JPH07234124A - Method and apparatus for measuring conduit shape - Google Patents

Method and apparatus for measuring conduit shape

Info

Publication number
JPH07234124A
JPH07234124A JP2562394A JP2562394A JPH07234124A JP H07234124 A JPH07234124 A JP H07234124A JP 2562394 A JP2562394 A JP 2562394A JP 2562394 A JP2562394 A JP 2562394A JP H07234124 A JPH07234124 A JP H07234124A
Authority
JP
Japan
Prior art keywords
measuring
light
pipe
shape measuring
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2562394A
Other languages
Japanese (ja)
Inventor
Hiroshi Hosaka
寛 保坂
Katsuhiko Honjo
克彦 本庄
Kunio Hoshitani
邦夫 星谷
Tomohiro Kurosawa
友博 黒沢
Kazuyoshi Kawabata
一嘉 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2562394A priority Critical patent/JPH07234124A/en
Publication of JPH07234124A publication Critical patent/JPH07234124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a method and an apparatus for measuring an accurate conduit shape without necessity of installing a sensor, etc., on the ground with out influence of a circumferential magnetic element. CONSTITUTION:A conduit shape measuring train D in which a plurality of measuring unit vehicles alpha1-alpha4 for placing laser light oscillators 7a-7e having photoreceivers 6a-6e and fluctuation and turning control means 11a-11e to be controlled by detection signals of the photoreceivers 6a-6e are coupled is traveled through a conduit, relatively varying fluctuating and turning angles DELTA1-DELTA5 of the means 11a-11e of the oscillators 7a-7e and developing distances L1-L3 between central vehicles between the vehicles alpha1-alpha4 are detected, and a bent state, etc., of a conduit beta is sensed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電話ケーブルなどの埋
設に用いられる管路の屈曲形状を、高精度に測定可能な
方法及びその実施に直接使用する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a bent shape of a conduit used for burying a telephone cable or the like with high accuracy and an apparatus directly used for implementing the method.

【0002】[0002]

【従来の技術】電話ケーブル等の埋設に用いられる管路
の敷設工事においては、埋設位置の両端に設けられた竪
坑から水平方向に横穴を掘る、いわゆる非開削工法が通
常用いられる。埋設管路においては、他の工事によって
管路が損傷することを防ぐため、その位置を正確に計測
して置く必要がある。
2. Description of the Related Art In laying pipes used for burying telephone cables and the like, a so-called non-excavation method is generally used in which horizontal holes are dug horizontally from vertical shafts provided at both ends of the burial position. The position of the buried pipeline must be accurately measured and placed to prevent the pipeline from being damaged by other works.

【0003】非開削工法で埋設された管路の位置計測に
は、従来は図6のような磁界による計測方法が用いられ
ていた。図中、Aは竪孔、Bは管路を敷設する横穴、G
は地表、1は掘削機械、1aは掘削機械1先端のドリ
ル、2はドリル1a付近に取付けられた磁界発生器、3
は地上を移動する磁界センサである。
Conventionally, a measuring method using a magnetic field as shown in FIG. 6 has been used to measure the position of a pipe line buried by a non-open cutting method. In the figure, A is a vertical hole, B is a horizontal hole for laying a pipeline, and G is a horizontal hole.
Is a ground surface, 1 is a drilling machine, 1a is a drill at the tip of the drilling machine, 2 is a magnetic field generator mounted near the drill 1a, 3
Is a magnetic field sensor that moves on the ground.

【0004】図6に示す従来の管路位置計測方法は、竪
孔Aに設けられた掘削機械1が掘削する横穴Bのドリル
1a先端付近に磁界発生器2を取り付けておき、掘削時
に地表Gで作業員が磁界センサ3を移動させ、磁界が最
も強くなる位置の真下を横穴Bの先頭位置として、逐次
記録し、管路の屈曲等を測定するものである。
In the conventional pipe line position measuring method shown in FIG. 6, a magnetic field generator 2 is attached near the tip of a drill 1a of a horizontal hole B, which is drilled by a drilling machine 1 provided in a vertical hole A, and the ground surface G is used during drilling. The operator moves the magnetic field sensor 3 and sequentially records the position immediately below the position where the magnetic field is strongest as the head position of the lateral hole B, and measures the bending of the conduit and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来の磁界による計測方法では、下記のような問題点が存
在した。すなわち、まず、近くの地中や地表Gに鋼管や
鉄塔や線路のような磁性体があると、磁界発生器2によ
り発生した磁界が歪み、地表Gの磁界センサ3において
誤差が生じるという問題点である。そして、河川等の、
地表Gを作業員が立ち入れない場所では、磁界センサ3
による計測が不可能であるという問題点である。
However, the conventional measuring method using a magnetic field has the following problems. That is, first, if there is a magnetic material such as a steel pipe, a steel tower, or a line in the nearby ground or on the surface G, the magnetic field generated by the magnetic field generator 2 is distorted, and an error occurs in the magnetic field sensor 3 on the surface G. Is. And in rivers,
In a place where workers cannot enter the surface G, the magnetic field sensor 3
It is a problem that measurement by is impossible.

【0006】ここで、本発明の重要な課題を次に列挙す
る。本発明の第1の課題は、従来の磁界による計測方法
の欠点を解決するための管路形状測定方法および測定装
置を提供せんとするものである。本発明の第2の課題
は、高精度で周囲の磁性体の悪影響を受けない管路形状
測定方法および測定装置を提供せんとするものである。
本発明の第3の課題は、地上にセンサの設置の必要がな
い管路形状測定方法および測定装置を提供せんとするも
のである。
The important problems of the present invention will be listed below. A first object of the present invention is to provide a pipe line shape measuring method and a measuring device for solving the drawbacks of the conventional measuring method using a magnetic field. A second object of the present invention is to provide a pipe line shape measuring method and a measuring device which are highly accurate and are not adversely affected by surrounding magnetic substances.
A third object of the present invention is to provide a pipeline shape measuring method and a measuring apparatus which do not require the installation of a sensor on the ground.

【0007】本発明の第4の課題は、地上での遠隔測定
および計測を可能とする管路形状測定方法および測定装
置を提供せんとするものである。本発明の第5の課題
は、光を利用した計測による管路形状測定方法および測
定装置を提供せんとするものである。本発明の第6の課
題は、測定機車を車間距離開拡自在に複数両連ねた管路
形状測定列車を管路内走行する管路形状測定方法および
測定装置を提供せんとするものである。本発明の第7の
課題は、各測定機車はモータ駆動による自走式か索条牽
引駆動による他走式を採用してなる管路形状測定方法お
よび測定装置を提供せんとするものである。
A fourth object of the present invention is to provide a pipe shape measuring method and a measuring device which enable remote measurement and measurement on the ground. A fifth object of the present invention is to provide a pipe line shape measuring method and a measuring device by measurement using light. A sixth object of the present invention is to provide a pipe shape measuring method and a measuring device for running a pipe shape measuring train in which a plurality of measuring machine cars are connected so as to be able to open and close the inter-vehicle distance. A seventh object of the present invention is to provide a pipe line shape measuring method and a measuring device in which each measuring machine adopts a self-propelled type driven by a motor or a separate type driven by a rope pulling drive.

【0008】本発明の第8の課題は、受光手段と先行又
は尾行しながら揺動旋回してこれに追従照射するレーザ
光発振手段とを各測定機車に搭載する管路形状測定装置
を提供せんとするものである。本発明の第9の課題は、
複数台車の隣接前後台車に亙って、受光器と揺動旋回し
てこれに追従照射するするレーザ発振器とを少なくとも
一対以上対向設置した測定機車を複数両連結した管路形
状測定列車を管路中に走らせる管路形状測定装置を提供
せんとするものである。
An eighth object of the present invention is not to provide a pipe line shape measuring device in which each measuring machine is equipped with a light receiving means and a laser light oscillating means for swinging and swinging while following the trailing or tailing and irradiating the laser light. It is what A ninth object of the present invention is to
A pipe shape measuring train in which two or more measuring machines are connected to each other with at least one pair of photoreceivers and laser oscillators that oscillate and swing to follow and illuminate them It is intended to provide a pipe shape measuring device to be run inside.

【0009】本発明の第10の課題は、受光器の中心に
レーザ光を位置決めする手段として、受光器の受光検出
面の中心を境に片半面のそれぞれに配した2個のフォト
ダイオードの出力差に比例する信号をレーザ発振器の揺
動旋回制御手段に加える管路形状測定装置を提供せんと
するものである。
A tenth object of the present invention is, as means for positioning the laser beam at the center of the photodetector, the outputs of two photodiodes arranged on one half of the photodetection surface of the photodetector. An object of the present invention is to provide a pipe shape measuring device that applies a signal proportional to the difference to the swinging and swinging control means of the laser oscillator.

【0010】本発明の第11の課題は、受光器に内蔵さ
れた2個のフォトダイオードの出力の和が変化すると、
受光器に信号台車の走行を停止する管路形状測定装置を
提供せんとするものである。本発明のその他の課題は、
明細書および図面、特に特許請求の範囲の記載から自ず
と明らかになるであろう。
The eleventh problem of the present invention is that when the sum of the outputs of the two photodiodes incorporated in the light receiver changes,
An object of the present invention is to provide a light receiving device with a pipe shape measuring device for stopping the traveling of a signal truck. Other problems of the present invention are
It will be apparent from the description and drawings, and particularly from the claims.

【0011】[0011]

【課題を解決するための手段】前記課題の解決は、本発
明の次に列挙する新規な特徴的構成手法及び構成手段を
採用することにより達成される。すなわち、本発明方法
の第1の特徴は、地下埋設管等の管路の屈曲状態等を測
定するに当り、当該管路中を複数両の測定機車からなる
管路形状測定列車を走行させ、当該各測定機車から隣接
前後の測定機車上の受光検出面中心に向け常時追従揺動
旋回自在に発光し、相対的に変化する当該発光の揺動旋
回角度と前記隣接測定機車の車間開拡距離とを検出・演
算して、前記管路の屈曲状態等を検知してなる管路形状
測定方法である。
The above-mentioned problems can be solved by adopting the novel characteristic construction method and construction means listed below the present invention. That is, the first feature of the method of the present invention, in measuring the bending state and the like of the pipeline such as the underground buried pipe, a pipeline shape measuring train consisting of a plurality of measuring machine cars is run in the pipeline, Each measuring machine always follows the light-receiving / detecting surface center on the adjacent measuring machine cars. Is a method for measuring the shape of a pipeline by detecting and calculating and the bending state of the pipeline.

【0012】本発明方法の第2の特徴は、前記本発明方
法の第1の特徴における走行が、自走式又は他走式であ
る管路形状測定方法である。
A second feature of the method of the present invention is a method for measuring the shape of a pipe, wherein the traveling according to the first feature of the method of the present invention is a self-propelled type or a separately propelled type.

【0013】本発明方法の第3の特徴は、前記本発明方
法の第2の特徴における自走式がモータ駆動であり、他
走式が牽引駆動である管路形状測定方法である。
A third feature of the method of the present invention is a pipe shape measuring method in which the self-propelled type in the second feature of the method of the present invention is a motor drive and the free-running type is a traction drive.

【0014】本発明方法の第4の特徴は、前記本発明方
法の第1,第2又は第3の特徴における発光が、レーザ
発光である管路形状測定方法である。
A fourth feature of the method of the present invention is a method for measuring the shape of a pipe, wherein the light emission in the first, second or third feature of the method of the present invention is laser light emission.

【0015】本発明方法の第5の特徴は、前記本発明方
法の第1,第2,第3又は第4の特徴における受光検出
面が、中心を境に片半面づつ独立して受光検出可能とす
る管路形状測定方法である。
A fifth feature of the method of the present invention is that the light receiving / detecting surface in the first, second, third or fourth feature of the method of the present invention can independently detect light by one half surface with the center as a boundary. This is a method for measuring the shape of a pipe.

【0016】本発明方法の第6の特徴は、前記本発明方
法の第1,第2,第3,第4又は第5の特徴における受
光検出面が、両片半面の受光量のバランス変化により発
光照射の中心ズレを検出する管路形状測定方法である。
A sixth characteristic of the method of the present invention is that the light receiving detection surface in the first, second, third, fourth or fifth characteristic of the method of the present invention is caused by a change in the balance of the amount of light received on both half surfaces. This is a method for measuring the shape of a conduit for detecting the center deviation of light emission.

【0017】本発明方法の第7の特徴は、前記本発明方
法の第1,第2,第3,第4,第5又は第6の特徴にお
ける受光検出面が、受光量に応じたそれぞれの片半面か
らの出力信号を減算して、当該差信号に比例して常に中
心に発光が照射自在に追従揺動旋回角度をフィードバッ
ク制御する管路形状測定方法である。
The seventh feature of the method of the present invention is that the light receiving / detecting surface in the first, second, third, fourth, fifth or sixth feature of the method of the present invention corresponds to the amount of received light. This is a pipe line shape measuring method in which an output signal from one half surface is subtracted, and a follow-up swing turning angle is feedback-controlled so that light emission can be always emitted to the center in proportion to the difference signal.

【0018】本発明方法の第8の特徴は、前記本発明方
法の第1,第2,第3,第4,第5,第6又は第7の特
徴における受光検出面が、受光量に応じたそれぞれの片
半面からの出力信号を加算して、当該和信号が予め設定
してある基準信号レベルに達しない時は、前記受光検出
面に係る測定機車の走行を停止する管路形状測定方法で
ある。
The eighth feature of the method of the present invention is that the light receiving detection surface in the first, second, third, fourth, fifth, sixth or seventh feature of the method of the present invention is dependent on the amount of light received. Further, by adding the output signals from the respective one half surfaces, and when the sum signal does not reach the preset reference signal level, the pipeline shape measuring method of stopping the traveling of the measuring machine vehicle related to the light receiving detection surface Is.

【0019】本発明装置の第1の特徴は、車輪を有する
台車と、当該台車を駆動制御する走行制御手段と,当該
各台車上に設けたレーザ光の受光手段と,当該受光器か
ら出力される信号により常に前記受光器中心にレーザ光
を照射するよう制御して角度信号を出力する揺動旋回制
御手段を備えかつ隣接台車上に設けたレーザ光発振手段
と,車間距離を測定して距離信号を計測出力する手段
と,を備える測定機車を複数連結した管路形状測定列車
と、当該複数の測定機車から出力される前記角度信号と
前記距離信号により前記複数の測定機車のそれぞれの位
置を計算する演算手段と、からなる管路形状測定装置で
ある。
The first feature of the device of the present invention is that the carts having wheels, the travel control means for driving and controlling the carts, the laser beam receiving means provided on each of the carts, and the photoreceiver output. The laser light oscillating means provided on the adjacent trolley and equipped with the swinging and swinging control means for controlling the laser light to be constantly irradiated to the center of the light receiver by the signal to output the angle signal, and measuring the inter-vehicle distance to measure the distance. And a means for measuring and outputting a signal, and a pipeline shape measuring train in which a plurality of measuring machine vehicles are connected, and the position of each of the plurality of measuring machine vehicles is determined by the angle signal and the distance signal output from the plurality of measuring machine vehicles. It is a pipe line shape measuring device comprising a calculation means for calculating.

【0020】本発明装置の第2の特徴は、前記本発明装
置の第1の特徴における、距離信号の計測出力手段が、
連結ワイヤを導出する台車上に取り付けられたリールの
回転を検知するエンコーダ、又は、台車に取り付けられ
た車輪の回転を検知するエンコーダ、である管路形状測
定装置である。
A second feature of the device of the present invention is that the distance signal measuring and outputting means in the first feature of the device of the present invention is:
A pipe line shape measuring device which is an encoder for detecting rotation of a reel mounted on a trolley for guiding a connecting wire, or an encoder for detecting rotation of wheels mounted on the trolley.

【0021】本発明装置の第3の特徴は、前記本発明装
置の第1又は第2の特徴における走行制御手段が、車輪
の車軸に結合するモータか、各台車毎に連結した牽引索
条群である管路形状測定装置である。
A third feature of the device of the present invention is that the traveling control means in the first or second feature of the device of the present invention is a motor coupled to an axle of a wheel or a group of towed ropes connected to each carriage. Is a pipe line shape measuring device.

【0022】本発明装置の第4の特徴は、前記本発明装
置の第1,第2又は第3の特徴における受光手段と揺動
旋回制御手段が、サーボ機構を構成してなる管路形状測
定装置である。
The fourth feature of the device of the present invention is that the light receiving means and the swing and turn control means in the first, second or third feature of the device of the present invention constitute a servo mechanism for measuring the shape of a pipe line. It is a device.

【0023】本発明装置の第5の特徴は、前記本発明装
置の第1,第2,第3又は第4の特徴における受光手段
とレーザ光発振手段と揺動旋回制御手段と演算手段が、
受光器とレーザ発振器とピエゾアクチュエータと演算回
路である管路形状測定装置である。
A fifth feature of the device of the present invention is that the light receiving means, the laser light oscillating means, the swing and turn control means and the computing means in the first, second, third or fourth feature of the present invention device are:
It is a pipe line shape measuring device including a light receiver, a laser oscillator, a piezo actuator, and an arithmetic circuit.

【0024】本発明装置の第6の特徴は、前記本発明装
置の第5の特徴における受光器が、レーザ光照射中心点
を中に挟んだ両側にそれぞれのフォトダイオードを配し
てなる管路形状測定装置である。
The sixth feature of the device of the present invention is that the photodetector according to the fifth feature of the device of the present invention is a pipe line in which photodiodes are arranged on both sides sandwiching the laser light irradiation center point. It is a shape measuring device.

【0025】本発明装置の第7の特徴は、前記本発明装
置の第5又は第6の特徴における受光器が、2個のフォ
トダイオードからの出力信号を減算して揺動旋回制御手
段へ出力する減算器を備えてなる管路形状測定装置であ
る。
A seventh feature of the device of the present invention is that the photodetector according to the fifth or sixth feature of the device of the present invention subtracts the output signals from the two photodiodes and outputs the subtracted signal to the swing and turn control means. It is a pipe line shape measuring device comprising a subtractor for

【0026】本発明装置の第8の特徴は、前記本発明装
置の第5,第6又は第7の特徴における受光器が、2個
のフォトダイオードからの出力信号を加算して走行制御
手段へ出力する加算器を備えてなる管路形状測定装置で
ある。
An eighth feature of the device of the present invention is that the photodetector according to the fifth, sixth or seventh feature of the device of the present invention adds the output signals from the two photodiodes to the traveling control means. It is a pipeline shape measuring device provided with an adder which outputs.

【0027】本発明装置の第9の特徴は、前記本発明装
置の第5,第6,第7又は第8の特徴における受光器と
レーザ発振器が、台車上の対角位置に配設してなる管路
形状測定装置である。
A ninth feature of the device of the present invention is that the light receiver and the laser oscillator in the fifth, sixth, seventh or eighth feature of the device of the present invention are arranged in diagonal positions on the carriage. It is a pipe shape measuring device.

【0028】[0028]

【作用】しかして、本発明は、前記のような新規な手法
および手段を講じ、発光等特にレーザ光を採用して測定
を行うため、従来技術において問題となっていた、付近
に存在する磁性体によって誤差が生じるということがな
い。また、管路内で車間距離とレーザ光の角度をはかる
ことにより管路形状を求めているため、管路内のみで計
測が行え、従来のように地上にセンサなどを置く必要が
ない。
In the present invention, the novel method and means as described above are taken and the measurement is carried out by using the laser light such as light emission. There is no error caused by the body. Further, since the pipe shape is obtained by measuring the inter-vehicle distance and the angle of the laser light in the pipe, the measurement can be performed only in the pipe, and it is not necessary to place a sensor or the like on the ground as in the conventional case.

【0029】詳しくは、管路内を、レーザ発振器と受光
器を台車上に搭載する測定機車数台を車間距離を可変自
在に連ねた管路形状測定列車を走らせ、レーザ光が常に
隣接前後する測定機車上の対向する受光器の受光検出面
中心に当るようにレーザ発振器の角度を振り、角度と走
行距離から各測定機車位置を計算する。レーザ光による
直接測定のため精度が高い。
Specifically, in the pipeline, a pipeline shape measuring train in which several measuring machines each having a laser oscillator and a light receiver mounted on a truck are connected so that the inter-vehicle distance can be freely changed, and the laser light always adjoins the front and rear. The angle of the laser oscillator is swung so that it hits the center of the light receiving / detecting surface of the opposite light receiver on the measuring machine vehicle, and each measuring vehicle position is calculated from the angle and the travel distance. High accuracy due to direct measurement with laser light.

【0030】[0030]

【実施例】【Example】

(装置例)本発明の装置例を図面につき説明する。図1
は管路内における本装置例の管路形状測定装置のシステ
ム構成全体と本装置例に使用する管路形状測定列車の様
子を示す管路内の平面図、図2は本装置例における測定
機車の代表的な構成を示す平面図、図3は本装置例の受
光器の内部構造を示す構成概念図で,(a)は平面図,
(b)は正面図である。
(Example of Device) An example of the device of the present invention will be described with reference to the drawings. Figure 1
2 is a plan view of the inside of the pipeline showing the entire system configuration of the pipeline shape measuring device of this device example in the pipeline and the state of the pipeline shape measuring train used for this device example, and FIG. Is a plan view showing a typical configuration of FIG. 3, FIG. 3 is a conceptual diagram showing the internal structure of a photodetector of this device example, and FIG.
(B) is a front view.

【0031】図中、Cは本装置例の管路形状測定装置、
Dは管路形状測定列車、α及びα1〜α4は測定機車、
βは管路、γは管路βの入り口側の地上に設置するCP
U等を含む演算手段の好適例たる演算回路、4は台車、
5は車輪、5aは車軸、6及び6a〜6eは各種光電変
換器等を含む受光手段の好適例たる受光器、7及び7a
〜7eは各種指向性発光源等を含む光源手段の好適例た
るレーザ発振器、8a〜8cはドラム、プーリー等を含
む回転絞り出し操出手段の好適例たるリールである。
In the figure, C is the pipe shape measuring device of this example,
D is a line shape measuring train, α and α1 to α4 are measuring machine cars,
β is a pipeline, γ is a CP installed on the ground on the entrance side of the pipeline β
An arithmetic circuit as a preferred example of arithmetic means including U etc., 4 is a dolly,
Reference numeral 5 is a wheel, 5a is an axle, 6 and 6a to 6e are light receivers which are preferable examples of light receiving means including various photoelectric converters, and 7 and 7a.
Reference numerals 7 to 7e are laser oscillators, which are preferable examples of light source means including various directional light sources, and 8a to 8c are reels, which are preferable examples of rotary squeezing and operating means including drums, pulleys, and the like.

【0032】9a〜9cはリール8a〜8cから繰り出
されたロープやつなや紐等を含む連結手段の好適例たる
連結ワイヤ、10a〜10cはそれぞれ測定機車α2〜
α4の車輪5を駆動して走行を司る車軸5aに直結した
走行制御手段の好適例たるモータ、11及び11a〜1
1eはレーザ発振器7及び7a〜7eを揺動軸12を中
心として揺動旋回する可逆ステッピングモータ等を含む
揺動旋回制御手段の好適例たるピエゾアクチュエータ、
13′,13″はフォトセルやフォトトランジスタ等を
含む光電変換素子の好適例たる左右フォトダイオード、
14は加算器、15は減算器、16はレーザ光照射中心
点、17は受光検出面、17a,17bは左右片半面で
ある。
Reference numerals 9a to 9c are connection wires which are suitable examples of connection means including ropes, tethers and the like which are drawn out from the reels 8a to 8c, and 10a to 10c are measuring machine α2 respectively.
Motors 11 and 11a to 11 which are preferable examples of the traveling control means which are directly connected to the axle 5a which drives the wheels 5 of α4 to control traveling.
Reference numeral 1e denotes a piezo actuator which is a preferable example of a swing and swing control means including a reversible stepping motor which swings and swings the laser oscillator 7 and 7a to 7e around a swing shaft 12.
Reference numerals 13 'and 13 "denote left and right photodiodes, which are preferable examples of photoelectric conversion elements including photocells and phototransistors.
Reference numeral 14 is an adder, 15 is a subtractor, 16 is a laser light irradiation center point, 17 is a light receiving detection surface, and 17a and 17b are left and right half surfaces.

【0033】図1において示すように、本装置例の管路
形状測定装置Cは、複数の測定機車α1〜α4及び当該
複数の測定機車α1〜α4上の後述するエンコーダから
出力される信号群を演算する演算回路γにより構成され
る。
As shown in FIG. 1, the pipe shape measuring apparatus C of the present apparatus example includes a plurality of measuring machines α1 to α4 and a group of signals output from encoders to be described later on the plurality of measuring machines α1 to α4. It is composed of a calculation circuit γ for calculating.

【0034】図1における状況では、管路β内に測定機
車α1〜α4を連ねた管路形状測定列車Dが走行してい
る。測定機車α2〜α4の台車4には車輪5とモータ1
0a〜10cがつき、管路β内を自走移動できるように
なっている。
In the situation shown in FIG. 1, a pipeline shape measuring train D in which measuring machines α1 to α4 are connected in the pipeline β is running. Wheels 5 and a motor 1 are mounted on the carriage 4 of the measuring machine vehicles α2 to α4.
It is equipped with 0a to 10c so that it can move by itself in the pipeline β.

【0035】隣接前後する測定機車α1〜α4間は連結
ワイヤ9a〜9cで接続され、リール8a〜8cから導
出された連結ワイヤ9a〜9cの長さすなわち測定機車
α1〜α4間の車間距離が、リール8a〜8cに内蔵さ
れた図示しないエンコーダにより測定できるようになっ
ている。
The measuring wires α1 to α4 adjacent to each other are connected by connecting wires 9a to 9c, and the lengths of the connecting wires 9a to 9c derived from the reels 8a to 8c, that is, the inter-vehicle distance between the measuring wires α1 to α4 is It can be measured by an encoder (not shown) built in the reels 8a to 8c.

【0036】測定機車α1には、測定機車α2の方を向
いた受光器6aとレーザ発振器7aが搭載されている。
測定機車α2には、測定機車α1の方を向いてレーザ発
振器7aと受光器6aにそれぞれ対向する受光器6bと
レーザ発振器7b、及び測定機車α3の方を向いた受光
器6cとレーザ発振器7cが搭載されている。
The measuring machine α1 is equipped with a light receiver 6a and a laser oscillator 7a facing the measuring machine α2.
The measurement vehicle α2 includes a light receiver 6b and a laser oscillator 7b facing the measurement vehicle α1 and facing the laser oscillator 7a and the light receiver 6a, respectively, and a light receiver 6c and a laser oscillator 7c facing the measurement vehicle α3. It is installed.

【0037】測定機車α3には、測定機車α2の方を向
いてレーザ発振器7cと受光器6cにそれぞれ対向する
受光器6dとレーザ発振器7d、及び測定機車α4の方
を向いたレーザ発振器7eが搭載されている。測定機車
α4には、測定機車α3の方を向いてレーザ発振器7e
に対向する受光器6eが搭載されている。
The measuring machine α3 is equipped with a light receiver 6d and a laser oscillator 7d facing the measuring machine α2 and facing the laser oscillator 7c and the light receiver 6c, respectively, and a laser oscillator 7e facing the measuring machine α4. Has been done. To the measuring machine α4, face the measuring machine α3 and laser oscillator 7e.
A light receiver 6e opposite to is mounted.

【0038】図2は本装置例の管路形状測定装置Cにお
ける測定機車αの構成の一例を示す図で、レーザ発振器
7は揺動軸12に固定され、当該揺動軸12の揺動旋回
角は内蔵するエンコーダ12aにより測定されるように
なっている。
FIG. 2 is a diagram showing an example of the structure of the measuring machine α in the pipe shape measuring apparatus C of this apparatus example. The laser oscillator 7 is fixed to the swing shaft 12, and the swing shaft 12 swings. The corner is designed to be measured by the built-in encoder 12a.

【0039】また、前向および後向レーザ発振器7は、
各ピエゾアクチュエータ11により揺動旋回角を任意に
設定できるようになっている。なお、図1中のリール8
a〜8c,連結ワイヤ9a〜9c及びモータ10a〜1
0cは図2においては省略されているが、適宜な位置に
搭載されることはいうまでもない。ただし、最後尾車両
の測定機車α1にはモータは搭載しない。
The forward and backward laser oscillators 7 are
Each piezo actuator 11 can freely set the swinging turning angle. The reel 8 in FIG.
a-8c, connecting wires 9a-9c and motors 10a-1
Although 0c is omitted in FIG. 2, it goes without saying that it is mounted at an appropriate position. However, a motor is not mounted on the measurement vehicle α1 of the rearmost vehicle.

【0040】測定機車α,α1〜α4の受光器6,6a
〜6eとレーザ発振器7,7a〜7eとの対向搭載位置
は、図1のように任意である。特に、図2のような対角
位置に配置するような形態であれば、すべての測定機車
αの基本的構造を同一とすることができ、量産性が向上
する。
Optical receivers 6 and 6a for measuring machines α, α1 to α4
1 to 6e and the laser oscillators 7 and 7a to 7e facing each other are arbitrarily mounted as shown in FIG. In particular, if the configuration is such that they are arranged diagonally as shown in FIG. 2, the basic structure of all measuring machine vehicles α can be made the same, and mass productivity is improved.

【0041】受光器6,6a〜6eは、図3に示すよう
に、2つのフォトダイオード13′,13″、加算器1
4、減算器15から構成されるのが望ましい。受光検出
面17のレーザ光照射中心点16を境に左右片半面17
a,17bにそれぞれ配された独立受光検出自在な2つ
のフォトダイオード13′,13″の出力は、それぞれ
加算器14と減算器15に入力され、和信号S1と差信
号S2が出力される。
As shown in FIG. 3, the light receivers 6 and 6a to 6e are composed of two photodiodes 13 'and 13 "and an adder 1.
4 and the subtractor 15 are preferable. Left and right half surfaces 17 with the laser light irradiation center point 16 of the light receiving and detecting surface 17 as a boundary
The outputs of the two photodiodes 13 'and 13 ", which are arranged in a and 17b and are capable of independent light reception detection, are input to an adder 14 and a subtractor 15, respectively, and a sum signal S1 and a difference signal S2 are output.

【0042】受光器6,6a〜6eの減算器15による
差信号S2は、信号線18a〜18eを介して対応する
レーザ発振器7,7a〜7eのピエゾアクチュエータ1
1,11a〜11eに加えられ、常に出力が小さい側の
左右フォトダイオード13′,13″の方向にレーザ光
19a〜19eのビームを追従揺動旋回するようにサー
ボ機構を構成する。
The difference signal S2 from the subtractor 15 of the photodetectors 6 and 6a to 6e is supplied to the piezo actuator 1 of the corresponding laser oscillator 7 and 7a to 7e via the signal lines 18a to 18e.
1, 11a to 11e, the servo mechanism is configured to follow and swing the beams of the laser beams 19a to 19e in the direction of the left and right photodiodes 13 ', 13 "on the side where the output is always small.

【0043】本装置例の仕様は、このような具体的実施
態様を呈するから、次にその動作について説明する。フ
ォトダイオード13′,13″の出力は照射されるレー
ザ光19a〜19eの強さ、即ち受光量に比例するか
ら、レーザ発振器7,7a〜7eのレーザ光19a〜1
9eのビームが両フォトダイオード13′,13″の中
間照射中心点16からズレると、出力の差に比例して両
フォトダイオード13′,13″の照射受光量の少ない
側、すなわち照射中心点16方向にピエゾアクチュエー
タ11,11a〜11eによってレーザ光19a〜19
eのビームが追従移動する。
The specifications of the present apparatus example represent such a concrete embodiment, and the operation thereof will be described below. Since the outputs of the photodiodes 13 ', 13 "are proportional to the intensity of the laser light 19a to 19e to be applied, that is, the amount of received light, the laser light 19a to 1e of the laser oscillators 7, 7a to 7e.
When the beam 9e deviates from the intermediate irradiation center point 16 of the two photodiodes 13 'and 13 ", the side of the two photodiodes 13' and 13" having a small irradiation / reception amount, that is, the irradiation center point 16 is proportional to the output difference. The laser beams 19a to 19a by the piezo actuators 11 and 11a to 11e in the direction.
The beam of e moves following.

【0044】この結果、レーザ発振器7,7a〜7eに
よるレーザ光19a〜19eのビームは、常に両フォト
ダイオード13′,13″の照射中心点16位置に照射
されるようにレーザ発振器7,7a〜7eが追従揺動旋
回される。
As a result, the laser beams 19a to 19e produced by the laser oscillators 7 and 7a to 7e are constantly emitted to the irradiation center point 16 of the photodiodes 13 'and 13 ". 7e follows and swings.

【0045】また受光器6,6a〜6eの加算器14に
よる和信号S1は、所属する及び隣接前後する測定機車
α2〜α4のモータ10a〜10cに信号線20a〜2
0eを介して加えられる。各モータ10a〜10cは受
光器6,6a〜6eのからの当該和信号S1が設定値レ
ベル以下に低下すると停止するようになっている。
The sum signal S1 from the adder 14 of the light receivers 6 and 6a to 6e is connected to the motors 10a to 10c of the measuring machines α2 to α4 belonging to and adjacent to the signal lines 20a to 20c.
0e. Each of the motors 10a to 10c is arranged to stop when the sum signal S1 from the light receivers 6, 6a to 6e falls below a set value level.

【0046】レーザ発振器7,7a〜7eのピエゾアク
チュエータ11,11a〜11eによる揺動旋回角、及
びリール8a〜8cに内蔵されたエンコーダにより検出
される各測定機車α,α1〜α4間の車間開拡距離は、
管路βの入り口側に置かれた演算回路γに入力され、各
測定機車α,α1〜α4の位置が計算される。
The swinging angles of the laser oscillators 7, 7a to 7e by the piezo actuators 11 and 11a to 11e, and the inter-vehicle distances between the measuring machines α, α1 to α4 detected by the encoders built in the reels 8a to 8c. The extended distance is
It is input to the arithmetic circuit γ placed on the inlet side of the pipeline β, and the positions of the respective measuring machines α, α1 to α4 are calculated.

【0047】(方法例)本装置例に適用する本方法例を
図1及び図4乃至図5を参照しながら説明する。図4
(a)(b)(c)(d)は本方法例において管路内を
走行する管路形状測定列車の各測定機車の経時位置関係
状態の遷移過程をそれぞれ簡易に示す平面図、図5は本
方法例の測定原理を便宜的に示す説明図である。
(Example of Method) An example of this method applied to this example of the apparatus will be described with reference to FIGS. 1 and 4 to 5. Figure 4
5 (a), (b), (c), and (d) are plan views schematically showing the transition process of the temporal positional relationship state of each measuring machine of the pipeline shape measuring train running in the pipeline in this method example, and FIG. FIG. 4 is an explanatory diagram showing the measurement principle of this method example for convenience.

【0048】まず、図4(a)に示すように、管路形状
測定列車Dの出発初期状態においては、各測定機車α1
〜α4は管路βの入り口に一列密に並んでいる。次に、
図4(b)に示すように、測定機車α2〜α4の台車4
に付属するモータ10a〜10cを起動し、同一速度で
管路β先端方向に最後尾の測定機車α1を残し管路形状
測定列車Dを走行移動させる。
First, as shown in FIG. 4 (a), in the initial state of departure of the pipeline shape measuring train D, each measuring machine α1
~ Α4 are densely lined up at the entrance of the pipeline β. next,
As shown in FIG. 4B, the trolley 4 of the measuring machine vehicles α2 to α4
The motors 10a to 10c attached to are activated to move the pipeline shape measuring train D at the same speed in the distal direction of the pipeline β, leaving the last measuring machine α1.

【0049】まず、測定機車α1及びα2についてみる
と、管路βが屈曲しているため、受光器6a,6bとレ
ーザ発振器7a,7bの相対位置は時々刻々と変化する
が、受光器6a,6bとピエゾアクチュエータ11a,
11bから構成されるサーボ機構により、常にレーザビ
ームが対向する受光器6a,6bのレーザ光照射中心点
16に当たるようにレーザ発振器7a,7bが揺動旋回
制御される。
First, regarding the measuring machines α1 and α2, the relative positions of the light receivers 6a, 6b and the laser oscillators 7a, 7b change every moment because the conduit β is bent, but the light receivers 6a, 6b 6b and the piezo actuator 11a,
By the servo mechanism composed of 11b, the laser oscillators 7a and 7b are controlled to swing and swing so that the laser beam always hits the laser light irradiation center point 16 of the opposed photodetectors 6a and 6b.

【0050】レーザ発振器7aの揺動旋回角θ1と、リ
ール8aに内蔵された図示しないエンコーダ出力から知
ることのできる測定機車α1とα2間の中心車間開拡距
離L1から、演算回路γにおける演算によって、測定機
車α2の位置が逐次計算される。以下にその式を示す。
From the swinging turning angle θ1 of the laser oscillator 7a and the center-to-vehicle open / closed distance L1 between the measuring machines α1 and α2 which can be known from the output of an encoder (not shown) built in the reel 8a, the calculation circuit γ calculates. , The position of the measuring machine α2 is sequentially calculated. The formula is shown below.

【0051】図5に示すように、便宜的に、測定機車α
1の車体方向をx軸、それと直角方向をy軸、測定機車
α1の中心位置を原点O(0,0)とすると、測定機車
α2の中心位置(x1,y1)は下記の式で与えられ
る。 x1=L1cosθ1 …(1) y1=L1sinθ1 …(2)
As shown in FIG. 5, for convenience, the measuring machine α
Assuming that the vehicle body direction of 1 is the x-axis, the direction perpendicular thereto is the y-axis, and the center position of the measuring machine α1 is the origin O (0,0), the center position (x1, y1) of the measuring machine α2 is given by the following formula. . x1 = L1 cos θ1 (1) y1 = L1 sin θ1 (2)

【0052】測定機車α2〜α4がある程度移動する
と、管路βの屈曲のため、測定機車α1及び測定機車α
2のレーザ発振器7a,7bからのレーザ光19a,1
9bは管路β壁に遮られ、互いの受光器6a,6bに届
かなくなる。
When the measuring machine cars α2 to α4 move to some extent, the measuring machine car α1 and the measuring machine car α are due to the bending of the conduit β.
Laser light 19a, 1 from the laser oscillators 7a, 7b
9b is blocked by the wall of the conduit β and cannot reach the photodetectors 6a and 6b.

【0053】このとき、受光器6a,6bからそれぞれ
出力される和信号S1が設定値レベル以下に低下する
と、測定機車α2のモータ10aが停止して測定機車α
2は移動を停止する。
At this time, when the sum signal S1 output from each of the light receivers 6a and 6b falls below a set value level, the motor 10a of the measuring machine α2 is stopped and the measuring machine α2.
2 stops moving.

【0054】測定機車α2が停止しても測定機車α3及
びα4は走行移動を続け、各測定機車α1〜α4の位置
関係は図4(c)のようになる。すると、管路βの屈曲
により、測定機車α2及びα3に搭載された受光器6
c,6dとレーザ発振器7c,7dの相対位置が変化
し、上記測定機車α1及びα2の場合と同様に、レーザ
発振器7c,7dが揺動旋回する。
Even when the measuring machine car α2 is stopped, the measuring machine cars α3 and α4 continue to move, and the positional relationship among the measuring machine cars α1 to α4 is as shown in FIG. 4 (c). Then, due to the bending of the conduit β, the light receivers 6 mounted on the measuring machines α2 and α3
The relative positions of c, 6d and the laser oscillators 7c, 7d change, and the laser oscillators 7c, 7d swing and swing as in the case of the measuring machines α1 and α2.

【0055】そして、便宜的に示す図5に示すように、
レーザ発振器7b,7cの揺動旋回角度θ2,θ3と、
リール8b内蔵のエンコーダ出力から検出される測定機
車α2とα3の中心車間開拡距離L2から、測定機車α
3の位置(x2,y2)が下記の式により計算される。
なお、θ2及びθ3は測定機車α2の台車4の軸4a方
向からの角度である。 x2=x1+L2cos(θ1+θ2+θ3) …(3) y2=y1+L2sin(θ1+θ2+θ3) …(4)
Then, as shown in FIG. 5 for convenience,
Swinging and turning angles θ2 and θ3 of the laser oscillators 7b and 7c,
From the center vehicle-to-vehicle inter-expansion distance L2 of the measuring machine cars α2 and α3 detected from the encoder output built in the reel 8b,
The position (x2, y2) of 3 is calculated by the following formula.
Note that θ2 and θ3 are angles from the axis 4a direction of the carriage 4 of the measuring machine vehicle α2. x2 = x1 + L2cos (θ1 + θ2 + θ3) (3) y2 = y1 + L2sin (θ1 + θ2 + θ3) (4)

【0056】測定機車α3及びα4がある程度移動する
と、測定機車α2と同様に、管路βの屈曲のため、レー
ザ発振器7c,7dからのレーザ光19c,19dが受
光器6c,6dに届かなくなる。すると、前記測定機車
α2同様測定機車α3が移動を停止する。
When the measuring machines α3 and α4 move to some extent, the laser beams 19c and 19d from the laser oscillators 7c and 7d cannot reach the photodetectors 6c and 6d due to the bending of the conduit β, like the measuring machine α2. Then, the measuring machine α3 stops moving like the measuring machine α2.

【0057】測定機車α3が停止した後も、測定機車α
4は移動を続け、各測定機車α1〜α4の位置関係は図
4(d)のようになる。そして、前記と同様にして、レ
ーザ発振器7d,7eの揺動旋回角度θ4,θ5と、測
定機車α3とα4間の中心車間開拡距離L3から、下記
の式により、測定機車α4の位置(x3,y3)が計算
される。 x3=x2+L3cos(θ1+θ2+θ3+θ4+θ5) …(5) y3=y2+L3sin(θ1+θ2+θ3+θ4+θ5) …(6)
Even after the measuring machine car α3 has stopped, the measuring machine car α3
4 continues to move, and the positional relationship among the measuring machines α1 to α4 is as shown in FIG. 4 (d). Then, in the same manner as described above, the position (x3) of the measuring machine α4 is calculated from the swinging and turning angles θ4 and θ5 of the laser oscillators 7d and 7e and the center-to-vehicle spread distance L3 between the measuring machines α3 and α4 by the following formula. , Y3) is calculated. x3 = x2 + L3cos (θ1 + θ2 + θ3 + θ4 + θ5) (5) y3 = y2 + L3sin (θ1 + θ2 + θ3 + θ4 + θ5) (6)

【0058】なお、θ4及びθ5は前記測定機車α3の
位置測定の場合と同様に、測定機車α3の台車4の軸4
a方向からの角度である。以上のように、順次測定機車
α2〜α4の位置を計測することにより、管路βの形状
を測定することが可能となる。
Incidentally, θ4 and θ5 are the same as in the case of measuring the position of the measuring machine α3, and the axis 4 of the carriage 4 of the measuring machine α3.
It is an angle from the a direction. As described above, the shape of the conduit β can be measured by sequentially measuring the positions of the measuring machines α2 to α4.

【0059】また、本方法例においては、管路形状測定
列車Dに連なる測定機車αの数は4両であるが、これは
2両以上であればいくつでもよい。両数が多ければ多い
ほど、大きな屈曲を計測でき、しかも計測区間を長くす
ることが可能である。
Further, in the present method example, the number of measuring machine cars α connected to the pipe shape measuring train D is four, but any number may be used as long as it is two or more. The larger the number is, the larger the bend can be measured, and the longer the measurement section can be.

【0060】さらに、台車4はモータ10a〜10bに
より走行するが、これは各台車4にロープ,つな,ワイ
ヤ等の牽引索条を取付け、管路β外においたウインチに
より、牽引索条を巻き上げることにより牽引駆動の他走
式走行をさせてもよい。
Further, the trolleys 4 are driven by the motors 10a to 10b, and each trolley 4 is provided with a tow line such as a rope, a tether, or a wire, and the tow line is pulled by a winch outside the conduit β. It is also possible to carry out the traveling type of traction drive by winding up.

【0061】また、走行距離の計測はリール8a〜8c
の巻角をエンコーダにより検出して行ったが、これは測
定機車αの台車4に取り付けられた車輪5の回転角をエ
ンコーダにより検出して行っても良い。
The traveling distance is measured by the reels 8a to 8c.
However, this may be performed by detecting the rotation angle of the wheels 5 attached to the carriage 4 of the measuring machine vehicle α with an encoder.

【0062】[0062]

【発明の効果】以上のように、本発明によれば、揺動旋
回機構を備えたレーザ発振器を台車により移動させて管
路形状を測定するため、周囲の磁性体によって誤差が生
じることがなく、また、地上にセンサをおく必要もな
い。このため、測定精度が向上し、測定対象を広げるこ
とが可能となるとともに遠隔測定および計測ができる
等、優れた有用性を発揮する。
As described above, according to the present invention, since the laser oscillator having the swinging and swinging mechanism is moved by the carriage to measure the pipe line shape, no error is caused by the surrounding magnetic body. Also, there is no need to put a sensor on the ground. Therefore, the measurement accuracy is improved, the measurement target can be widened, and remote measurement and measurement can be performed, which is excellent in usefulness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置例における管路形状測定装置のシ
ステム構成全体と管路形状測定列車の様子を示す管路内
の平面図である。
FIG. 1 is a plan view of the inside of a pipeline showing an overall system configuration of a pipeline shape measuring apparatus and an appearance of a pipeline shape measuring train in an apparatus example of the present invention.

【図2】本発明の装置例における測定機車の代表的な構
成の一例を示す平面図である。
FIG. 2 is a plan view showing an example of a typical configuration of a measuring vehicle in the apparatus example of the present invention.

【図3】同上、受光器の内部構造を示す構成概念図で,
(a)は平面図,(b)は正面図である。
FIG. 3 is a conceptual diagram showing the internal structure of the photodetector,
(A) is a plan view and (b) is a front view.

【図4】本発明の方法例において、管路内を走行する管
路形状測定列車の各測定機車の経時位置関係の状態の遷
移過程をそれぞれ示す平面図である。
FIG. 4 is a plan view showing a transition process of a temporal positional relationship state of each measuring machine of a pipeline measuring train traveling in a pipeline in the method example of the present invention.

【図5】同上、測定原理を便宜的に示す説明図である。FIG. 5 is an explanatory diagram showing the measurement principle for convenience.

【図6】従来の磁界による管路状態の計測方法を示す土
壌縦断面図である。
FIG. 6 is a vertical cross-sectional view of soil showing a conventional method of measuring the state of a conduit by a magnetic field.

【符号の説明】[Explanation of symbols]

α,α1〜α4…測定機車 β…管路 A…竪孔 B…横穴 C…管路形状測定装置 D…管路形状測定列車 G…地表 S1…和信号 S2…差信号 1…掘削機械 1a…ドリル 2…磁界発生器 3…磁界センサ 4…台車 5…車輪 5a…車軸 6,6a〜6e…受光器 7,7a〜7e…レーザ発振器 8a〜8c…リール 9a〜9c…連結ワイヤ 10a〜10c…モータ 11,11a〜11e…ピエゾアクチュエータ 12…揺動軸 12a…エンコーダ 13′,13″…フォトダイオード 14…加算器 15…減算器 16…レーザ光照射中心点 17…受光検出面 17a,17b…片半面 18a〜18e,20a〜20e…信号線 19a〜19e…レーザ光 α, α1 to α4 ... Measuring machine β ... Pipeline A ... Vertical hole B ... Horizontal hole C ... Pipeline shape measuring device D ... Pipeline shape measuring train G ... Ground surface S1 ... Sum signal S2 ... Difference signal 1 ... Excavation machine 1a ... Drill 2 ... Magnetic field generator 3 ... Magnetic field sensor 4 ... Bogie 5 ... Wheel 5a ... Axle 6,6a-6e ... Photoreceiver 7,7a-7e ... Laser oscillator 8a-8c ... Reel 9a-9c ... Connecting wire 10a-10c ... Motors 11, 11a to 11e ... Piezo actuator 12 ... Oscillation shaft 12a ... Encoder 13 ', 13 "... Photodiode 14 ... Adder 15 ... Subtractor 16 ... Laser light irradiation center point 17 ... Photodetection detection surface 17a, 17b ... Piece Half surface 18a to 18e, 20a to 20e ... Signal line 19a to 19e ... Laser light

フロントページの続き (72)発明者 黒沢 友博 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 川端 一嘉 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Front Page Continuation (72) Inventor Tomohiro Kurosawa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Kazuyoshi Kawabata 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】地下埋設管等の管路の屈曲状態等を測定す
るに当り、 当該管路中を複数両の測定機車からなる管路形状測定列
車を走行させ、 当該各測定機車から隣接前後の測定機車上の受光検出面
中心に向け常時追従揺動旋回自在に発光し、 相対的に変化する当該発光の揺動旋回角度と前記隣接測
定機車の車間開拡距離とを検出・演算して、前記管路の
屈曲状態等を検知することを特徴とする管路形状測定方
法。
1. When measuring the bending state of a pipeline such as an underground buried pipe, a pipeline shape measuring train consisting of a plurality of measuring machines is run in the pipeline, and the measuring vehicles are adjacent to each other. The light is emitted so that it can be swung and swiveled at all times toward the center of the light-receiving detection surface on the measuring machine vehicle, and the swinging and swiveling angle of the light emission that is relatively changing and the inter-vehicle distance between the adjacent measuring vehicles are detected and calculated. A method for measuring the shape of a pipe, comprising detecting a bent state of the pipe.
【請求項2】走行は、自走式又は他走式であることを特
徴とする請求項1記載の管路形状測定方法。
2. The pipeline shape measuring method according to claim 1, wherein the traveling is of a self-propelled type or of another type.
【請求項3】自走式はモータ駆動であり、他走式は牽引
駆動であることを特徴とする請求項1記載の管路形状測
定方法。
3. The pipe line shape measuring method according to claim 1, wherein the self-propelled type is a motor drive and the self-propelled type is a traction drive.
【請求項4】発光は、レーザ発光であることを特徴とす
る請求項1,2又は3記載の管路形状測定方法。
4. The pipe line shape measuring method according to claim 1, wherein the light emission is laser light emission.
【請求項5】受光検出面は、中心を境に片半面づつ独立
して受光検出可能とすることを特徴とする請求項1,
2,3又は4記載の管路形状測定方法。
5. The light receiving / detecting surface is capable of independently detecting the light receiving on each of the half surfaces with the center as a boundary.
The method for measuring the shape of a pipe according to 2, 3, or 4.
【請求項6】受光検出面は、両片半面の受光量のバラン
ス変化により発光照射の中心ズレを検出することを特徴
とする請求項1,2,3,4又は5記載の管路形状測定
方法。
6. The pipe shape measurement according to claim 1, wherein the light receiving detection surface detects the center deviation of the light emission irradiation by changing the balance of the light receiving amount of both half surfaces. Method.
【請求項7】受光検出面は、受光量に応じたそれぞれの
片半面からの出力信号を減算して、当該差信号に比例し
て常に中心に発光が照射自在に追従揺動旋回角度をフィ
ードバック制御することを特徴とする請求項1,2,
3,4,5又は6記載の管路形状測定方法。
7. A light receiving detection surface subtracts an output signal from each half surface according to the amount of received light, and in accordance with the difference signal, light emission is always radiated to the center and the follow swing turning angle is fed back. Controlling, controlling,
The method for measuring the shape of a pipe line according to 3, 4, 5 or 6.
【請求項8】受光検出面は、受光量に応じたそれぞれの
片半面からの出力信号を加算して、当該和信号が予め設
定してある基準信号レベルに達しない時は、前記受光検
出面に係る測定機車の走行を停止することを特徴とする
請求項1,2,3,4,5,6又は7記載の管路形状測
定方法。
8. A light-receiving detection surface is formed by adding output signals from respective one-half surfaces according to the amount of received light, and when the sum signal does not reach a preset reference signal level. 8. The method for measuring the shape of a pipeline according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the traveling of the measuring machine vehicle according to claim 1 is stopped.
【請求項9】車輪を有する台車と,当該台車を駆動制御
する走行制御手段と,当該各台車上に設けたレーザ光の
受光手段と,当該受光器から出力される信号により常に
前記受光器中心にレーザ光を照射するよう制御して角度
信号を出力する揺動旋回制御手段を有しかつ隣接台車上
に設けたレーザ光発振手段と,車間開拡距離を測定して
距離信号を計測出力する手段と,を備える測定機車を複
数連結した管路形状測定列車と、 当該複数の測定機車から出力される前記角度信号と前記
距離信号により前記複数の測定機車のそれぞれの位置を
計算する演算手段と、 からなることを特徴とする管路形状測定装置。
9. A trolley having wheels, a traveling control means for driving and controlling the trolley, a laser beam receiving means provided on each trolley, and a signal output from the optical receiver, which is always the center of the optical receiver. Laser light oscillation means provided on the adjacent trolley and having swinging and swinging control means for controlling to irradiate laser light to the vehicle and outputting an angle signal, and measuring the distance between vehicles to output the distance signal. A pipe shape measuring train in which a plurality of measuring machine cars are connected, and a calculating means for calculating respective positions of the plurality of measuring machine cars based on the angle signal and the distance signal output from the plurality of measuring machine cars. A pipe line shape measuring device comprising:
【請求項10】距離信号の計測出力手段は、連結ワイヤ
を導出する台車上に取り付けられたリールの回転を検知
するエンコーダ、又は、台車に取り付けられた車輪の回
転を検知するエンコーダ、であることを特徴とする請求
項9記載の管路形状測定装置。
10. The distance signal measuring and outputting means is an encoder for detecting the rotation of a reel mounted on a carriage for leading out a connecting wire, or an encoder for detecting the rotation of wheels mounted on the carriage. The pipe line shape measuring device according to claim 9.
【請求項11】走行制御手段は、車輪に結合するモータ
か、各台車毎に連結した牽引索条群であることを特徴と
する請求項9又は10記載の管路形状測定装置。
11. The pipe line shape measuring device according to claim 9, wherein the traveling control means is a motor coupled to a wheel or a group of tow ropes connected to each carriage.
【請求項12】受光手段と揺動旋回制御手段は、サーボ
機構を構成することを特徴とする請求項9,10又は1
1記載の管路形状測定装置。
12. The light receiving means and the swing and turn control means constitute a servo mechanism.
1. The pipe shape measuring device according to 1.
【請求項13】受光手段とレーザ光発振手段と揺動旋回
制御手段と演算手段は、受光器とレーザ発振器とピエゾ
アクチュエータと演算回路であることを特徴とする請求
項9,10,11又は12記載の管路形状測定装置。
13. The light receiving means, the laser light oscillating means, the swing and turn control means, and the computing means are a light receiving device, a laser oscillator, a piezo actuator, and a computing circuit. The pipe shape measuring device described.
【請求項14】受光器は、レーザ光照射中心点を中に挟
んだ両側にそれぞれのフォトダイオードを配することを
特徴とする請求項13記載の管路形状測定装置。
14. The pipe shape measuring device according to claim 13, wherein the photodetector is provided with photodiodes on both sides sandwiching a laser light irradiation center point therebetween.
【請求項15】受光器は、2個のフォトダイオードから
の出力信号を減算して揺動旋回制御手段へ出力する減算
器を備えてなることを特徴とする請求項13又は14記
載の管路形状測定装置。
15. The pipeline according to claim 13 or 14, wherein the light receiver comprises a subtractor for subtracting the output signals from the two photodiodes and outputting the subtracted signals to the swing and turn control means. Shape measuring device.
【請求項16】受光器は、2個のフォトダイオードから
の出力信号を加算して走行制御手段へ出力する加算器を
備えてなることを特徴とする請求項13,14又は15
記載の管路形状測定装置。
16. The light receiver comprises an adder for adding output signals from two photodiodes and outputting the result to the traveling control means.
The pipe shape measuring device described.
【請求項17】受光器とレーザ発振器は、台車上の対角
位置に配設することを特徴とする請求項13,14,1
5又は16記載の管路形状測定装置。
17. The light receiver and the laser oscillator are arranged at diagonal positions on the carriage.
5. The pipe shape measuring device according to 5 or 16.
JP2562394A 1994-02-23 1994-02-23 Method and apparatus for measuring conduit shape Pending JPH07234124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2562394A JPH07234124A (en) 1994-02-23 1994-02-23 Method and apparatus for measuring conduit shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2562394A JPH07234124A (en) 1994-02-23 1994-02-23 Method and apparatus for measuring conduit shape

Publications (1)

Publication Number Publication Date
JPH07234124A true JPH07234124A (en) 1995-09-05

Family

ID=12171011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2562394A Pending JPH07234124A (en) 1994-02-23 1994-02-23 Method and apparatus for measuring conduit shape

Country Status (1)

Country Link
JP (1) JPH07234124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036921A (en) * 2010-08-04 2012-02-23 Haruta Kensetsu:Kk Device and method for repairing buried pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036921A (en) * 2010-08-04 2012-02-23 Haruta Kensetsu:Kk Device and method for repairing buried pipe

Similar Documents

Publication Publication Date Title
US7793442B2 (en) Avoidance system for locating electric cables
JPH07234124A (en) Method and apparatus for measuring conduit shape
WO1995021367A1 (en) Apparatus for inspecting deformation of pipe
JP3723661B2 (en) Underground excavator position measurement device
JP4573815B2 (en) Drilling direction control device for shield machine in propulsion shield method
JP3124780B2 (en) Shield surveying method
JP3407174B2 (en) Non-drilling measuring device
JP2515424B2 (en) Shield survey method
JP2615015B2 (en) Self-propelled work vehicle position measurement method
JP3314899B2 (en) Pipe shape measuring machine
JP3231386B2 (en) Shield surveying method
JP2687102B2 (en) Automatic position measurement method for pipes, etc. by measuring cart
JP4164429B2 (en) Propulsion excavator and excavator position calculation method
JP2814829B2 (en) Position measurement device for tunnel machine
JP3943050B2 (en) Surveying robot cart
JPH0531727B2 (en)
WO1997008429A1 (en) Method and apparatus for measuring position and attitude of tunnel boring machine
JPH036521B2 (en)
JPS63218813A (en) Apparatus for measuring degree of inclination of buried pipe
JP3384766B2 (en) Automatic tunnel surveying method
JPH03200003A (en) Instrument for measuring length of cable duct
CN111975740A (en) Inspection robot and track gauge detection method
JPH09126774A (en) Method and device for measuring position and posture of tunnel machine
JPS63305208A (en) Method for searching route shape of embedded pipeline
JP3140947B2 (en) Propulsion position detection method