される。そのた
め偏光眼鏡で2組の映像をクロストークなく分離でき、
鮮明な立体映像を実現できる。
As described above, according to the projection display system for stereoscopic vision according to the first and second aspects of the present invention, the polarization directions of two sets of image lights which are orthogonal to each other are perpendicular or parallel to the reflection mirror. Since the light is set to be incident on, the linearly polarized light is preserved even after being reflected by the mirror. Therefore, two sets of images can be separated with polarized glasses without crosstalk,
It can realize clear 3D images.

【0032】本発明の請求項2による立体視用投写型デ
ィスプレイシステムによれば、反射ミラーに表面鏡を使
用しているため、反射ミラーにおける垂直偏光と平行偏
光の反射率差が小さく、2組の映像の明るさの差が小さ
い立体映像を実現できる。
According to the projection display system for stereoscopic vision according to claim 2 of the present invention, since the surface mirror is used as the reflecting mirror, the difference in reflectance between the vertically polarized light and the parallel polarized light in the reflecting mirror is small, and two sets are provided. It is possible to realize a stereoscopic image with a small difference in brightness of the image.

【0033】本発明の請求項3、4による立体視用投写
型ディスプレイシステムよれば、2組の映像光がミラー
反射後に同程度の明るさになるように、2組の映像光源
の明るさを設定したため、2組の映像の明るさの差が小
さい立体映像を実現できる。
According to the projection display system for stereoscopic vision according to claims 3 and 4 of the present invention, the brightness of the two sets of image light sources is adjusted so that the two sets of image lights have almost the same brightness after being reflected by the mirrors. Since the setting is made, it is possible to realize a stereoscopic image in which the difference in brightness between the two sets of images is small.

【0034】本発明の請求項4による立体視用投写型デ
ィスプレイシステムよれば、反射時の平行偏光と垂直偏
光の位相差の発生量が小さい裏面鏡を使用しているた
め、2組の直交する映像光の偏光面が平行あるいは垂直
以外の場合でも、クロストークの少ない立体映像を実現
できる。
According to the projection display system for stereoscopic vision according to the fourth aspect of the present invention, since two rear surface mirrors are used, which generate a small phase difference between the parallel polarized light and the vertical polarized light at the time of reflection, two sets of orthogonal mirrors are used. Even if the polarization plane of the image light is not parallel or vertical, a stereoscopic image with less crosstalk can be realized.

【0035】本発明の請求項5による立体視用投写型デ
ィスプレイシステムよれば、反射ミラーの後方からスク
リーン面の間に設置した位相差板により、ミラー反射後
に発生した楕円偏光を直線偏光に戻しているため、2組
の直交する映像光の偏光方向にかかわらず、偏光眼鏡で
2組の映像をクロストークなく分離でき、鮮明な立体映
像を実現できる。
According to the projection display system for stereoscopic vision according to the fifth aspect of the present invention, the elliptically polarized light generated after the reflection by the mirror is returned to the linearly polarized light by the phase difference plate installed between the rear surface of the reflecting mirror and the screen surface. Therefore, regardless of the polarization directions of the two sets of orthogonal image light, the two sets of images can be separated by the polarized glasses without crosstalk, and a clear stereoscopic image can be realized.

【0036】本発明の請求項6による立体視用投写型デ
ィスプレイシステムよれば、2組の直交する映像光が反
射ミラーで位相差発生作用を受け、反射後に互いに直交
する直線偏光に変化するように、位相差板が反射ミラー
の前方に配置されているため、2組の直交する映像光の
偏光方向にかかわらず、偏光眼鏡で2組の映像をクロス
トークなく分離でき、鮮明な立体映像を実現できる。
According to the projection display system for stereoscopic vision according to the sixth aspect of the present invention, the two sets of the orthogonal image lights are subjected to the phase difference generating action by the reflection mirror, and after being reflected, are changed into the linearly polarized lights which are orthogonal to each other. Since the retardation plate is placed in front of the reflection mirror, regardless of the polarization directions of the two sets of orthogonal image light, the two pairs of images can be separated with polarizing glasses without crosstalk, and a clear stereoscopic image is realized. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1、2による立体視用投写型デ
ィスプレイシステムの構成図である。
FIG. 1 is a configuration diagram of a stereoscopic projection display system according to claims 1 and 2 of the present invention.

【図2】本発明の実施例2における表面鏡の構成を説明
する図である。
FIG. 2 is a diagram illustrating a configuration of a front surface mirror according to a second embodiment of the present invention.

【図3】本発明の請求項3による立体視用投写型ディス
プレイシステムの構成図である。
FIG. 3 is a configuration diagram of a stereoscopic projection display system according to claim 3 of the present invention.

【図4】本発明の請求項4による立体視用投写型ディス
プレイシステムにおける裏面鏡の構成図である。
FIG. 4 is a configuration diagram of a rear surface mirror in the stereoscopic projection display system according to claim 4 of the present invention.

【図5】本発明の請求項5による立体視用投写型ディス
プレイシステムの構成図である。
FIG. 5 is a configuration diagram of a stereoscopic projection display system according to claim 5 of the present invention.

【図6】本発明の請求項6による立体視用投写型ディス
プレイシステムの構成図である。
FIG. 6 is a configuration diagram of a stereoscopic projection display system according to claim 6 of the present invention.

【図7】従来のフロント型立体視用投写型ディスプレイ
システムの構成図である。
FIG. 7 is a configuration diagram of a conventional front-type stereoscopic projection display system.

【図8】従来のリア型立体視用投写型ディスプレイシス
テムの構成図である。
FIG. 8 is a configuration diagram of a conventional rear-type stereoscopic projection display system.

【図9】反射による偏光状態の変化を説明する図であ
る。
FIG. 9 is a diagram illustrating a change in polarization state due to reflection.

【図10】反射による直線偏光から楕円偏光への変化を
説明する図である。
FIG. 10 is a diagram illustrating a change from linearly polarized light to elliptically polarized light due to reflection.

【符号の説明】[Explanation of symbols]

1 左目用映像投影光学ユニット 2 右目用映像投影光学ユニット 3 左目映像用偏光板 4 右目映像用偏光板 5 左目用映像光 6 右目用映像光 7 反射ミラー 8 左目用映像反射光 9 右目用映像反射光 10 透過型スクリーン 11 偏光眼鏡 12 左目映像観測用偏光板 13 右目映像観測用偏光板 1 Left-eye image projection optical unit 2 Right-eye image projection optical unit 3 Left-eye image polarizing plate 4 Right-eye image polarizing plate 5 Left-eye image light 6 Right-eye image light 7 Reflection mirror 8 Left-eye image reflection light 9 Right-eye image reflection Light 10 Transmissive screen 11 Polarizing glasses 12 Polarizing plate for left eye image observation 13 Polarizing plate for right eye image observation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 映像源と、映像を拡大投写するための光
学系を備えた光学ユニットを少なくとも2組と、少なく
とも1枚の反射ミラーを有し、各々の光学ユニットは立
体視を可能とする異なる映像を互いに直交する偏光光束
をもって映出し、反射ミラーでの反射を介して透過型ス
クリーンに投写し、偏光方向が互いに直交する偏光眼鏡
で立体映像を認識する立体視用投写型ディスプレイシス
テムにおいて、互いに直交する偏光板の偏光方向を反射
ミラーの入射面に対して平行あるいは垂直に入射するよ
うに配置したことを特徴とする立体視用投写型ディスプ
レイシステム。
1. An image source, at least two sets of optical units having an optical system for magnifying and projecting an image, and at least one reflection mirror, each optical unit enabling stereoscopic viewing. In a stereoscopic projection display system that projects different images with polarized light fluxes orthogonal to each other, projects them on a transmissive screen through reflection by a reflection mirror, and recognizes stereoscopic images with polarizing glasses whose polarization directions are orthogonal to each other, A projection display system for stereoscopic viewing, characterized in that the polarization directions of polarizing plates orthogonal to each other are arranged so as to enter parallel or perpendicular to the entrance surface of a reflecting mirror.
【請求項2】 反射ミラーにミラー表面近傍で光を反射
する表面鏡を使用したことを特徴とする請求項1記載の
立体視用投写型ディスプレイシステム。
2. The projection display system for stereoscopic vision according to claim 1, wherein a surface mirror that reflects light in the vicinity of the mirror surface is used as the reflection mirror.
【請求項3】 映像源と、映像を拡大投写するための光
学系を備えた光学ユニットを少なくとも2組と、少なく
とも1枚の反射ミラーを有し、各々の光学ユニットは立
体視を可能とする異なる映像を互いに直交する偏光光束
をもって映出し、反射ミラーでの反射を介して透過型ス
クリーンに投写し、偏光方向が互いに直交する偏光眼鏡
で立体映像を認識する立体視用投写型ディスプレイシス
テムにおいて、反射ミラーにおける平行偏光と垂直偏光
の反射率の差により生じる2組の映像光の明るさの差を
補償すべく、2組の映像源の明るさを調節する手段を有
することを特徴とする立体視用投写型ディスプレイシス
テム。
3. An image source, at least two sets of optical units having an optical system for magnifying and projecting an image, and at least one reflection mirror, each optical unit enabling stereoscopic vision. In a stereoscopic projection display system that projects different images with polarized light fluxes orthogonal to each other, projects them on a transmissive screen through reflection by a reflection mirror, and recognizes stereoscopic images with polarizing glasses whose polarization directions are orthogonal to each other, A solid body having means for adjusting the brightness of two sets of image sources so as to compensate for the difference in brightness of the two sets of image light caused by the difference in reflectance between parallel polarized light and vertical polarized light in the reflecting mirror. Visual projection display system.
【請求項4】 反射ミラーにミラー裏面近傍で光を反射
する裏面鏡を使用したことを特徴とする請求項3記載の
立体視用投写型ディスプレイシステム。
4. The projection display system for stereoscopic vision according to claim 3, wherein a rear surface mirror that reflects light in the vicinity of the rear surface of the mirror is used as the reflection mirror.
【請求項5】 映像源と映像を拡大投写するための光学
系を備えた光学ユニットを少なくとも2組と、少なくと
も1枚の反射ミラーを有し、各々の光学ユニットは立体
視を可能とする異なる映像を互いに直交する偏光光束を
もって映出し、反射ミラーでの反射を介して透過型スク
リーンに投写し、偏光方向が互いに直交する偏光眼鏡で
立体映像を認識する立体視用投写型ディスプレイシステ
ムにおいて、スクリーン近傍に位相差板を配したことを
特徴とする立体視用投写型ディスプレイシステム。
5. An optical source and an optical system for enlarging and projecting an image, at least two sets of optical units, and at least one reflection mirror, each optical unit being different for enabling stereoscopic vision. In a projection display system for stereoscopic vision, an image is projected as polarized light fluxes orthogonal to each other, projected on a transmissive screen through reflection by a reflection mirror, and a stereoscopic projection display system for recognizing stereoscopic images with polarizing glasses whose polarization directions are orthogonal to each other. A projection display system for stereoscopic vision, which is characterized in that a retardation plate is arranged in the vicinity.
【請求項6】 映像源と映像を拡大投写するための光学
系を備えた光学ユニットを少なくとも2組と、少なくと
も1枚の反射ミラーを有し、各々の光学ユニットは立体
視を可能とする異なる映像を互いに直交する偏光光束を
もって映出し、反射ミラーでの反射を介して透過型スク
リーンに投写し、偏光方向が互いに直交する偏光眼鏡で
立体映像を認識する立体視用投写型ディスプレイシステ
ムにおいて、投写レンズ出射口に位相差板を配したこと
を特徴とする立体視用投写型ディスプレイシステム。
6. An image source and at least two optical units having an optical system for magnifying and projecting an image, and at least one reflecting mirror, each optical unit being different for enabling stereoscopic vision. Projection in a stereoscopic projection display system in which an image is projected as polarized light beams orthogonal to each other, projected on a transmissive screen through reflection by a reflection mirror, and stereoscopic images are recognized by polarizing glasses whose polarization directions are orthogonal to each other. A projection display system for stereoscopic vision, which is characterized in that a phase difference plate is arranged at a lens exit.
JP6025425A 1994-02-23 1994-02-23 Projection display system for stereoscopic vision Pending JPH07234380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6025425A JPH07234380A (en) 1994-02-23 1994-02-23 Projection display system for stereoscopic vision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6025425A JPH07234380A (en) 1994-02-23 1994-02-23 Projection display system for stereoscopic vision

Publications (1)

Publication Number Publication Date
JPH07234380A true JPH07234380A (en) 1995-09-05

Family

ID=12165615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6025425A Pending JPH07234380A (en) 1994-02-23 1994-02-23 Projection display system for stereoscopic vision

Country Status (1)

Country Link
JP (1) JPH07234380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317024B1 (en) * 1998-07-02 2002-02-19 구자홍 3-Dimension Picture Displaying Apparatus with Polarizing Glasses
US7625093B2 (en) 2005-03-29 2009-12-01 Seiko Epson Corporation Image display device having a plurality of basic-color projection units
WO2011048993A1 (en) * 2009-10-19 2011-04-28 シャープ株式会社 Image display device and three-dimensional image display system
JP2013140202A (en) * 2011-12-28 2013-07-18 Jvc Kenwood Corp Stereoscopic display device, and stereoscopic display method
WO2014208420A1 (en) * 2013-06-26 2014-12-31 ソニー株式会社 Image projection device, image projection system, image projection method, and display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317024B1 (en) * 1998-07-02 2002-02-19 구자홍 3-Dimension Picture Displaying Apparatus with Polarizing Glasses
US7625093B2 (en) 2005-03-29 2009-12-01 Seiko Epson Corporation Image display device having a plurality of basic-color projection units
WO2011048993A1 (en) * 2009-10-19 2011-04-28 シャープ株式会社 Image display device and three-dimensional image display system
JP2013140202A (en) * 2011-12-28 2013-07-18 Jvc Kenwood Corp Stereoscopic display device, and stereoscopic display method
WO2014208420A1 (en) * 2013-06-26 2014-12-31 ソニー株式会社 Image projection device, image projection system, image projection method, and display device

Similar Documents

Publication Publication Date Title
US5726800A (en) Autostereoscopic directional display apparatus
US5764411A (en) Apparatus for displaying an image
US5121983A (en) Stereoscopic projector
EP0820606B1 (en) Method and apparatus for presenting stereoscopic images
US20070285774A1 (en) Augmenting brightness performance of a beam-splitter in a stereoscopic display
US5751493A (en) Head-mounted display apparatus with a single image display device
JP2967501B2 (en) Color 3D display
US20020113868A1 (en) Display apparatus of stereoscopic image via circular polarization
EP0750822B1 (en) Beam combiner for lcd projector
JPH0135551B2 (en)
US4967267A (en) Apparatus for formatting and viewing a stereoscopic video frame
JPH09138371A (en) Polarizing spectacle type stereoscopic video display device
JPH07234380A (en) Projection display system for stereoscopic vision
JP3015714B2 (en) 3D image display device
JPS59225692A (en) Stereoscopic television receiver
JP2513403B2 (en) Projection type stereoscopic display device
JPS63236494A (en) Picture projection television
TWI796671B (en) Autostereoscopic 3d head-up display device using two directional backlit type displays
JPH05103350A (en) Liquid crystal three-dimensional projector
JPH08122695A (en) Video device
JP3369798B2 (en) 3D stereo display
JPH09218475A (en) Back projection type stereoscopic video display device
GB2308677A (en) Polarised stereoscopic display apparatus and glasses
JP4021267B2 (en) Stereoscopic image projecting optical element and projector incorporating the same
JP2001174751A (en) Stereoscopic picture display device and projector used for it