JPH0723283A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH0723283A
JPH0723283A JP5187352A JP18735293A JPH0723283A JP H0723283 A JPH0723283 A JP H0723283A JP 5187352 A JP5187352 A JP 5187352A JP 18735293 A JP18735293 A JP 18735293A JP H0723283 A JPH0723283 A JP H0723283A
Authority
JP
Japan
Prior art keywords
image pickup
light
dynamic range
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5187352A
Other languages
Japanese (ja)
Inventor
Shuji Usui
修司 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP5187352A priority Critical patent/JPH0723283A/en
Publication of JPH0723283A publication Critical patent/JPH0723283A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To expand a dynamic range by amplifying the video signal output part corresponded every block so that the amplification factor of an amplifier means may be equal to the reciprocal of the extinction factor and enabling the output of a video signal which is faithful to an image pickup object. CONSTITUTION:When the signal output part of a picture element, for instance, is extincted by a light control element 2 by the extinction factor of 1/alpha (alpha is a positive number 2 1) for the output every picture element in accordance with the adjusting amount (extinction amount) of a light quantity adjusting means 13, this device has a signal amplifier means 7 composed so that this signal output part may be amplified alpha times. As a result, the output which is linear to the light quantity of an object is obtained as the output of the means 4 at the dynamic range which is wider than the dynamic range specific to an image pickup element 3. Thus, a video signal which is high in resolution and is faithful also for both contrast objects is possible to be reproduced and video reproducibility can be remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像装置のダイナミッ
クレンジを大幅に拡大し、極めて忠実な映像信号を得ら
れるように構成した撮像装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup device which is configured to greatly expand the dynamic range of the image pickup device and to obtain an extremely faithful video signal.

【0002】[0002]

【従来の技術】光を電圧等に変換する撮像素子は基本的
に撮像素子固有のダイナミックレンジが規定されてい
る。このためダイナミックレンジを逸脱して光量過多と
なる場合は、撮像素子の光電変換部が飽和することによ
りスミアやブルーミング現象を起こし、画像を著しく劣
化させる。従来、この種の撮像素子を用いて光学像を電
気信号に変換する場合、光量の増大に対しては、絞り機
能や減光フィルタ等の光量調節手段を用いて撮像素子全
面について入射する光の光量を一定のレベルで低減する
ようにしていた。
2. Description of the Related Art Basically, an image pickup device for converting light into a voltage has a dynamic range specific to the image pickup device. For this reason, when the light amount deviates from the dynamic range and the light amount becomes excessive, the photoelectric conversion unit of the image sensor is saturated, causing smear or blooming phenomenon and significantly deteriorating the image. Conventionally, when an optical image is converted into an electrical signal by using this type of image sensor, in order to increase the light amount, a light amount adjusting means such as a diaphragm function or a neutral density filter is used to detect the light incident on the entire surface of the image sensor. The light quantity was reduced at a constant level.

【0003】また、出力レベルの規定されている装置
(TVカメラ等)では、その規定値の100%を超える
信号に対しては図2に一例を示すようなリミッタ特性で
電気的に圧縮をかけてから出力していた。なお、図2は
横軸に入力の相対光量をとった場合のリミッタ特性であ
り、一例として上記規定値の5倍の相対光量で光電変換
部が飽和すると仮定している。図2の縦軸は出力レベル
を表しているが、一般に、通常使用範囲(図中の相対光
量が0から1の範囲)は出力もリニアに対応し、相対光
量が1を超えた場合は圧縮型のリミッタが掛かるように
なっている。
Further, in a device (TV camera or the like) whose output level is regulated, signals exceeding 100% of the regulated value are electrically compressed by a limiter characteristic as shown in FIG. I was outputting. Note that FIG. 2 shows limiter characteristics when the input relative light amount is taken on the horizontal axis, and as an example, it is assumed that the photoelectric conversion unit is saturated with a relative light amount that is five times the specified value. The vertical axis of FIG. 2 represents the output level, but in general, the normal use range (the range where the relative light intensity in the figure is 0 to 1) corresponds linearly to the output, and when the relative light intensity exceeds 1, compression is performed. It is designed so that a mold limiter can be applied.

【0004】なお、光量調節手段としては、特開昭63
−35081号公報に撮像素子の分割領域ごとに光透過
特性を制御可能な液晶を用いた撮像光量制御装置の記載
が有るが、その制御方法についてはレベル比較器の比較
結果によりワンショット回路のパルス出力時間を制御す
ることによって撮像光量を一定になるように制御してお
り、所定のレベル以上の入射光量領域はコントラストの
ない映像となる。
Incidentally, as a light quantity adjusting means, Japanese Patent Laid-Open No.
-35081 describes an imaging light quantity control device using a liquid crystal capable of controlling the light transmission characteristics for each divided area of the imaging device. Regarding the control method, the pulse of the one-shot circuit is determined according to the comparison result of the level comparator. By controlling the output time, the image pickup light amount is controlled to be constant, and an image with no contrast appears in the incident light amount region above a predetermined level.

【0005】また、特開平5−122614号公報では
同様な撮像光量制御装置と、非破壊読出しあるいは高速
読出し可能な撮像素子を用いて露光期間中に少なくとも
1回読出しを行い、その結果によって透過光量を制御し
ており、1回目の読出し以前に光電変換部が光量過多に
より飽和している場合は制御できない。
Further, in Japanese Laid-Open Patent Publication No. 5-122614, a similar image pickup light amount control device and an image sensor capable of nondestructive read or high-speed read are used to read at least once during the exposure period, and the amount of transmitted light is determined according to the result. Is controlled, and cannot be controlled when the photoelectric conversion unit is saturated due to excessive light amount before the first reading.

【0006】[0006]

【発明が解決しようとする課題】このように従来の方法
では、撮像素子固有のダイナミックレンジで取り扱える
入射光量レベルであればなんとか電気的にリミッタをか
けて出力を得ることが可能であるが、撮像素子固有のダ
イナミックレンジを逸脱するような極端に強い光が入射
した場合は、その光に対応したレベルの電気信号に変換
することは不可能であった。
As described above, according to the conventional method, it is possible to somehow electrically obtain the output by applying an electrical limiter if the incident light amount level can be handled within the dynamic range peculiar to the image pickup device. When extremely strong light that deviates from the dynamic range peculiar to the element is incident, it is impossible to convert the light into an electric signal of a level corresponding to the light.

【0007】また、上述した特開昭63−35081号
公報に開示されたような制御方法では、所定のレベル以
上の入射光量領域はコントラストのない映像となるの
で、撮像内容によっては実映像とかけ離れたものとな
る。
Further, in the control method disclosed in the above-mentioned Japanese Patent Laid-Open No. 63-35081, since the incident light amount region having a predetermined level or higher becomes an image without contrast, it may be far from the actual image depending on the imaged contents. It becomes a thing.

【0008】さらに、上述した特開平5−122614
号公報に開示されたような制御方法では、1回目の読出
し以前に光電変換部が光量過多により飽和している場合
に、ダイナミックレンジを逸脱して光量過多となるので
光電変換部が飽和することによりスミアやブルーミング
現象を起こし、画像を著しく劣化させる。
Further, the above-mentioned Japanese Patent Laid-Open No. 5-122614
In the control method disclosed in Japanese Patent Laid-Open Publication No. JP-A-2004-242, when the photoelectric conversion unit is saturated due to excessive light amount before the first reading, the photoelectric conversion unit is saturated because the light amount exceeds the dynamic range. This causes smear and blooming phenomena, and significantly deteriorates the image.

【0009】本発明はこれらの欠点を除去し、明るい被
写体から暗い被写体まで光電変換部が飽和することなく
撮像対象に忠実な映像信号を出力可能な、ダイナミック
レンジをいちじるしく広げることのできる撮像カメラを
提供することを目的とする。
The present invention eliminates these drawbacks and provides an image pickup camera capable of outputting a video signal faithful to an image pickup target from a bright subject to a dark subject without saturation of a photoelectric conversion unit and capable of significantly widening a dynamic range. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するため、撮像素子の前面に1個または複数個の光電
変換部を一まとまりにしたブロックに対応した調光素子
からなる光量調整手段を組み合わせ、上記各ブロックに
相当する画素ごとの映像信号出力に応じて選択的に上記
光量調整手段の調整量を、該各撮像素子の出力がその固
有のダイナミックレンジの範囲に入るようにフィードバ
ック制御する構成とし、さらには光量調整手段の調整量
(減光量)に応じて上記各画素ごとの出力に対し、例え
ばある画素の信号出力分が調光素子により1/α(αは
1以上の正数)の減光率で減光されているとした場合、
該信号出力分をα倍に増幅するように構成された信号増
幅手段を有すことにより、該信号増幅手段の出力として
撮像素子固有のダイナミックレンジよりもいちじるしく
広いダイナミックレンジで被写体の光量に対しリニアな
出力が得られるようにしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a light quantity adjustment comprising a dimming element corresponding to a block in which one or a plurality of photoelectric conversion parts are grouped in front of an imaging element. Means are combined and the adjustment amount of the light amount adjusting means is selectively fed back according to the video signal output of each pixel corresponding to each block so that the output of each image pickup device falls within its own dynamic range. The output of each pixel is controlled according to the adjustment amount (light reduction amount) of the light amount adjusting means, for example, a signal output of a certain pixel is 1 / α (α is 1 or more by a light control element. If the extinction rate is a positive number),
By having the signal amplifying means configured to amplify the signal output by α times, the output of the signal amplifying means is linear with respect to the light amount of the subject in a dynamic range that is significantly wider than the dynamic range specific to the image sensor. It is designed so that various outputs can be obtained.

【0011】[0011]

【作用】その結果、特に明暗の差のいちじるしい被写体
群を撮像中の撮像装置において、撮像素子固有のダイナ
ミックレンジを超えて明るい被写体部分を撮像中の光電
変換部に対しては、その入射光量をその光の強度に応じ
て減光し、各々の光電変換部単位でそのダイナミックレ
ンジを逸脱しないように入射光量を制御し、暗い被写体
部分を撮像中の光電変換部に対しては減光しないで、開
放に近い状態でその撮像素子固有の感度を損ねることが
ないよう光量制御する。このため、明暗どちらの被写体
に対しても解像度が高く、忠実な映像信号が再現可能
で、映像再現性をいちじるしく改善する撮像装置を実現
することができる。
As a result, in an image pickup apparatus which is picking up an image of a subject group having a remarkable difference in brightness and darkness, the incident light amount is changed with respect to a photoelectric conversion unit which is picking up a bright subject part which exceeds a dynamic range peculiar to the image pickup element. The light intensity is reduced according to the intensity of the light, and the amount of incident light is controlled so that each photoelectric conversion unit does not deviate from its dynamic range. The light amount is controlled so as not to impair the sensitivity peculiar to the image pickup device in a state close to the open state. For this reason, it is possible to realize an image pickup apparatus which has a high resolution for both bright and dark subjects, can reproduce a faithful video signal, and can significantly improve the video reproducibility.

【0012】[0012]

【実施例】以下に本発明の一実施例を図1により説明す
る。レンズ1で集光された被写体の像は、調光素子2を
経由して撮像素子3で撮像される。なお、調光素子2
は、例えば液晶のようなもので透過光量を変えられるも
のであればどのような構成でも構わない。また、調光素
子2と撮像素子3は密着構造が望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The image of the subject collected by the lens 1 is captured by the image sensor 3 via the light control element 2. In addition, the light control element 2
May have any structure as long as the amount of transmitted light can be changed, such as a liquid crystal. Further, it is desirable that the light control element 2 and the image pickup element 3 have a close contact structure.

【0013】撮像素子3の出力101は信号処理部4で
映像信号102に整形されるとともにAD変換器5でデ
ィジタル信号103に変換され、α倍乗算回路7および
演算処理部10に加えられる。なお、α倍乗算回路7の
出力は必要に応じてDA変換器8でアナログ信号に戻さ
れ、出力端子9から映像信号として出力される。
The output 101 of the image pickup device 3 is shaped into a video signal 102 by the signal processing unit 4, converted into a digital signal 103 by the AD converter 5, and applied to the α multiplication circuit 7 and the arithmetic processing unit 10. The output of the α-times multiplication circuit 7 is converted back to an analog signal by the DA converter 8 as necessary, and output from the output terminal 9 as a video signal.

【0014】ここで、演算処理部10においては、ディ
ジタル信号103が撮像素子3の固有のダイナミックレ
ンジを超えない範囲で規定された光量(Aとおく)より
大きい光量に相当する信号レベルであった場合は、オー
バーフローとして検出し、係数記憶器11の後段部11
bの係数信号105を基に、その係数値αを所定の割合
だけ増してその結果を係数記憶器11の前段部11aに
出力する。また、ディジタル信号103が上記規定され
た光量Aに対して小さく、上記係数信号105を基にそ
の係数値αを”1”より小さくならない範囲で所定の割
合だけ減らして、1/α倍乗算してもその結果が光量A
より小さい光量レベルに相当する信号レベルであった場
合は、アンダーフローとして検出し、その係数値αを上
記所定の割合だけ減らしてその結果を係数記憶器11の
前段部11a出力する。
Here, in the arithmetic processing unit 10, the digital signal 103 has a signal level corresponding to a light amount larger than a light amount (A) defined in a range not exceeding the dynamic range peculiar to the image pickup device 3. In this case, it is detected as an overflow, and the latter part 11 of the coefficient storage unit 11 is detected.
Based on the coefficient signal 105 of b, the coefficient value α is increased by a predetermined ratio and the result is output to the pre-stage unit 11a of the coefficient storage unit 11. Further, the digital signal 103 is smaller than the specified light amount A, and based on the coefficient signal 105, the coefficient value α is reduced by a predetermined ratio within a range not smaller than “1” and multiplied by 1 / α times. But the result is light intensity A
If the signal level corresponds to a smaller light amount level, it is detected as an underflow, the coefficient value α is reduced by the above-mentioned predetermined ratio, and the result is output to the front stage section 11a of the coefficient storage unit 11.

【0015】演算処理部10は、以上の処理を各画素に
相当する信号ごとに繰返し行なう。この繰返し周期は例
えば1フレームごとであることが望ましい。
The arithmetic processing unit 10 repeats the above processing for each signal corresponding to each pixel. It is desirable that this repetition period is, for example, every frame.

【0016】係数記憶器11は、演算処理部10の演算
結果の出力を前段部11aに保持する。前段部11aの
内容は、上記繰返し周期例えば1フレームごとに後段部
11bに受け渡す。この動作は、係数記憶器11の保持
領域を2分して、それらを交互に前段部と後段部の機能
の切り換えを行なうことにより実現してもよい。
The coefficient storage unit 11 holds the output of the calculation result of the calculation processing unit 10 in the pre-stage unit 11a. The contents of the front-stage part 11a are transferred to the rear-stage part 11b in the above-described repetition cycle, for example, for each frame. This operation may be realized by dividing the holding area of the coefficient storage unit 11 into two and alternately switching the functions of the front stage section and the rear stage section.

【0017】調光素子制御回路13は、各画素に対応す
る係数信号105に基づいて、対応する調光素子2の減
光量を制御するべく光量制御信号106を出力する。ま
た、α倍乗算回路7においては、各画素ごとに係数信号
105の係数値αによりα倍に乗算してその結果を出力
する。
The dimming element control circuit 13 outputs a light amount control signal 106 for controlling the dimming amount of the corresponding dimming element 2 based on the coefficient signal 105 corresponding to each pixel. In the α-times multiplication circuit 7, each pixel is multiplied by α times by the coefficient value α of the coefficient signal 105, and the result is output.

【0018】以上の構成による動作を1ラインについて
図3および図4を用いて説明する。図3および図4は横
軸が時間軸、縦軸の正側に光量、負側に光量制御信号を
表している。なお、図中のレベルAは、上記で説明した
ごとく、撮像素子3の固有のダイナミックレンジを超え
ない範囲で規定された光量を表している。
The operation of the above configuration will be described for one line with reference to FIGS. 3 and 4. 3 and 4, the horizontal axis represents the time axis, the positive axis of the vertical axis represents the light quantity, and the negative side represents the light quantity control signal. As described above, the level A in the figure represents the amount of light defined within the range that does not exceed the dynamic range peculiar to the image sensor 3.

【0019】図3において、aの実線が最初に撮像素子
3に加わる入射光量、eの実線が最終的に調光素子2に
加わる制御電圧の一例である。なお、b及びdは制御途
中の状態を示しており、最終的に撮像素子3に加わる入
射光量をcで示している。
In FIG. 3, the solid line a is an example of the amount of incident light applied to the image pickup device 3 first, and the solid line e is an example of the control voltage finally applied to the light control device 2. It should be noted that b and d show the state in the middle of control, and the amount of incident light finally added to the image sensor 3 is shown by c.

【0020】具体的な動作として、1回目の掃引では、
係数記憶器11に記憶されている各画素に対応する係数
値全てが“1”に初期化されているとして、aに示す光
量が撮像素子3に入射する。この例では入射光量がx時
刻までは撮像素子のダイナミックレンジ内(Aレベル以
下)のため、演算処理部10はオーバーフロー検出動作
しない。しかし、x時刻を過ぎると演算処理部10がオ
ーバーフローを検出するので係数記憶器11のx〜x’
期間に相当する記憶領域には、所定の割合だけ増した係
数値、例えば“2”が記憶される。
As a concrete operation, in the first sweep,
Assuming that all the coefficient values corresponding to each pixel stored in the coefficient storage unit 11 are initialized to “1”, the light amount indicated by a enters the image sensor 3. In this example, since the amount of incident light is within the dynamic range of the image sensor (below the A level) until time x, the arithmetic processing unit 10 does not perform the overflow detection operation. However, after the time x, the arithmetic processing unit 10 detects an overflow, so that x to x'of the coefficient storage unit 11 is detected.
A coefficient value increased by a predetermined ratio, for example, "2" is stored in the storage area corresponding to the period.

【0021】この結果、2回目の掃引ではdに示すよう
な制御信号が調光素子2に加えられる。しかし、2回目
の掃引では撮像素子3に未だにbのような光量が加わる
ため、y〜y’期間は再び演算処理部10がオーバーフ
ロー検出動作し、係数記憶器11のy〜y’期間に相当
する記憶領域には、さらに所定の割合だけ増した係数
値、例えば“3”が記憶される。
As a result, in the second sweep, the control signal as shown in d is applied to the dimming element 2. However, since the light quantity such as b is still applied to the image sensor 3 in the second sweep, the arithmetic processing unit 10 again performs the overflow detection operation during the period y to y ′, which corresponds to the period y to y ′ of the coefficient storage unit 11. The storage area stores a coefficient value increased by a predetermined ratio, for example, "3".

【0022】この結果、3回目の掃引ではeのような制
御信号が調光素子2に加えられ、cに示すごとく全ての
入射光量がダイナミックレンジ内(Aレベル以下)に収
まることになる。この状態でAD変換器5の出力は、α
倍乗算回路7でx〜y期間は2倍、y〜y’期間は3
倍、y’〜x’期間は2倍に増幅されるのでα倍乗算回
路7の出力としては入射光量aに極めて相似した出力が
得られる。
As a result, in the third sweep, a control signal such as e is applied to the dimming element 2, so that all the incident light amounts fall within the dynamic range (A level or less) as shown in c. In this state, the output of the AD converter 5 is α
In the multiplication circuit 7, the x-y period is doubled and the y-y 'period is 3 times.
Since it is amplified twice during the period y ′ to x ′, the output of the α multiplication circuit 7 is very similar to the incident light amount a.

【0023】次に、図4によって、前述の図3のオーバ
ーフロー検出動作後の状態から被写体の明るさが急激に
減少した場合のアンダーフロー検出動作について説明す
る。これは図3における、最終的な状態から説明を始め
るものである。なお、cの点線がこの時撮像素子3に加
わる入射光量である。この直後に被写体の明るさが急激
に変化したとして、例えば、次の掃引時には入射光量が
1/3になったとする。gがこの時の入射光量を示して
いる。
Next, the underflow detection operation when the brightness of the subject sharply decreases from the state after the overflow detection operation of FIG. 3 described above will be described with reference to FIG. This starts the explanation from the final state in FIG. The dotted line of c is the amount of incident light applied to the image sensor 3 at this time. Immediately after this, it is assumed that the brightness of the subject suddenly changes, and for example, the amount of incident light becomes 1/3 at the next sweep. g indicates the amount of incident light at this time.

【0024】このため、入射光量はAに相当する信号レ
ベル以下となるが、入射光量がx時刻までおよびx’時
刻以降は、係数記憶器11の係数信号105の値が”
1”なのでこの場合演算処理部10はアンダーフローと
して検出しない。しかしx〜x’期間は、係数値が”
3”または”2”であるので(”1”でない)、この場
合演算処理部10は、その値を減じて、例えば係数値α
が3であれば2に、2であれば1に減じて入射光量を2
倍または等倍に乗算しても上記Aのレベルを超えないと
判断するのでアンダーフローとして検出動作し、係数記
憶器11のy〜y’期間に相当する記憶領域には、所定
の割合だけ減らした係数値、例えば“2”が、x〜y期
間およびy’〜x’期間に相当する記憶領域には、所定
の割合だけ減らした係数値、例えば“1”が記憶され
る。
Therefore, the amount of incident light becomes equal to or lower than the signal level corresponding to A, but the value of the coefficient signal 105 of the coefficient storage unit 11 is "up to the time x and after the time x '.
In this case, the arithmetic processing unit 10 does not detect an underflow because it is 1 ". However, during the period from x to x ', the coefficient value is"
Since it is 3 "or" 2 "(not" 1 "), in this case, the arithmetic processing unit 10 subtracts the value and, for example, the coefficient value α
If it is 3, reduce it to 2 and if it is 2, reduce it to 1
Since it is determined that the level does not exceed the level of A even when multiplied by a multiple or a unity, detection operation is performed as an underflow, and the storage area corresponding to the period y to y'of the coefficient storage unit 11 is reduced by a predetermined ratio. The coefficient value, eg, “2”, corresponding to the x to y period and the y ′ to x ′ period, stores the coefficient value reduced by a predetermined ratio, eg, “1”.

【0025】該アンダーフロー検出動作は、係数値αが
最も小さい値例えば”1”にできるかぎり近くなるまで
動作するので、次の掃引では入射光量がy時刻までおよ
びy’時間以降は係数記憶器11の係数信号105の値
が”1”なのでアンダーフロー検出しないがy〜y’期
間は、”2”であるので、演算処理部10は、その値を
減らして、例えば係数値αを”2”から”1”に減らし
て入射光量を等倍に乗算しても上記Aのレベルを超えな
いと判断するのでアンダーフローとして検出動作し、係
数記憶器11のy〜y’期間に相当する記憶領域には、
所定の割合だけ減らした係数値、例えば“1”が記憶さ
れる。
Since the underflow detection operation is performed until the coefficient value α becomes as small as possible to the smallest value, for example, "1", in the next sweep, the incident light amount is until the y time and after the y'time, the coefficient storage unit. Since the value of the coefficient signal 105 of 11 is "1", the underflow is not detected, but the period y to y'is "2". Therefore, the arithmetic processing unit 10 reduces the value, for example, the coefficient value α to "2". It is determined that the level does not exceed the level of A even if the amount of incident light is multiplied by 1 times by reducing from "1" to "1". Therefore, the detection operation is performed as an underflow, and the storage corresponding to the period y to y'of the coefficient storage 11 is performed. In the area,
A coefficient value reduced by a predetermined ratio, for example, "1" is stored.

【0026】この結果、上述のアンダーフロー検出動作
によりhに示すようなフラットな制御信号が調光素子2
に加えられて、fに示すごとく全ての入射光量がダイナ
ミックレンジ内(Aレベル以下)に収まり、かつgと比
較して撮像素子のダイナミックレンジをより広く使用す
ることになり、映像再現性が向上する。
As a result, a flat control signal as indicated by h is generated by the above-mentioned underflow detection operation.
In addition, the total amount of incident light falls within the dynamic range (A level or less) as shown in f, and the dynamic range of the image sensor is used more widely than in g, which improves the image reproducibility. To do.

【0027】上記の例では光電変換部と調光素子のセル
が画素単位で対応しているものとして説明したが、複数
画素に対応する複数個の光電変換部を、1つの調光素子
のセルで光量制御するとしてもよい。
In the above example, the photoelectric conversion section and the cell of the light control element correspond to each other on a pixel-by-pixel basis, but a plurality of photoelectric conversion sections corresponding to a plurality of pixels are connected to one cell of the light control element. The light amount may be controlled by.

【0028】さらに、上記の例ではモノクロームの撮像
装置として動作を説明してきたが、単板カラーカメラや
複数の撮像素子を用いたカラーカメラ等についても同一
の考え方が応用できることは明らかである。ただし、カ
ラーバランスを考慮し、画素を構成する複数個の撮像素
子に対して同一の減光性能を得られるべく制御信号を与
えることが望ましい。
Further, in the above example, the operation has been described as a monochrome image pickup device, but it is clear that the same idea can be applied to a single-plate color camera, a color camera using a plurality of image pickup elements, and the like. However, in consideration of color balance, it is desirable to give a control signal to a plurality of image pickup devices forming pixels so as to obtain the same dimming performance.

【0029】また、被写体の一部分がダイナミックレン
ジを逸脱する事が予想されるときはパソコンや他の撮像
装置等とのインタフェース回路を設け、外部から係数記
憶器11に数値を設定可能とし、該被写体の一部のみを
鮮明に再現したり、全階調範囲の一部を忠実に表現した
りあるいは特殊効果を与えるなど多彩に表現可能な撮像
に用いることもできる。
When a part of the subject is expected to deviate from the dynamic range, an interface circuit with a personal computer or another image pickup device is provided so that a numerical value can be set in the coefficient storage 11 from the outside. It is also possible to use it for various kinds of imaging such as reproducing only a part of the image clearly, faithfully expressing a part of the entire gradation range, or giving a special effect.

【0030】さらに、画像変化予測手段を新たに設け、
その予測結果により係数値の変化量を制御してもよい。
Further, an image change predicting means is newly provided,
The amount of change in the coefficient value may be controlled according to the prediction result.

【0031】なお、上記実施例ではアナログ信号を一部
でデジタル信号に変換して説明しているがデジタル回路
を用いず、アナログ回路で構成してもかまわない。
In the above embodiment, the analog signal is partially converted into the digital signal for description, but the digital circuit may not be used and the analog circuit may be used.

【0032】構成によってはフレームメモリを使用する
こともできる。
A frame memory can also be used depending on the configuration.

【0033】[0033]

【発明の効果】以上説明したごとく、本発明によれば、
光電変換部1つ1つに対して絞り機能を持ったと同等の
働きで、従来より格段にすぐれたダイナミックレンジに
対応できる撮像装置を提供できる。
As described above, according to the present invention,
With the same function as having a diaphragm function for each photoelectric conversion unit, it is possible to provide an image pickup apparatus that can respond to a dynamic range that is far superior to conventional ones.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成を示すブロック図。FIG. 1 is a block diagram showing the overall configuration of the present invention.

【図2】従来のアナログリミッタの一特性を示す図。FIG. 2 is a diagram showing one characteristic of a conventional analog limiter.

【図3】本発明の入射光に対する出力状態の例を示す
図。
FIG. 3 is a diagram showing an example of an output state for incident light according to the present invention.

【図4】本発明の入射光に対する出力状態の他の例を示
す図。
FIG. 4 is a diagram showing another example of an output state for incident light according to the present invention.

【符号の説明】[Explanation of symbols]

1 レンズ 2 調光素子 3 撮像素子 5 AD変換器 7 α倍乗算回路 8 DA変換器 10 演算処理部 11 係数記憶器 13 調光素子制御回路 14 リセット信号入力端子 DESCRIPTION OF SYMBOLS 1 lens 2 light control element 3 image sensor 5 AD converter 7 α multiplication circuit 8 DA converter 10 arithmetic processing unit 11 coefficient memory 13 light control element control circuit 14 reset signal input terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 撮像装置において、撮像素子の1個ま
たは複数個の光電変換部を一まとまりにしたブロックご
とに、各ブロックに入射する光の光量を各々調節する光
量調節手段を上記ブロックの入射光側の前面に配置し、
該撮像素子の出力信号である映像信号に対して、上記ブ
ロックごとに対応する映像信号出力分を各々の増幅率で
増幅する手段を有し、上記光量調整手段により減光した
入射光量の減光率に対して、上記増幅手段の増幅率が該
減光率の逆数と等しくなるよう、上記ブロックごとに対
応する映像信号出力分が増幅せしめられることを特徴と
する撮像装置。
1. In an image pickup apparatus, a light amount adjusting means for adjusting the light amount of light entering each block is provided for each block in which one or a plurality of photoelectric conversion units of an image pickup device are grouped. Place it in front of the light side,
A means for amplifying a video signal output corresponding to each block by an amplification factor for a video signal which is an output signal of the image pickup device, and dimming the incident light quantity dimmed by the light quantity adjusting means. The image pickup device is characterized in that the video signal output corresponding to each of the blocks is amplified so that the amplification rate of the amplification means becomes equal to the reciprocal of the extinction rate.
【請求項2】 請求項1に記載の撮像装置において、
上記撮像素子の入射光量が、該撮像素子固有のダイナミ
ックレンジを考慮して該ダイナミックレンジ内に落ち着
くよう、上記各ブロックごとに、減光率を調整せしめら
れる光量調整手段を有することを特徴とする撮像装置。
2. The image pickup apparatus according to claim 1,
It is characterized in that a light amount adjusting means for adjusting the extinction ratio is provided for each of the blocks so that the incident light amount of the image pickup device is settled within the dynamic range in consideration of the dynamic range peculiar to the image pickup device. Imaging device.
JP5187352A 1993-06-30 1993-06-30 Image pickup device Pending JPH0723283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5187352A JPH0723283A (en) 1993-06-30 1993-06-30 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5187352A JPH0723283A (en) 1993-06-30 1993-06-30 Image pickup device

Publications (1)

Publication Number Publication Date
JPH0723283A true JPH0723283A (en) 1995-01-24

Family

ID=16204494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5187352A Pending JPH0723283A (en) 1993-06-30 1993-06-30 Image pickup device

Country Status (1)

Country Link
JP (1) JPH0723283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130805A (en) * 2007-11-27 2009-06-11 Nippon Hoso Kyokai <Nhk> Imaging apparatus
US7701494B2 (en) 2005-11-29 2010-04-20 Hitachi Kokusai Electric Inc. Image pickup device and noise reduction method thereof
WO2015146471A1 (en) * 2014-03-24 2015-10-01 富士フイルム株式会社 Photo shooting apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701494B2 (en) 2005-11-29 2010-04-20 Hitachi Kokusai Electric Inc. Image pickup device and noise reduction method thereof
JP2009130805A (en) * 2007-11-27 2009-06-11 Nippon Hoso Kyokai <Nhk> Imaging apparatus
WO2015146471A1 (en) * 2014-03-24 2015-10-01 富士フイルム株式会社 Photo shooting apparatus
JP6047686B2 (en) * 2014-03-24 2016-12-21 富士フイルム株式会社 Imaging device

Similar Documents

Publication Publication Date Title
US5589880A (en) Television camera using two image pickup devices with different sensitivity
JP3074967B2 (en) High dynamic range imaging / synthesis method and high dynamic range imaging apparatus
EP0991270A1 (en) Video signal processing apparatus improving signal level by AGC and frame addition method
US8749665B2 (en) Dynamic range extension for CMOS image sensors for mobile applications
JP2004363666A (en) Wide dynamic range image sensor
US4829381A (en) System and method for electronic image enhancement by dynamic pixel transformation
JP3551857B2 (en) High dynamic range image processing apparatus and method
KR20120088602A (en) Dynamic range extension for cmos image sensors for mobile applications
JPS61177074A (en) Tv camera
US7129978B1 (en) Method and architecture for an improved CMOS color image sensor
JP3617857B2 (en) Color imaging device
JP4350936B2 (en) Signal readout method for solid-state image sensor
US20070139530A1 (en) Auto-Adatpvie Frame Rate for Improved Light Sensitivity in a Video System
JPH0723283A (en) Image pickup device
JP3480739B2 (en) Solid-state imaging device
US20040196394A1 (en) Gamma correction device in image capturing apparatus
US4849813A (en) Video camera with high-speed scanning
JP4028395B2 (en) Digital camera
JP2568515B2 (en) Imaging device
JPH0530424A (en) Picture input device
JPH05316413A (en) Image pickup device
JP4477265B2 (en) Color television camera
JPH06245151A (en) Video camera equipment
JPH05183805A (en) Image pickup device
JP2860996B2 (en) Imaging device