JPH07231938A - Inhaler - Google Patents
InhalerInfo
- Publication number
- JPH07231938A JPH07231938A JP2655994A JP2655994A JPH07231938A JP H07231938 A JPH07231938 A JP H07231938A JP 2655994 A JP2655994 A JP 2655994A JP 2655994 A JP2655994 A JP 2655994A JP H07231938 A JPH07231938 A JP H07231938A
- Authority
- JP
- Japan
- Prior art keywords
- liquid supply
- liquid
- temperature
- inhaler
- aerosol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Special Spraying Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液体を加温する機能を
備えた吸入器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inhaler having a function of heating a liquid.
【0002】[0002]
【従来の技術】吸入器は、その使用目的に対し適切な粒
子径のエアロゾル(霧)を発生させるために、様々な霧
化技術を利用している。その中で、最近、鼻腔の治療や
風邪の予防、鼻炎の症状緩和等の目的で、40℃前後に
暖められたエアロゾルを発生させ得る安価なものへの要
望が高まり、製品化されている。BACKGROUND OF THE INVENTION Inhalers utilize a variety of atomization techniques to generate an aerosol (fog) of a particle size appropriate for the intended use. Among them, recently, for the purpose of treatment of the nasal cavity, prevention of colds, alleviation of symptoms of rhinitis, etc., there has been an increasing demand for an inexpensive one that can generate an aerosol heated to around 40 ° C., and it has been commercialized.
【0003】例えば、図6に示す吸入器では、タンクに
入れた水80をヒータ81によって沸騰させ、得られた
水蒸気をノズル82から噴出させると共に、この時の負
圧によって吸入水83を吸い上げ、蒸気と共に噴霧し、
噴霧筒84に取付けたノーズピース85から吸入する。
噴霧に際しては、噴霧筒84の途中から外気86を導入
することにより、噴霧温度をコントロールしている。For example, in the inhaler shown in FIG. 6, the water 80 contained in the tank is boiled by the heater 81, the obtained water vapor is ejected from the nozzle 82, and the suction water 83 is sucked up by the negative pressure at this time. Spray with steam,
It inhales from the nosepiece 85 attached to the spray cylinder 84.
At the time of spraying, the spray temperature is controlled by introducing the outside air 86 from the middle of the spray cylinder 84.
【0004】図7に示す吸入器では、水90と薬剤91
をダイヤフラム92で分離・収容し、振動子93の超音
波により薬剤91を間接的に霧化し、この霧化粒子をフ
ァン(図示せず)によって外部に送り出し、その途中で
ヒータ94により加温する。In the inhaler shown in FIG. 7, water 90 and medicine 91 are used.
Are separated and accommodated by a diaphragm 92, the medicine 91 is indirectly atomized by ultrasonic waves of a vibrator 93, and the atomized particles are sent to the outside by a fan (not shown), and heated by a heater 94 in the middle thereof. .
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記吸
入器では、いずれも次のような問題点〜がある。 :エアロゾル発生までに時間を要する。特に、図6の
吸入器では、蒸気発生までに30秒〜5分ほども掛か
る。 :エアロゾルの温度が安定するまでに時間を要する上
に、雰囲気の影響も受け易く、エアロゾル温度が不安定
である。 :霧化量が必要以上に多く、液量が無駄になる。特
に、図6の吸入器では、時間経過と共に蒸気温度が上昇
し、蒸気発生量が必要以上に多くなる。 :加熱のための消費電力が大きくなる。 :機器が大きくなり、取扱いが不便である。However, all of the above inhalers have the following problems. : It takes time to generate aerosol. In particular, in the inhaler of FIG. 6, it takes about 30 seconds to 5 minutes until vapor is generated. : It takes time for the temperature of the aerosol to stabilize, and is easily affected by the atmosphere, and the aerosol temperature is unstable. : The amount of atomization is unnecessarily large and the amount of liquid is wasted. In particular, in the inhaler of FIG. 6, the steam temperature rises with the passage of time, and the steam generation amount becomes unnecessarily large. : Power consumption for heating increases. : The equipment is large and inconvenient to handle.
【0006】従って、本発明は、上記種々の問題点に着
目してなされたもので、所定温度のエアロゾル発生まで
の時間短縮、エアロゾル温度の安定化、霧化量の適正
化、低消費電力化、小型化等を実現する吸入器を提供す
ることを目的とする。Therefore, the present invention has been made in view of the above-mentioned various problems, and shortens the time until the generation of an aerosol at a predetermined temperature, stabilizes the aerosol temperature, optimizes the atomization amount, and reduces power consumption. Another object of the present invention is to provide an inhaler that can be downsized.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
に、本発明の吸入器は、液体を収容するボトルと、液体
を霧化する霧化手段と、ボトル内の液体を霧化手段まで
給送する給液路とを備えたものにおいて、前記給液路
に、液体を加熱する加熱手段を設けたことを特徴とす
る。In order to achieve the above object, the inhaler of the present invention includes a bottle for containing a liquid, an atomizing means for atomizing the liquid, and an atomizing means for the liquid in the bottle. A liquid supply path for supplying the liquid is characterized in that the liquid supply path is provided with a heating means for heating the liquid.
【0008】[0008]
【作用】本発明の吸入器は、前記従来の吸入器とは異な
り、ボトルと霧化手段を結ぶ給液路に加熱手段が設けら
れているため、給液路を通じてボトル内の液体が霧化手
段に供給される途中で加熱手段によって加熱され、霧化
手段に到達した時点では所定温度になっている。つま
り、給液路途上での加熱では液体を瞬時に所定温度まで
加温でき、動作開始から比較的短時間で必要なエアロゾ
ル温度に達する。しかも、給液路途上での加熱では、加
熱温度の設定変更に対する応答性に優れ、雰囲気等の外
乱に対してフィードバックが容易であり、安定したエア
ロゾル温度を維持できる。更には、構造的に局部加熱で
あるため、低消費電力化が可能であり、構造も小型化で
き、安価で取扱いが容易になる。In contrast to the conventional inhaler, the inhaler of the present invention is provided with the heating means in the liquid supply path connecting the bottle and the atomizing means, so that the liquid in the bottle is atomized through the liquid supply path. It is heated by the heating means while being supplied to the means and reaches a predetermined temperature when it reaches the atomizing means. That is, by heating along the liquid supply path, the liquid can be instantly heated to a predetermined temperature, and the required aerosol temperature is reached in a relatively short time from the start of the operation. In addition, heating on the way of the liquid supply path has excellent responsiveness to changes in heating temperature setting, easy feedback to disturbances such as the atmosphere, and maintaining a stable aerosol temperature. Furthermore, since the structure is locally heated, the power consumption can be reduced, the structure can be downsized, the cost is low, and the handling is easy.
【0009】給液路に対する加熱手段の配置の具体例と
しては、給液路を、一端がボトルに嵌着され、他端が霧
化手段に接する給液ノズルとし、この給液ノズルに加熱
手段を設けてもよい。この場合、給液ノズルが加熱手段
によって加熱され、この給液ノズルの熱によって液体が
間接的に加熱されるため、給液ノズル自体を熱伝導性の
良い材質とすることが好ましい。その材質としては、例
えばアルミニウムが示される。As a specific example of the arrangement of the heating means with respect to the liquid supply passage, the liquid supply passage is a liquid supply nozzle whose one end is fitted in the bottle and the other end is in contact with the atomizing means, and the heating means is connected to this liquid supply nozzle. May be provided. In this case, since the liquid supply nozzle is heated by the heating means and the liquid is indirectly heated by the heat of the liquid supply nozzle, it is preferable that the liquid supply nozzle itself is made of a material having good thermal conductivity. As its material, for example, aluminum is shown.
【0010】更に、別の態様例として、給液路に小容量
の加熱室を設け、この加熱室に加熱手段を配置してもよ
い。この場合、ボトル内の液体は給液路の加熱室を通過
する際に、加熱手段によって加熱され、霧化手段まで給
送される。加熱手段としては、給液路を通過する液体を
加熱することができる限り特定されず、例えばヒータで
直接的又は間接的に加熱してもよいし、コイルの誘電加
熱により非接触にて加熱しても構わない。Further, as another embodiment, a small capacity heating chamber may be provided in the liquid supply passage, and the heating means may be arranged in this heating chamber. In this case, when the liquid in the bottle passes through the heating chamber of the liquid supply path, the liquid is heated by the heating means and fed to the atomizing means. The heating means is not specified as long as it can heat the liquid passing through the liquid supply passage, and for example, it may be heated directly or indirectly by a heater, or may be heated in a non-contact manner by dielectric heating of a coil. It doesn't matter.
【0011】又、霧化手段としては、以下の実施例にも
記載するように、ホーンと振動子で構成される超音波ホ
ーンを採用するのが好ましい。超音波ホーンの場合、電
源投入と同時に霧化が開始されるだけでなく、加熱手段
による加温とは無関係に霧化を行うことができて有利で
ある。しかも、鼻腔や咽頭に適した粒子径のエアロゾル
が得られ、噴霧量も必要最少量で済む。As the atomizing means, it is preferable to adopt an ultrasonic horn composed of a horn and a vibrator, as described in the following embodiments. In the case of the ultrasonic horn, not only the atomization is started at the same time when the power is turned on, but also the atomization can be performed independently of the heating by the heating means, which is advantageous. Moreover, an aerosol having a particle size suitable for the nasal cavity and pharynx can be obtained, and the amount of spraying can be minimized.
【0012】[0012]
【実施例】以下、本発明の吸入器を実施例に基づいて説
明する。一実施例に係る吸入器の要部断面図を図1に、
図1に示す吸入器の要部斜視図を図2に示す。この吸入
器では、キャップ2が本体ケース1の頭部に着脱可能に
取付けられ、本体ケース1の頭部に、薬液等の霧化液L
を入れたボトル3が配置されている。霧化液Lを霧化す
るための霧化手段は、ホーン4と、ホーン4の下部に取
付けられた振動子5とで構成される超音波ホーンであ
り、振動子5は各種電子部品を搭載した回路基板6にリ
ード線によって接続されている。EXAMPLES The inhaler of the present invention will be described below based on examples. FIG. 1 is a cross-sectional view of the main part of an inhaler according to one embodiment,
FIG. 2 shows a perspective view of the main part of the inhaler shown in FIG. In this inhaler, the cap 2 is detachably attached to the head of the body case 1, and the atomized liquid L such as a chemical solution is attached to the head of the body case 1.
The bottle 3 containing the is placed. The atomizing means for atomizing the atomized liquid L is an ultrasonic horn including a horn 4 and a vibrator 5 attached to the lower part of the horn 4, and the vibrator 5 has various electronic parts mounted thereon. The circuit board 6 is connected by a lead wire.
【0013】この実施例では、ボトル3内の霧化液Lを
ホーン4まで導く給液路は給液ノズル7であり、この給
液ノズル7は前記熱伝導性の良好な金属からなり、その
一端(後端)がボトル3に嵌着され、他端(先端)がホ
ーン4に当接している。又、給液ノズル7は給液溝8を
有し、ボトル3内の霧化液Lは給液溝8を伝わってホー
ン4まで給送される。In this embodiment, a liquid supply path for guiding the atomized liquid L in the bottle 3 to the horn 4 is a liquid supply nozzle 7, and this liquid supply nozzle 7 is made of a metal having good heat conductivity. One end (rear end) is fitted to the bottle 3 and the other end (tip) is in contact with the horn 4. Further, the liquid supply nozzle 7 has a liquid supply groove 8, and the atomized liquid L in the bottle 3 is sent to the horn 4 along the liquid supply groove 8.
【0014】給液ノズル7の先端部側は、環状のノズル
ガイドリブ9によって動かないように支持されており、
ノズルガイドリブ9内にヒータ(加熱手段)10が設け
られ、ヒータ10は給液ノズル7に接触し、ヒータ10
の熱が給液ノズル7に容易に伝わるようになっている。
又、ヒータ10は、本体ケース1に配置された別の回路
基板11にリード線により接続され、この回路基板11
を通じてヒータ10に電力が供給される。なお、ヒータ
制御回路としては、例えば感温素子、温度検出部、ヒー
タ制御部、ヒータ10で構成されるものが示され、本体
ケース1内には、電源として複数個の電池12が収容さ
れている。The tip of the liquid supply nozzle 7 is supported by an annular nozzle guide rib 9 so as not to move.
A heater (heating means) 10 is provided in the nozzle guide rib 9, and the heater 10 contacts the liquid supply nozzle 7,
The heat of is easily transmitted to the liquid supply nozzle 7.
Further, the heater 10 is connected to another circuit board 11 arranged in the main body case 1 by a lead wire.
Electric power is supplied to the heater 10 through the. The heater control circuit includes, for example, a temperature sensitive element, a temperature detection unit, a heater control unit, and a heater 10. The main body case 1 contains a plurality of batteries 12 as a power source. There is.
【0015】このように構成した吸入器では、未使用時
に予めボトル3内の霧化液Lが給液ノズル7の給液溝8
を通じてホーン4に達しているため、電源をONにする
と同時に、振動子5の超音波振動とホーン4の作用によ
って霧化が開始される。これと併行して、電源ONと同
時に通電されたヒータ10が加熱し、この熱が給液ノズ
ル7に伝わり、給液ノズル7の給液溝8を通過する霧化
液が加温される。加温された霧化液は直ぐにホーン4に
送られ、超音波により霧化される。従って、霧化開始か
ら所定温度のエアロゾルが発生するまで短時間であり、
応答性が大変良い。構造的にも熱伝導性の良好な金属製
給液ノズル7の先端部側にヒータ10が配置されている
ため、霧化液は瞬時に所定温度まで加熱され、エネルギ
ーロスが少なく、電池12を長持ちさせることができ
る。In the inhaler thus constructed, the atomizing liquid L in the bottle 3 is previously supplied with the atomizing liquid L in the liquid supply nozzle 7 when not in use.
Since it has reached the horn 4 through, the atomization is started by the ultrasonic vibration of the vibrator 5 and the action of the horn 4 at the same time when the power is turned on. In parallel with this, the heater 10 which is energized at the same time when the power is turned on is heated, and this heat is transmitted to the liquid supply nozzle 7, and the atomizing liquid passing through the liquid supply groove 8 of the liquid supply nozzle 7 is heated. The heated atomized liquid is immediately sent to the horn 4 and atomized by ultrasonic waves. Therefore, it takes a short time from the start of atomization to the generation of aerosol at a predetermined temperature,
Very responsive. Since the heater 10 is disposed on the tip side of the metallic liquid supply nozzle 7 having a good thermal conductivity in terms of structure, the atomized liquid is instantly heated to a predetermined temperature, the energy loss is small, and the battery 12 is stored. You can make it last longer.
【0016】別実施例に係る要部断面図を図3に示す。
この実施例では、ボトル23の下部に給液路の一部を構
成する加温室29を設けてあり、この加温室29にヒー
タ30が露出・配置され、加温室29の流出口に給液路
の残部を構成する給液ノズル27が取付けられている。
従って、霧化液Lは、加温室29内に入り、加温室29
内を通過する間にヒータ30によって加熱された後、給
液ノズル27によりホーン24に給送される。この吸入
器でも、前記と同様な作用効果が得られる。FIG. 3 is a sectional view showing the main part of another embodiment.
In this embodiment, a heating chamber 29 forming a part of the liquid supply path is provided at the bottom of the bottle 23, and a heater 30 is exposed and arranged in the heating chamber 29, and the liquid supply path is provided at the outlet of the heating room 29. A liquid supply nozzle 27 that constitutes the rest of the above is attached.
Therefore, the atomized liquid L enters the heating chamber 29 and
After being heated by the heater 30 while passing through the inside, the liquid is supplied to the horn 24 by the liquid supply nozzle 27. Also with this inhaler, the same operational effects as described above can be obtained.
【0017】次に、ボトル内の霧化液温度(室温)、及
びエアロゾル温度の調整について図4を参照して説明す
る。但し、霧化液温度の検知には温度センサを用い、エ
アロゾル温度は、より直接的に検知してフィードバック
を行い易くするために、ホーン自体を温度センサとし、
温度制御を行うこととする。ヒータへの印加電力は、エ
アロゾルの設定温度ta と室温での霧化液温度t0との
差(ta −t0 )により決定される一方、エアロゾル温
度tを温度センサにより常時監視し、エアロゾル温度t
が設定温度ta に一致するようにコントロールされる
〔図4の(a)参照〕。このようなフィードバックは常
時行われる。ヒータ自身の制御としては、ヒータに流す
電流を制御したり〔図4の(b)参照〕、或いはヒータ
への通電をON/OFF制御とし、電力の加減はPul
se Dutyを制御して行ったりすればよい〔図4の
(c)参照〕。Next, the adjustment of the atomizing liquid temperature (room temperature) in the bottle and the aerosol temperature will be described with reference to FIG. However, a temperature sensor is used to detect the atomized liquid temperature, and the horn itself is used as a temperature sensor in order to detect the aerosol temperature more directly and facilitate feedback.
The temperature will be controlled. Applying power to the heater, while being determined by the difference between the atomized liquid temperature t 0 at room temperature and at a set temperature t a of the aerosol (t a -t 0), the aerosol temperature t constantly monitored by the temperature sensor, Aerosol temperature t
There is controlled to match the set temperature t a [see (a) of FIG. 4]. Such feedback is always provided. As the control of the heater itself, the current flowing through the heater is controlled [see (b) of FIG. 4], or the energization of the heater is turned on / off, and the power is adjusted by Pul.
It may be performed by controlling the se duty (see (c) of FIG. 4).
【0018】このようにヒータを制御することにより、
エアロゾル温度の特性は図5に示すようになる。即ち、
前記したように、電源ONと同時に霧化が開始され、霧
化開始時のエアロゾル温度tは室温t0 (ボトル内の霧
化液温度)であるが、給液ノズルは小型であり、その熱
容量も比較的小さいため、給液ノズルは短時間で昇温す
る。又、給液ノズルの給液溝を通過する霧化液量は微少
であるため、給液ノズルによって直ぐに加温され、全体
としてエアロゾル温度tが設定温度t1 に達する時間が
短くなる。しかも、構造的にフィードバックを行い易
く、機器全体の温度上昇も小さいため、エアロゾル温度
tが設定温度t1 に達した後は、温度変動が殆どなく安
定している。By controlling the heater in this way,
The characteristic of the aerosol temperature is as shown in FIG. That is,
As described above, atomization is started at the same time when the power is turned on, and the aerosol temperature t at the start of atomization is room temperature t 0 (the temperature of the atomizing liquid in the bottle), but the liquid supply nozzle is small and its heat capacity is high. Is relatively small, the temperature of the liquid supply nozzle rises in a short time. Further, since the amount of atomized liquid that passes through the liquid supply groove of the liquid supply nozzle is very small, it is immediately heated by the liquid supply nozzle, and as a whole, the time for the aerosol temperature t to reach the set temperature t 1 is shortened. Moreover, since feedback is structurally easy and the temperature rise of the entire device is small, there is almost no temperature fluctuation and stable after the aerosol temperature t reaches the set temperature t 1 .
【0019】これに対し、図8に示す従来の吸入器のエ
アロゾル温度特性においては、電源ONから霧化開始ま
で或る程度の時間(T0 )を要するだけでなく、霧化開
始後にエアロゾル温度tが設定温度t1 に上昇するまで
に長い時間を要する。その上、ヒータのパワーが大きい
ため、連続的に動作させていると、機器全体の温度上昇
に伴い、エアロゾル温度tも時間と共に上昇していき、
設定温度t1 よりも高くなってしまう。又、外乱に対す
るフィードバックに関しても、ヒータや機器の熱容量の
大きさのために反応が遅くなる。On the other hand, in the aerosol temperature characteristic of the conventional inhaler shown in FIG. 8, not only a certain time (T 0 ) is required from power-on to the start of atomization, but also the aerosol temperature after atomization is started. It takes a long time for t to rise to the set temperature t 1 . Moreover, since the power of the heater is large, when continuously operated, the aerosol temperature t also rises with time as the temperature of the entire device rises,
It becomes higher than the set temperature t 1 . Also, with respect to the feedback to the disturbance, the reaction becomes slow due to the large heat capacity of the heater and the device.
【0020】[0020]
【発明の効果】本発明の吸入器は、以上説明したように
構成されるので、下記の効果を有する。 (1)ボトルと霧化手段を結ぶ給液路に液体を加熱する
加熱手段を設けたので、給液路の途上で液体を瞬時に加
熱することができ、霧化開始から比較的短時間で必要な
エアロゾル温度に達する。 (2)給液路に加熱手段を設けてあるので、加熱温度の
設定変更に対する応答性が優れ、雰囲気等の外乱に対し
てフィードバックが容易であり、設定温度に達した後も
安定したエアロゾル温度を維持できる。 (3)給液路に加熱手段を配置してあるため、霧化後の
加温も、比較的狭い範囲での加温で実現でき、加温速
度、応答性が良好である。 (4)構造的に局部加熱を行うため、低消費電力であ
り、電源(電池)が長持ちする。 (5)構造を小型且つ簡素にすることができ、持ち運び
が楽になる上に、取扱いも容易となる。 (6)小型化・簡素化を実現できるので、安価である。 (7)霧化手段を超音波ホーン(振動子とホーン)とす
ることにより、電源投入と同時に霧化が開始され、霧化
応答性が良い。 (8)霧化手段に超音波ホーンを採用することにより、
鼻腔や咽頭に適した粒子径分布が得られ、その噴霧量も
必要最少量にでき、液体が無駄にならない。 (9)霧化手段を超音波ホーンとすることで、加温しな
くても霧化することができ、好みに応じて加温を行うこ
とができる。Since the inhaler of the present invention is constructed as described above, it has the following effects. (1) Since the heating means for heating the liquid is provided in the liquid supply path connecting the bottle and the atomization means, the liquid can be instantly heated on the way of the liquid supply path, and in a relatively short time from the start of atomization. Reach the required aerosol temperature. (2) Since the liquid supply path is provided with a heating means, it has excellent responsiveness to changes in the heating temperature setting, easy feedback to disturbances such as the atmosphere, and stable aerosol temperature even after reaching the set temperature. Can be maintained. (3) Since the heating means is arranged in the liquid supply passage, heating after atomization can be realized by heating in a relatively narrow range, and the heating speed and responsiveness are good. (4) Since local heating is structurally performed, the power consumption is low and the power source (battery) lasts a long time. (5) The structure can be made small and simple, which makes it easy to carry and easy to handle. (6) It is inexpensive because it can be downsized and simplified. (7) By using an ultrasonic horn (a vibrator and a horn) as the atomizing means, atomization is started at the same time when the power is turned on, and the atomization response is good. (8) By adopting an ultrasonic horn as the atomizing means,
A particle size distribution suitable for the nasal cavity and pharynx can be obtained, and the amount of spray can be minimized, so that the liquid is not wasted. (9) By using an ultrasonic horn as the atomizing means, atomization can be performed without heating, and heating can be performed according to preference.
【図1】一実施例に係る吸入器の要部断面図である。FIG. 1 is a sectional view of a main part of an inhaler according to an embodiment.
【図2】図1に示す吸入器の要部斜視図である。FIG. 2 is a perspective view of a main part of the inhaler shown in FIG.
【図3】別実施例に係る吸入器の要部断面図である。FIG. 3 is a sectional view of a main part of an inhaler according to another embodiment.
【図4】本発明の吸入器におけるエアロゾル温度、ヒー
タへの電流及びPulse Dutyと、時間との関係
を示す図である。FIG. 4 is a diagram showing a relationship between aerosol temperature, current to a heater and Pulse Duty, and time in the inhaler of the present invention.
【図5】本発明の吸入器におけるエアロゾル温度と時間
との関係を示す図である。FIG. 5 is a diagram showing the relationship between aerosol temperature and time in the inhaler of the present invention.
【図6】従来例に係る吸入器を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing an inhaler according to a conventional example.
【図7】別の従来例に係る吸入器を示す概略構成図であ
る。FIG. 7 is a schematic configuration diagram showing an inhaler according to another conventional example.
【図8】従来例に係る吸入器におけるエアロゾル温度と
時間との関係を示す図である。FIG. 8 is a diagram showing a relationship between aerosol temperature and time in an inhaler according to a conventional example.
3 ボトル 4 ホーン 5 振動子 7 給液ノズル(給液路) 10 ヒータ(加熱手段) 3 bottle 4 horn 5 vibrator 7 liquid supply nozzle (liquid supply path) 10 heater (heating means)
Claims (4)
霧化手段と、ボトル内の液体を霧化手段まで給送する給
液路とを備えた吸入器において、 前記給液路に、液体を加熱する加熱手段を設けたことを
特徴とする吸入器。1. An inhaler comprising a bottle containing a liquid, an atomizing means for atomizing the liquid, and a liquid supply path for feeding the liquid in the bottle to the atomizing means, wherein the liquid supply path is provided. An inhaler characterized by comprising heating means for heating the liquid.
他端が霧化手段に接する給液ノズルであり、この給液ノ
ズルに加熱手段を設けたことを特徴とする請求項1記載
の吸入器。2. The liquid supply passage has one end fitted to a bottle,
The inhaler according to claim 1, wherein the other end is a liquid supply nozzle in contact with the atomizing means, and the liquid supply nozzle is provided with heating means.
とする請求項2記載の吸入器。3. The inhaler according to claim 2, wherein the liquid supply nozzle is made of metal.
加熱室に加熱手段を配置したことを特徴とする請求項1
記載の吸入器。4. A heating chamber having a small capacity is provided in the liquid supply passage, and heating means is arranged in the heating chamber.
Inhaler as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2655994A JPH07231938A (en) | 1994-02-24 | 1994-02-24 | Inhaler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2655994A JPH07231938A (en) | 1994-02-24 | 1994-02-24 | Inhaler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07231938A true JPH07231938A (en) | 1995-09-05 |
Family
ID=12196898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2655994A Pending JPH07231938A (en) | 1994-02-24 | 1994-02-24 | Inhaler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07231938A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000037132A1 (en) * | 1998-12-18 | 2000-06-29 | Omron Corporation | Sprayer |
US8156933B2 (en) | 2006-06-21 | 2012-04-17 | Puthalath Koroth Raghuprasad | Cloud nebulizer |
JP2015503916A (en) * | 2011-12-30 | 2015-02-05 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Aerosol generator with airflow detection |
JP2021528116A (en) * | 2018-06-18 | 2021-10-21 | ヌトリンテック リミテッド | Molecular vaporization system for liquid substances |
-
1994
- 1994-02-24 JP JP2655994A patent/JPH07231938A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000037132A1 (en) * | 1998-12-18 | 2000-06-29 | Omron Corporation | Sprayer |
US6679436B1 (en) | 1998-12-18 | 2004-01-20 | Omron Corporation | Sprayer |
US8156933B2 (en) | 2006-06-21 | 2012-04-17 | Puthalath Koroth Raghuprasad | Cloud nebulizer |
JP2015503916A (en) * | 2011-12-30 | 2015-02-05 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Aerosol generator with airflow detection |
US10143232B2 (en) | 2011-12-30 | 2018-12-04 | Philip Morris Products S.A. | Aerosol generating device with air flow detection |
US10674770B2 (en) | 2011-12-30 | 2020-06-09 | Philip Morris Products S.A. | Aerosol generating device with air flow detection |
US11395515B2 (en) | 2011-12-30 | 2022-07-26 | Philip Morris Products S.A. | Aerosol generating device with air flow detection |
JP2021528116A (en) * | 2018-06-18 | 2021-10-21 | ヌトリンテック リミテッド | Molecular vaporization system for liquid substances |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6545226B2 (en) | Electronic suction device | |
CN212590266U (en) | Electronic atomization device | |
EP3871517B1 (en) | Power supply unit for aerosol inhaler | |
US20220095691A1 (en) | Power supply unit for aerosol generation device, and aerosol generation device | |
US11134720B2 (en) | Power supply unit for aerosol inhaler and aerosol inhaler | |
US11812789B2 (en) | Power supply unit for aerosol generation device | |
US11297878B1 (en) | Power supply unit for aerosol generation device | |
US20210259317A1 (en) | Power supply unit for aerosol inhaler and aerosol inhaler | |
KR20200005160A (en) | Fine particle generator | |
CN110996695A (en) | Electronic smoking system | |
US20230091282A1 (en) | Power supply unit for aerosol generation device | |
US20220095693A1 (en) | Power supply unit for aerosol generation device | |
US20210259321A1 (en) | Power supply unit for aerosol inhaler and aerosol inhaler | |
KR20230107747A (en) | Power unit of aerosol generating device | |
KR20230088308A (en) | Power unit of aerosol generating device | |
JP2022549747A (en) | Ultrasonic based aerosol generator and its cartridge recognition method | |
US20210259320A1 (en) | Power supply unit for aerosol inhaler and aerosol inhaler | |
US20210259322A1 (en) | Power supply unit for aerosol inhaler and aerosol inhaler | |
JPH07231938A (en) | Inhaler | |
US20230095903A1 (en) | Power supply unit for aerosol generation device | |
US20230103974A1 (en) | Aerosol generation device | |
KR20230093182A (en) | aerosol generating device | |
KR20220000010A (en) | Portable compound atomizer | |
KR20230048990A (en) | Liquid cartridge having a plurality of storage cavities and an aerosol generating device for such liquid cartridge | |
CN217658199U (en) | Atomizer and electronic atomization device |