JPH07231935A - Antithrombotic regenerative cellulose based membrane - Google Patents

Antithrombotic regenerative cellulose based membrane

Info

Publication number
JPH07231935A
JPH07231935A JP6046519A JP4651994A JPH07231935A JP H07231935 A JPH07231935 A JP H07231935A JP 6046519 A JP6046519 A JP 6046519A JP 4651994 A JP4651994 A JP 4651994A JP H07231935 A JPH07231935 A JP H07231935A
Authority
JP
Japan
Prior art keywords
membrane
acid
mol
copolymer
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6046519A
Other languages
Japanese (ja)
Other versions
JP3404514B2 (en
Inventor
Norio Nakabayashi
宣男 中林
Kazuhiko Ishihara
一彦 石原
Masahiko Yamashita
正彦 山下
Yasuhiko Yamashita
康彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP04651994A priority Critical patent/JP3404514B2/en
Publication of JPH07231935A publication Critical patent/JPH07231935A/en
Application granted granted Critical
Publication of JP3404514B2 publication Critical patent/JP3404514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve antithrombotic performance by providing an ester bonding of 2-methacryloyloxyethylphosphoryl choline and high polymer acid with a specified molecular weight as copolymer of other monomers to a high polymer membrane comprising regenerative cellulose. CONSTITUTION:This membrane is formed by accomplishing an ester bonding of 2-methacryloyloxyethylphosphoryl choline and high polymer acid with a molecular weight of 1,000-1,000,000 as copolymer of other monomers to a high polymer membrane, for example, made of copper-ammonium method based regenerative cellulose as regenerated by a copper-ammonium method from natural cellulose. In this case, the other monomer herein used is methacrylate n-butyl or the like. The high polymer acid is preferably 2- methacryloyloxyethylphosphoryl choline, alkylester methacrylate and a copolymer of a monomer having a carboxylic group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人工腎臓に用いられる
抗血栓性が改善された再生セルロース系膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerated cellulosic membrane used in an artificial kidney with improved antithrombotic properties.

【0002】[0002]

【従来の技術】現在、慢性腎不全患者の延命法として血
液透析、血液ろ過などの血液浄化法が用いられており、
我が国における血液浄化法適用患者は10万人を超え
る。血液浄化の原理は、血液と透析液とを膜を介して接
触させ、血液中の老廃物や代謝産物を透析液中に拡散除
去し、さらに余剰の水分を圧力差を利用して取り除くこ
とによるものである。
2. Description of the Related Art At present, blood purification methods such as hemodialysis and hemofiltration are used as life extension methods for patients with chronic renal failure.
More than 100,000 patients are applied with the blood purification method in Japan. The principle of blood purification is to bring blood and dialysate into contact with each other through a membrane, diffuse and remove waste products and metabolites in the blood into the dialysate, and remove excess water using the pressure difference. It is a thing.

【0003】周知のように、特に人工透析療法におい
て、再生セルロース膜、とりわけ銅アンモニウム法再生
セルロース膜は広く用いられ、透析装置や透析技術の進
歩と共に、腎不全患者の延命、社会復帰に大きな役割を
果たしている。これは、再生セルロース膜が優れた透析
性能や機械的強度を有すると共に、長年の実績に裏づけ
られた高い安全性を有しているからに他ならない。
As is well known, regenerated cellulose membranes, especially regenerated cellulose membranes using the copper ammonium method, are widely used in artificial dialysis therapy, and with the progress of dialysis equipment and dialysis technology, they play a major role in prolonging the life of renal failure patients and returning to society. Plays. This is due to the fact that the regenerated cellulose membrane has excellent dialysis performance and mechanical strength, as well as high safety supported by many years of experience.

【0004】しかしながら、透析療法の進歩にもかかわ
らず、透析に伴う種々の問題がまだ未解決で残されてい
る。その1つに、抗凝固剤の長期大量投与のために生じ
ると考えられる種々の副作用の問題がある。従来、人工
透析を行なう場合には、人工透析器内での血液凝固反応
を抑制するためにヘパリンに代表される抗血液凝固剤の
連続投与が行なわれてきた。しかしながら、人工透析器
の溶質除去性能が改良され、20年に及ぼうとする長期
延命が可能になってきた現在、ヘパリンを使用すること
による問題が次々と指摘されてきている。
However, despite the advances in dialysis therapy, various problems associated with dialysis remain unsolved. One of them is the problem of various side effects that are thought to occur due to long-term administration of anticoagulants. Conventionally, when performing artificial dialysis, an anticoagulant represented by heparin has been continuously administered to suppress the blood coagulation reaction in the artificial dialyzer. However, now that the solute removal performance of the artificial dialyzer has been improved and it has become possible to prolong the life of the artificial dialyzer for 20 years, problems due to the use of heparin have been pointed out one after another.

【0005】特に、ヘパリンの長期間投与による脂質代
謝異常などの肝臓障害、出血時間の延長或いはアレルギ
ー反応は、患者に対する副作用として認められている。
このような観点から、人工透析療法の際に抗凝固剤の使
用量を低減させるか或いは全く使用しなくても血液凝固
を引き起こさない人工透析器の開発が急務であった。
In particular, liver damage such as abnormal lipid metabolism caused by long-term administration of heparin, prolongation of bleeding time and allergic reaction are recognized as side effects on patients.
From this point of view, there has been an urgent need to develop an artificial dialyzer that does not cause blood coagulation even if the amount of anticoagulant used is reduced during artificial dialysis therapy or is not used at all.

【0006】さらに、抗血栓性の人工透析器は、装置全
体のポータブル化も可能にし、在宅医療に大きな進展が
期待できるために、一週間に2〜3日間、5時間程度病
院に拘束されている患者の社会復帰を促すことになる。
合成高分子からなる膜の中に、抗血栓性が優れていると
提案されているものもあるが、合成高分子からなる膜で
は、機械的強度が弱くピンホールが発生し易いこと、耐
熱性が十分でないため滅菌法が限定されること、及び性
能のバランス、即ち透水量と物質透過のバランスが悪
く、その使用方法が限定されるといった欠点がある。
Further, since the antithrombogenic artificial dialyzer also makes the entire apparatus portable and can be expected to make a great progress in home medical care, it is restricted to a hospital for about 5 hours for 2 to 3 days a week. This will encourage the rehabilitation of existing patients.
Some synthetic polymer membranes have been proposed to have excellent antithrombotic properties, but synthetic polymer membranes have weak mechanical strength and are prone to pinholes, and heat resistance. Is not sufficient, the sterilization method is limited, and the performance balance, that is, the balance between the water permeation amount and the substance permeation is poor, and the usage method is limited.

【0007】一方、再生セルロース膜の他の優れた性能
を損なわず、抗血栓性を改善する方法が提案されてい
る。例えば、膜表面をヘパリン化することにより抗血栓
性を付与する方法が特開昭51−194号公報で提案さ
れているが、十分な効果が得られず、又コストも割高に
なるため実用化されていない。
On the other hand, there has been proposed a method for improving the antithrombotic property without impairing the other excellent properties of the regenerated cellulose membrane. For example, a method of imparting antithrombotic property by heparinizing the membrane surface has been proposed in Japanese Patent Laid-Open No. 51-194, but it is not practically sufficient and the cost is high, so that it is put to practical use. It has not been.

【0008】これまで再生セルロース膜を改善する試み
は、主に再生セルロース膜で血液透析を行なった場合の
一過性の白血球減少や、補体活性化の抑制に注目して行
なわれており、第3級アミノ基を有する高分子を表面に
固定したり、ポリエチレンオキシド鎖のような親水性高
分子鎖を表面に共有結合したりする方法なども報告され
ているが、血液凝固の抑制については不十分であった。
Attempts to improve regenerated cellulose membranes have hitherto been focused mainly on transient leukopenia and suppression of complement activation when hemodialysis is performed using regenerated cellulose membranes. Methods such as immobilizing a polymer having a tertiary amino group on the surface or covalently bonding a hydrophilic polymer chain such as a polyethylene oxide chain to the surface have also been reported. It was insufficient.

【0009】ところで、抗血栓性材料を得るために、リ
ン脂質極性基を用いる試みもあり、例えば、特開昭54
−63025号公報には、2ーメタクリロイルオキシエ
チルホスホリルコリン(MPC)が提案されている。リ
ン脂質極性基であるホスホリルコリン基を有する高分子
が血液凝固を有効に抑制するのは、この高分子表面が生
体膜に類似しており、表面に血漿タンパク質が吸着され
ず、血小板の粘着、活性化などが誘起されないためであ
ると考えられている〔生体材料、8,231−237
(1990),J.Biomed.Mater.Re
s.,25,1397−1407(1991)〕。
By the way, there has been an attempt to use a phospholipid polar group in order to obtain an antithrombotic material.
2-63025 discloses 2-methacryloyloxyethylphosphorylcholine (MPC). A polymer with a phosphorylcholine group, which is a polar group of phospholipids, effectively suppresses blood coagulation because the surface of the polymer is similar to a biological membrane, plasma proteins are not adsorbed on the surface, and platelet adhesion and activity It is believed that this is due to the fact that oxidization is not induced [Biomaterial, 8, 231-237.
(1990), J. Am. Biomed. Mater. Re
s. , 25, 1397-1407 (1991)].

【0010】特開平3−39309号公報に開示されて
いるように、重合可能なこの単量体とメタクリル酸エス
テルやスチレンとの共重合体の抗血栓性は極めて優れて
おり、再生セルロース系膜にこの共重合体を固定する方
法も考えられる。固定方法の1つとしてコーティング法
があるが、再生セルロース系膜のように親水的な基材に
対して表面処理のために異なる高分子をコーティングす
ることは、処理高分子の脱落、溶出を招くなど問題が多
い。
As disclosed in JP-A-3-39309, a copolymer of this polymerizable monomer and a methacrylic acid ester or styrene has an extremely excellent antithrombotic property, and a regenerated cellulose-based membrane is used. A method of fixing this copolymer to the above is also conceivable. There is a coating method as one of the fixing methods. However, coating a different polymer for surface treatment on a hydrophilic substrate such as a regenerated cellulose-based membrane causes drop-out and elution of the treated polymer. There are many problems.

【0011】又、特開平5−220218号公報には、
再生セルロース系膜に、MPCをグラフトさせた水溶性
セルロースを固定させる方法が開示されている。この方
法では、処理高分子の脱落、溶出の問題はないが、中空
糸膜をモジュールに組み込んだ後に固定処理を行わなけ
ればならず、生産性に問題がある。
Further, in Japanese Patent Laid-Open No. 5-220218,
A method of fixing water-soluble cellulose grafted with MPC on a regenerated cellulose-based membrane is disclosed. In this method, there is no problem of dropping and elution of the treated polymer, but there is a problem in productivity because the fixing process must be performed after the hollow fiber membrane is incorporated into the module.

【0012】一方、基材に対して高分子鎖を反応させた
り、グラフトさせたりする方法は脱落、溶出を抑えると
いう観点からは有効で、公知の技術として、例えばMP
Cをセルロース膜にグラフト重合させる技術(BIO
INDUSTRY,8(6),412−420(199
1))がある。
On the other hand, a method of reacting or grafting a polymer chain on a substrate is effective from the viewpoint of suppressing dropping and elution, and as a known technique, for example, MP
Technology to graft polymerize C on cellulose membrane (BIO
INDUSTRY, 8 (6), 412-420 (199
There is 1)).

【0013】しかし、この方法は重合時にセルロース膜
を無酸素雰囲気下に置かなければならないことや、重合
開始剤として用いるセリウムイオンをセルロース膜から
除去しなければならないことのため、反応操作が非常に
煩雑になる。又、MPCには拡散性があり、ポアの内部
まで入りこんで膜全体に反応が起こるため、膜の透過性
能が低下したり、セリウムイオンにより膜が損傷を受
け、機械的強度が低下したり、反応が不均一に進行し
て、血小板の粘着抑制にばらつきが生じたりする問題が
残される。
However, in this method, the cellulose membrane must be placed in an oxygen-free atmosphere at the time of polymerization, and the cerium ion used as a polymerization initiator must be removed from the cellulose membrane, so that the reaction operation is extremely difficult. It becomes complicated. Also, since MPC has diffusivity and enters inside the pores to cause a reaction in the entire membrane, the permeation performance of the membrane is deteriorated, the membrane is damaged by cerium ions, and the mechanical strength is reduced. There remains a problem that the reaction progresses nonuniformly and the adhesion suppression of platelets varies.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、上記
従来の技術の欠点を克服し、抗血栓性を改善させた再生
セルロース系膜を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a regenerated cellulosic membrane which overcomes the above-mentioned drawbacks of the prior art and has improved antithrombotic properties.

【0015】[0015]

【課題を解決するための手段】本発明者らは、生体安全
性、生体親和性、経済性、化学反応性などを考慮して、
抗血栓性を有し、かつセルロース膜に大きな形態変化を
起こさせない溶媒に可溶で、セルロース膜表面の水酸基
との結合が可能な新規な高分子について種々検討を重ね
た結果、本発明を完成するに至った。
Means for Solving the Problems The present inventors have taken into consideration biosafety, biocompatibility, economic efficiency, chemical reactivity, etc.
The present invention has been completed as a result of various studies on a novel polymer having antithrombogenicity and soluble in a solvent that does not cause a large change in morphology of the cellulose membrane and capable of binding to a hydroxyl group on the surface of the cellulose membrane. Came to do.

【0016】即ち、本発明は; 再生セルロースからなる高分子膜に、2−メタクリ
ロイルオキシエチルホスホリルコリン及びその他の単量
体の共重合体である分子量1000〜100万の高分子
酸がエステル結合している再生セルロース系膜を提供す
るものである。また、 上記記載の高分子酸が、2−メタクリロイルオキ
シエチルホスホリルコリン、メタクリル酸アルキルエス
テル、及びカルボキシル基を有する単量体の共重合体で
ある点にも特徴を有する。また、 上記記載の高分子酸が、10〜50モル%の2−
メタクリロイルオキシエチルホスホリルコリン、35〜
89.9モル%のメタクリル酸アルキルエステル、及び
0.1〜15モル%のカルボキシル基を有する単量体の
共重合体である点にも特徴を有する。
That is, according to the present invention: a polymer membrane made of regenerated cellulose is ester-bonded with a polymer acid having a molecular weight of 1,000 to 1,000,000, which is a copolymer of 2-methacryloyloxyethylphosphorylcholine and other monomers. The present invention provides a regenerated cellulose-based membrane. It is also characterized in that the above-mentioned polymer acid is a copolymer of 2-methacryloyloxyethylphosphorylcholine, methacrylic acid alkyl ester, and a monomer having a carboxyl group. Further, the above-mentioned polymeric acid is 10 to 50 mol% of 2-
Methacryloyloxyethylphosphorylcholine 35-35
It is also characterized in that it is a copolymer of 89.9 mol% methacrylic acid alkyl ester and 0.1 to 15 mol% of a monomer having a carboxyl group.

【0017】以下、本発明を詳細に説明する。本発明で
使用する再生セルロースとは、天然セルロースを一旦化
学的或いは物理的に変化させた後再生したものであっ
て、例えば、銅アンモニウム法セルロース、ビスコース
レーヨン、セルロースエステルをけん化したもの等が含
まれるが、透析性能及び長年の実績に裏付けられた高い
安全性等から銅アンモニウム法再生セルロースが好んで
用いられる。
The present invention will be described in detail below. The regenerated cellulose used in the present invention is a natural cellulose once chemically or physically changed and then regenerated, for example, copper ammonium method cellulose, viscose rayon, saponified cellulose ester and the like. However, the copper ammonium method regenerated cellulose is preferably used from the viewpoint of dialysis performance and high safety supported by many years of experience.

【0018】再生セルロースの形状は、平膜または中空
糸膜等何れの形状に成型されたものも用いることができ
るが、中空糸膜が好ましい。例えば、特開昭50−40
168号公報及び特開昭59−204912号公報に開
示されているような、膜厚が数μm〜60μmであり、
外径が10μm〜数百μmの横断面を有する中空糸膜等
が用いられる。
The regenerated cellulose may have any shape such as a flat membrane or a hollow fiber membrane, but a hollow fiber membrane is preferred. For example, JP-A-50-40
168 and JP-A-59-204912, the film thickness is several μm to 60 μm,
A hollow fiber membrane or the like having a cross section with an outer diameter of 10 μm to several hundreds μm is used.

【0019】高分子酸としては、2−メタクリロイルオ
キシエチルホスホリルコリン及びその他の単量体との共
重合体が用いられる。高分子酸の溶解性の点から、その
他の単量体の中に、メタクリル酸n−ブチル、メタクリ
ル酸n−ヘキシル、メタクリル酸オクチル、メタクリル
酸2−(エチルヘキシル)、メタクリル酸シクロヘキシ
ル等のメタクリル酸アルキルエステルを含むことが好ま
しい。すなわち、メタクリル酸アルキルエステルは、ア
ルキル基の炭素数が4〜18、特に6〜12のメタクリ
ル酸アルキルエステルであることが好ましい。
As the polymeric acid, a copolymer of 2-methacryloyloxyethylphosphorylcholine and other monomers is used. From the viewpoint of solubility of polymeric acid, among other monomers, n-butyl methacrylate, n-hexyl methacrylate, octyl methacrylate, 2- (ethylhexyl methacrylate), methacrylic acid such as cyclohexyl methacrylate, etc. It is preferable to include an alkyl ester. That is, the methacrylic acid alkyl ester is preferably a methacrylic acid alkyl ester having an alkyl group with 4 to 18 carbon atoms, particularly 6 to 12 carbon atoms.

【0020】セルロース膜と反応させるためにカルボキ
シル基を有することが必要であるが、メタクリル酸、ア
クリル酸等のカルボキシル基を有する単量体を共重合し
たものでも良いし、カルボキシル基を有する開始剤を用
いて重合し、末端にカルボキシル基を有するものでも良
い。さらに、共重合したのち、官能基変換により、カル
ボキシル基を導入したものでも良い。反応性や、合成の
容易さから、カルボキシル基を有する単量体を共重合し
たものが好ましい。
It is necessary to have a carboxyl group in order to react with the cellulose membrane, but it may be a copolymer of monomers having a carboxyl group such as methacrylic acid and acrylic acid, or an initiator having a carboxyl group. A polymer having a carboxyl group at the end may be used. Furthermore, after the copolymerization, a functional group may be converted to introduce a carboxyl group. From the viewpoint of reactivity and easiness of synthesis, a copolymer of a monomer having a carboxyl group is preferable.

【0021】従って、高分子酸としては、2−メタクリ
ロイルオキシエチルホスホリルコリン、メタクリル酸ア
ルキルエステル、及びカルボキシル基を有する単量体の
共重合体が好ましい。更に、抗血栓性及び溶解性の点か
ら、10〜50モル%、好ましくは20〜40モル%の
2−メタクリロイルオキシエチルホスホリルコリン、3
5〜89.9モル%、好ましくは48〜77モル%のメ
タクリル酸アルキルエステル、及び0.1〜15モル
%、好ましくは3〜12モル%のカルボキシル基を有す
る単量体の共重合体であることが好ましい。
Therefore, the polymer acid is preferably a copolymer of 2-methacryloyloxyethylphosphorylcholine, methacrylic acid alkyl ester, and a monomer having a carboxyl group. Further, from the viewpoint of antithrombotic property and solubility, 10 to 50 mol%, preferably 20 to 40 mol% of 2-methacryloyloxyethylphosphorylcholine, 3
A copolymer of 5 to 89.9 mol%, preferably 48 to 77 mol% of methacrylic acid alkyl ester, and 0.1 to 15 mol%, preferably 3 to 12 mol% of a monomer having a carboxyl group. Preferably there is.

【0022】共重合の様式は、ランダム共重合、ブロッ
ク共重合、グラフト共重合等が可能であるが、セルロー
ス膜に対する反応の均一性の点から、ランダム共重合体
が好ましい。高分子酸の分子量は、反応性の点から、1
000〜100万が好ましく、2万〜50万が特に好ま
しい。再生セルロース膜の表面へのエステル結合は、膜
表面に存在する水酸基とのエステル化反応によって行わ
れ、公知の低分子のアルコールと低分子のカルボン酸又
はその酸の官能性誘導体との反応が適用できる。
The copolymerization method may be random copolymerization, block copolymerization, graft copolymerization or the like, but the random copolymer is preferable from the viewpoint of the uniformity of the reaction with the cellulose membrane. From the viewpoint of reactivity, the molecular weight of the polymeric acid is 1
000 to 1,000,000 is preferable, and 20,000 to 500,000 is particularly preferable. The ester bond to the surface of the regenerated cellulose membrane is performed by an esterification reaction with a hydroxyl group existing on the membrane surface, and a known reaction between a low-molecular alcohol and a low-molecular carboxylic acid or a functional derivative of the acid is applied. it can.

【0023】エステル結合は、使用時に高分子が脱落し
なければよく、高分子酸中のカルボキシル基の1ヶ所以
上がセルロース膜にエステル結合していれば良い。本発
明では、固定された高分子酸量は1〜100μg/cm
2 の範囲であることが好ましく、10〜70μg/cm
2 の範囲が特に好ましい。なお、エステル結合により固
定された高分子酸量は、高分子酸及び高分子酸を固定し
た再生セルロース膜を各々過塩素酸で分解して無機リン
の定量を行うことにより求められる。
The ester bond may be such that the polymer does not fall off during use, and one or more of the carboxyl groups in the polymer acid may be ester-bonded to the cellulose membrane. In the present invention, the amount of fixed high molecular acid is 1 to 100 μg / cm.
It is preferably in the range of 2 , 10 to 70 μg / cm
A range of 2 is especially preferred. The amount of the polymeric acid fixed by the ester bond is determined by decomposing the polymeric acid and the regenerated cellulose membrane on which the polymeric acid is immobilized with perchloric acid to quantify the inorganic phosphorus.

【0024】ここで、固定された高分子酸の2−メタク
リロイルオキシエチルホスホリルコリンのうちには、再
生セルロース膜の膜表面に突出せず、膜内部にもぐり込
んでいるものもあると考えられ、これらは膜の抗血栓化
への寄与が低いと考えられる。すなわち、抗血栓性に関
しては、再生セルロース系膜の膜表面における2−メタ
クリロイルオキシエチルホスホリルコリンの量も重要で
ある。
Here, among the fixed high-molecular acid 2-methacryloyloxyethylphosphorylcholine, it is considered that there are some that do not project to the membrane surface of the regenerated cellulose membrane and dig into the inside of the membrane. It is considered that the contribution of the membrane to antithrombosis is low. That is, regarding the antithrombotic property, the amount of 2-methacryloyloxyethylphosphorylcholine on the membrane surface of the regenerated cellulose-based membrane is also important.

【0025】本発明では、膜表面をESCAで測定し、
炭素とリンの原子数百分率を求めれば、次式(1)によ
り、再生セルロース膜の膜表面における、2−メタクリ
ロイルオキシエチルホスホリルコリン(MPC)のセル
ロースのグルコース単位に対するモル分率R(モル%)
が得られる。
In the present invention, the film surface is measured by ESCA,
If the atomic percentage of carbon and phosphorus is calculated, the mole fraction R (mol%) of 2-methacryloyloxyethylphosphorylcholine (MPC) to the glucose unit of cellulose on the membrane surface of the regenerated cellulose membrane is calculated by the following formula (1).
Is obtained.

【0026】[0026]

【数1】 R=p/〔p+(c−11p)/6〕 ・・・(1) c:炭素の原子数百分率(モル%) p:リンの原子数百分率(モル%) MPC=C1122NO6 P グルコース単位=C6 105 Rは、10〜80モル%の範囲であることが好ましく、
25〜80モル%の範囲であることが、特に好ましい。
## EQU1 ## R = p / [p + (c-11p) / 6] (1) c: carbon atom percentage (mol%) p: phosphorus atom percentage (mol%) MPC = C 11 H 22 NO 6 P glucose unit = C 6 H 10 O 5 R is preferably in the range of 10 to 80 mol%,
The range of 25 to 80 mol% is particularly preferable.

【0027】[0027]

【実施例】次に、実施例により本発明の内容をさらに詳
細に述べるが、これらは本発明の範囲を制限しない。な
お、以下の実施例中に記載されている測定項目は、各々
次の方法で測定したものである。 (1)高分子酸中の単量体組成(モル%) (1−1)MPC含量(モル%) 高分子酸8.0mgを試験管に入れた。これに市販の過
塩素酸(70%)を260μl加えて180℃にて20
分間加熱した。冷却後、蒸留水1.90ml、1.25
重量%モリブデン酸アンモニウム0.40ml、及び5
重量%L−アスコルビン酸0.40mlを加え、さらに
100℃にて5分間加熱した。青色に発色した溶液の吸
光度(797nm)を測定し、リン酸水素ナトリウムを
用いた検量線により、リンを定量した。この値から、高
分子酸中のリンの含有量を求め、これより高分子酸中の
MPC含量(モル%)を求めた。
EXAMPLES Next, the contents of the present invention will be described in more detail by way of examples, which do not limit the scope of the present invention. The measurement items described in the following examples were measured by the following methods. (1) Monomer composition in polymer acid (mol%) (1-1) MPC content (mol%) 8.0 mg of polymer acid was put into a test tube. To this, add 260 μl of commercially available perchloric acid (70%) and add 20
Heated for minutes. After cooling, distilled water 1.90 ml, 1.25
Weight% ammonium molybdate 0.40 ml, and 5
0.40 ml of wt% L-ascorbic acid was added, and the mixture was further heated at 100 ° C. for 5 minutes. The absorbance (797 nm) of the blue colored solution was measured, and phosphorus was quantified by a calibration curve using sodium hydrogenphosphate. From this value, the phosphorus content in the polymeric acid was determined, and the MPC content (mol%) in the polymeric acid was determined from this.

【0028】(1−2)メタクリル酸含量(モル%) 高分子酸0.1gを含む高分子酸の塩化メチレン溶液を
採取し、カルボキシル基のモル数の約3倍の0.01N
水酸化ナトリウム水溶液を加え、一晩撹拌反応させた。
その後、pHメーターを用い、0.01N塩酸で逆滴定
を行った。この値から、高分子酸中のメタクリル酸含量
(モル%)を求めた。
(1-2) Methacrylic acid content (mol%) A methylene chloride solution of a polymeric acid containing 0.1 g of a polymeric acid was sampled to obtain 0.01N, which is about 3 times the number of moles of a carboxyl group.
An aqueous sodium hydroxide solution was added, and the mixture was reacted overnight with stirring.
Then, back titration was performed with 0.01N hydrochloric acid using a pH meter. From this value, the methacrylic acid content (mol%) in the polymeric acid was determined.

【0029】(2)セルロース膜にエステル結合した高
分子酸量 高分子酸を固定したセルロース膜約10mgを細断して
試験管に入れた。これについて(1−1)と同様にして
リンの定量を行い、この値と高分子酸中のMPC含量と
からセルロース膜面積当たりの高分子酸重量(単位μg
/cm2 )を求めた。
(2) Amount of polymeric acid ester-bonded to cellulose membrane About 10 mg of a polymeric acid-immobilized cellulose membrane was shredded and placed in a test tube. Phosphorus was quantified in the same manner as in (1-1), and the weight of the polymeric acid per unit area of the cellulose membrane (unit: μg) was determined from this value and the MPC content in the polymeric acid.
/ Cm 2 ) was determined.

【0030】(3)膜表面上に存在するMPCのモル分
率 高分子酸を反応させたセルロース膜のよく乾燥させた膜
表面をESCA〔ESCA−750(島津社製)〕で測
定し、炭素とリンの原子数百分率を求め、次式(1)に
より、再生セルロース膜の膜表面における、MPCのセ
ルロースのグルコース単位に対するモル分率〔R(モル
%)〕を得た。 R=p/〔p+(c−11p)/6〕 ・・・(1) c:炭素の原子数百分率(モル%) p:リンの原子数百分率(モル%) MPC=C1122NO6 P グルコース単位=C6 105
(3) Molar Fraction of MPC Present on Membrane Surface A well-dried membrane surface of a cellulose membrane reacted with a polymeric acid was measured by ESCA [ESCA-750 (manufactured by Shimadzu Corporation)] to obtain carbon. The atomic percentage of phosphorus and phosphorus was determined, and the molar fraction [R (mol%)] of the MPC to the glucose unit of cellulose on the membrane surface of the regenerated cellulose membrane was obtained by the following equation (1). R = p / [p + (c-11p) / 6] (1) c: carbon atom percentage (mol%) p: phosphorus atom percentage (mol%) MPC = C 11 H 22 NO 6 P glucose unit = C 6 H 10 O 5

【0031】(4)補体消費率 フィルムを2.5×2.5mm2の細片としポリエチレ
ン管に入れ、これにGVバッファーで4倍に希釈したモ
ルモット補体(コーディス・ラボ社製)200μlを加
え、37℃で1時間撹拌しながらインキュベートした。
補体価は、マイヤー変法(エム・エム・マイヤー(M.
M.Mayer):イムノケミストリー(Immuno
chemistry)第2版、第133頁、シー・シー
・トーマス(C.C.Thomas)出版社、1961
年、参照)によって求めた。すなわち補体の50%溶血
価(CH50値)を求め、コントロールに対する補体消
費率を算出した。
(4) Complement consumption rate The film was made into 2.5 × 2.5 mm 2 strips, placed in a polyethylene tube, and 200 μl of guinea pig complement (Cordis Laboratories) diluted 4-fold with GV buffer. Was added and incubated at 37 ° C. for 1 hour with stirring.
Complement value is modified by the Meyer modified method (M. Meyer (M.
M. Mayer): Immunochemistry (Immuno)
Chemistry, 2nd Edition, page 133, CC Thomas Publishers, 1961.
Year, see). That is, the 50% hemolysis value (CH50 value) of complement was calculated, and the complement consumption rate relative to the control was calculated.

【0032】高分子酸の合成: (実施例1)ガラス製重合用アンプルにMPC8.88
g、メタクリル酸(MA)0.35g、2ー(エチルヘ
キシル)メタクリレート(EHMA)17.16g、及
び重合開始剤として2,2’−アゾビスイソブチロニト
リル(AIBN)97.8mgを入れた。溶媒としてエ
タノール120mlを加えた後、溶液中にアルゴンガス
を吹き込み酸素を除去した。アンプルを溶封し、これを
60℃のオイルバスに入れて3時間加熱重合させた。冷
却後、反応混合液をジエチルエーテル中に滴下し、共重
合体を沈澱させ、撹拌洗浄した後、回収して真空乾燥し
た。その後、塩化メチレンに溶解させ、14.9wt%
溶液とした。共重合体中のモノマーのモル分率は、MP
C/MA/EHMA=25/3/72であった。
Synthesis of polymeric acid : (Example 1) MPC8.88 was added to a glass-made ampoule for polymerization.
g, methacrylic acid (MA) 0.35 g, 2- (ethylhexyl) methacrylate (EHMA) 17.16 g, and 2,2′-azobisisobutyronitrile (AIBN) 97.8 mg as a polymerization initiator were added. After adding 120 ml of ethanol as a solvent, argon gas was blown into the solution to remove oxygen. The ampoule was melt-sealed, put in an oil bath at 60 ° C., and polymerized by heating for 3 hours. After cooling, the reaction mixture was added dropwise to diethyl ether to precipitate the copolymer, which was washed with stirring, recovered, and vacuum dried. Then, it is dissolved in methylene chloride, and 14.9 wt%
It was a solution. The molar fraction of monomers in the copolymer is MP
C / MA / EHMA = 25/3/72.

【0033】(実施例2)重合用アンプルにMPC2.
21g、MA77mg、EHMA4.28g、及びAI
BN25mgを入れ、エタノールを加え総体積を30m
lとした。次に、重合用アンプルをアルゴン置換後、溶
封しオイルバス中60℃で3時間加熱重合させた。次に
冷却して反応を停止させ、ジエチルエーテル中に反応混
合物を滴下し、共重合体を沈澱させ60分以上撹拌洗浄
し、濾別後真空乾燥した。その後、塩化メチレンに溶解
させ、1.0wt%溶液とした。共重合体中のモノマー
のモル分率は、MPC/MA/EHMA=30/12/
58であった。分子量を、クロロホルムを溶離液とした
ゲルパーミエーションクロマトグラフィー(GPC)に
より、ポリスチレン標準換算にて求めると7.7万であ
った。
(Example 2) MPC2.
21 g, MA 77 mg, EHMA 4.28 g, and AI
Add 25mg of BN, add ethanol to make the total volume 30m
It was set to l. Next, the polymerization ampoule was purged with argon, sealed, and heat-polymerized in an oil bath at 60 ° C. for 3 hours. Then, the reaction was cooled to stop the reaction, and the reaction mixture was added dropwise to diethyl ether to precipitate the copolymer, which was washed by stirring for 60 minutes or more, filtered, and dried under vacuum. Then, it was dissolved in methylene chloride to prepare a 1.0 wt% solution. The molar fraction of monomers in the copolymer is MPC / MA / EHMA = 30/12 /
It was 58. The molecular weight was calculated as 77,000 by gel permeation chromatography (GPC) using chloroform as an eluent in terms of polystyrene standard.

【0034】(実施例3)重合用アンプルにMPC2.
66g、MA77mg、EHMA3.98g、及びAI
BN25mgを入れ、エタノールを加え総体積を30m
lとした。以下、実施例2と同様にして共重合体の1.
0wt%塩化メチレン溶液を得た。共重合体中のモノマ
ーのモル分率は、MPC/MA/EHMA=36/12
/52であり、分子量は12.3万であった。
(Example 3) MPC2.
66 g, MA 77 mg, EHMA 3.98 g, and AI
Add 25mg of BN, add ethanol to make the total volume 30m
It was set to l. Hereinafter, in the same manner as in Example 2, 1.
A 0 wt% methylene chloride solution was obtained. The molar fraction of monomers in the copolymer is MPC / MA / EHMA = 36/12
/ 52, and the molecular weight was 123,000.

【0035】抗血栓性再生セルロース系膜の製造: (実施例4)実施例1で得られた高分子酸溶液0.68
g、ジシクロヘキシルカルボジイミド1.91g、及び
4−(ジメチルアミノ)ピリジン1.5mgに、脱水し
た塩化メチレン100mlを加えて溶解し、予めアセト
ンに浸漬させた後風乾させたセルロースフィルム(10
cm×10cm)を24時間浸漬させた。メタノールに
浸漬させて洗浄(10分×3回)した後、風乾した。こ
のフィルムに固定された高分子酸量は、1.2μg/c
2 であり、膜表面上のMPCのモル分率は33.7モ
ル%であり、補体消費率は、17%であった。
Production of Antithrombogenic Regenerated Cellulose Membrane : (Example 4) Polymeric acid solution 0.68 obtained in Example 1
g, dicyclohexylcarbodiimide (1.91 g) and 4- (dimethylamino) pyridine (1.5 mg) were dissolved by adding 100 ml of dehydrated methylene chloride, and the cellulose film was preliminarily immersed in acetone and then air-dried.
(cm × 10 cm) was immersed for 24 hours. It was immersed in methanol for washing (10 minutes × 3 times) and then air dried. The amount of high-molecular acid fixed on this film is 1.2 μg / c
m 2 , the MPC mole fraction on the membrane surface was 33.7 mol%, and the complement consumption rate was 17%.

【0036】一方、比較として未処理フィルムの補体消
費率も測定したが、補体消費率は、47%であった。こ
の結果より、本発明によれば、補体の活性化が大幅に抑
制されることがわかる。
On the other hand, the complement consumption rate of the untreated film was also measured for comparison, and the complement consumption rate was 47%. From this result, it can be seen that according to the present invention, activation of complement is significantly suppressed.

【0037】(実施例5〜6)実施例2〜3で得られた
高分子酸の1.0wt%塩化メチレン溶液10gにカル
ボキシル基の100倍モルのジシクロヘキシルカルボジ
イミドを加えた。この溶液に直径15mmの円形のセル
ロース膜を浸漬させ、一晩反応させた。実施例2の高分
子酸を用いて得たセルロ−ス膜において、固定された高
分子酸の量は47μg/cm2 、膜表面上のMPCのモ
ル分率は46.6モル%であった。また、実施例3の高
分子酸を用いて得たセルロ−ス膜において、固定された
高分子酸の量は42μg/cm2 、膜表面上のMPCの
モル分率は41.8モル%であった。
Examples 5 to 6 To 10 g of a 1.0 wt% methylene chloride solution of the polymeric acid obtained in Examples 2 to 3 was added dicyclohexylcarbodiimide 100 times the molar amount of the carboxyl group. A circular cellulose membrane having a diameter of 15 mm was immersed in this solution and reacted overnight. In the cellulose membrane obtained by using the polymer acid of Example 2, the amount of immobilized polymer acid was 47 μg / cm 2 , and the mole fraction of MPC on the membrane surface was 46.6 mol%. . Further, in the cellulose membrane obtained by using the polymeric acid of Example 3, the amount of immobilized polymeric acid was 42 μg / cm 2 , and the molar fraction of MPC on the membrane surface was 41.8 mol%. there were.

【0038】尿素による溶質透過性実験: (実施例7)実施例5で得られたフィルムを図1のよう
な装置にセットし、蒸留水で溶解した2000mg/l
の尿素水溶液と蒸留水を60mlずつ同時に各ガラスセ
ルに入れて20分おきに蒸留水側のセルから0.5ml
採取して、2時間の透過性実験を行った。尿素の定量
は、検体0.02mlを採取し、尿素窒素B−テストワ
コー(ウレアーゼ・インドフェノール法)〔和光純薬工
業(株)〕の測定キットを用いて尿素の標準水溶液での
検量線法により行った。結果を表1に示す。また未処理
のフィルムを用いて同様に行った結果も表1に併せて示
す。
Solute permeability experiment with urea : (Example 7) The film obtained in Example 5 was set in an apparatus as shown in Fig. 1 and dissolved in distilled water to 2000 mg / l.
60ml each of the urea aqueous solution and distilled water are put into each glass cell at the same time, and every 20 minutes, 0.5ml from the cell on the distilled water side.
After collection, a 2 hour permeability experiment was performed. The amount of urea was determined by collecting 0.02 ml of a sample and using a measurement kit of urea nitrogen B-test Wako (urease / indophenol method) [Wako Pure Chemical Industries, Ltd.] Went by. The results are shown in Table 1. The results obtained in the same manner using the untreated film are also shown in Table 1.

【0039】[0039]

【表1】 表1の結果より、本発明の再生セルロ−ス系膜におい
て、実用上、膜の透過性能は維持されることがわかる。
[Table 1] From the results in Table 1, it can be seen that the regenerated cellulose-based membrane of the present invention practically maintains the permeation performance of the membrane.

【0040】抗血栓性評価: (実施例8)実施例5及び6で作製した膜及び、未処理
のセルロース膜をリン酸緩衝食塩水(PBS)に1日浸
漬後、PBSを取り除き、ウサギ血小板多血漿0.7m
lを室温で180分接触させた。次に血漿をアスピレー
ターで取り除き、PBSで3回洗浄後,2.5wt%グ
ルタルアルデヒド溶液1.0mlで120分固定した。
その後、2.5wt%グルタルアルデヒド溶液をアスピ
レーターで取り除き、蒸留水で4回洗浄し凍結乾燥し
た。その後、デシケーターに入れ1日真空乾燥し、SE
M観察し、単位面積当たりの粘着血小板数を計数した。
Evaluation of antithrombotic property : (Example 8) The membrane prepared in Examples 5 and 6 and the untreated cellulose membrane were immersed in phosphate buffered saline (PBS) for 1 day, and then PBS was removed to remove rabbit platelets. 0.7m of plasma
1 was contacted for 180 minutes at room temperature. Next, plasma was removed with an aspirator, washed three times with PBS, and then fixed with 1.0 ml of a 2.5 wt% glutaraldehyde solution for 120 minutes.
Then, the 2.5 wt% glutaraldehyde solution was removed by an aspirator, washed with distilled water four times, and freeze-dried. Then, put it in a desiccator and vacuum dry for 1 day.
M was observed and the number of adherent platelets per unit area was counted.

【0041】また、比較として、未処理セルロ−ス膜に
ついても粘着血小板数を計数した。その結果を下記に示
す。下記の結果より、本発明によれば抗血栓性が大幅に
改善されることがわかる。 未処理セルロース膜: 13万個/mm2 実施例5 : 0個/mm2 実施例6 : 0個/mm2
For comparison, the number of adherent platelets was also counted for the untreated cellulose membrane. The results are shown below. From the following results, it can be seen that according to the present invention, the antithrombotic property is significantly improved. Untreated cellulose membrane: 130,000 / mm 2 Example 5: 0 / mm 2 Example 6: 0 / mm 2

【0042】[0042]

【発明の効果】本発明によれば、抗血栓性が大幅に改善
され、補体の活性化が大幅に抑制され、膜の透過性能も
実用上維持される。また、製造に要する反応温度が低
く、セルロース膜に大きな形態変化を起こさない溶媒を
使用できるので、この点からもセルロース膜の物性が変
化することがない。さらに、製造が容易であり、用いた
試薬等を除去することも容易であるので、本発明により
経済的で安全性の高い透析膜が得られる。
EFFECTS OF THE INVENTION According to the present invention, the antithrombotic property is significantly improved, the activation of complement is greatly suppressed, and the permeation performance of the membrane is practically maintained. In addition, since the reaction temperature required for the production is low and a solvent that does not cause a large change in the morphology of the cellulose membrane can be used, the physical properties of the cellulose membrane do not change from this point as well. Furthermore, since it is easy to manufacture and the used reagents and the like can be easily removed, the present invention provides an economical and highly safe dialysis membrane.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いた尿素透過性実験装置で
ある。
FIG. 1 is a urea permeability experimental apparatus used in Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラスセル 2 2000mg/lの尿素水溶液 3 蒸留水 4 回転子 5 攪拌機 6 フィルム 1 Glass Cell 2 2000 mg / l Urea Aqueous Solution 3 Distilled Water 4 Rotor 5 Stirrer 6 Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 一彦 東京都小平市上水本町6−5−9−201 (72)発明者 山下 正彦 宮崎県延岡市旭町6丁目4100番地 旭化成 工業株式会社内 (72)発明者 山下 康彦 宮崎県延岡市旭町6丁目4100番地 旭化成 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Ishihara 6-5-9-201 Kamimizumoto-cho, Kodaira-shi, Tokyo (72) Inventor Masahiko Yamashita 6-4100 Asahi-cho, Nobeoka-shi, Miyazaki Prefecture Asahi Kasei Kogyo Co., Ltd. (72) Inventor Yasuhiko Yamashita 6-4100 Asahi-cho, Nobeoka-shi, Miyazaki Prefecture Asahi Kasei Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 再生セルロースからなる高分子膜に、2
−メタクリロイルオキシエチルホスホリルコリン及びそ
の他の単量体の共重合体である分子量1000〜100
万の高分子酸がエステル結合していることを特徴とする
抗血栓性再生セルロース系膜。
1. A polymer film made of regenerated cellulose is provided with 2
-Methacryloyloxyethyl phosphorylcholine and other monomers, molecular weight 1000-100
An antithrombogenic regenerated cellulose-based membrane characterized in that various polymeric acids are ester-bonded.
【請求項2】 高分子酸が、2−メタクリロイルオキシ
エチルホスホリルコリン、メタクリル酸アルキルエステ
ル、及びカルボキシル基を有する単量体の共重合体であ
ることを特徴とする、請求項1記載の抗血栓性再生セル
ロース系膜。
2. The antithrombotic property according to claim 1, wherein the high molecular acid is a copolymer of 2-methacryloyloxyethylphosphorylcholine, a methacrylic acid alkyl ester, and a monomer having a carboxyl group. Regenerated cellulose membrane.
【請求項3】 高分子酸が、10〜50モル%の2−メ
タクリロイルオキシエチルホスホリルコリン、35〜8
9.9モル%のメタクリル酸アルキルエステル、及び
0.1〜15モル%のカルボキシル基を有する単量体の
共重合体であることを特徴とする、請求項2記載の抗血
栓性再生セルロース系膜。
3. The polymer acid is 10 to 50 mol% of 2-methacryloyloxyethylphosphorylcholine, 35 to 8
The antithrombogenic regenerated cellulose system according to claim 2, which is a copolymer of 9.9 mol% of methacrylic acid alkyl ester and 0.1 to 15 mol% of a monomer having a carboxyl group. film.
JP04651994A 1994-02-22 1994-02-22 Antithrombotic regenerated cellulose-based membrane Expired - Fee Related JP3404514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04651994A JP3404514B2 (en) 1994-02-22 1994-02-22 Antithrombotic regenerated cellulose-based membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04651994A JP3404514B2 (en) 1994-02-22 1994-02-22 Antithrombotic regenerated cellulose-based membrane

Publications (2)

Publication Number Publication Date
JPH07231935A true JPH07231935A (en) 1995-09-05
JP3404514B2 JP3404514B2 (en) 2003-05-12

Family

ID=12749530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04651994A Expired - Fee Related JP3404514B2 (en) 1994-02-22 1994-02-22 Antithrombotic regenerated cellulose-based membrane

Country Status (1)

Country Link
JP (1) JP3404514B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009857A1 (en) * 2000-07-27 2002-02-07 Asahi Medical Co., Ltd. Modified hollow-fiber membrane
JP2005152707A (en) * 2003-11-21 2005-06-16 Shiseido Co Ltd Filter material
JP2006239636A (en) * 2005-03-04 2006-09-14 Kazuhiko Ishihara Fouling prevention material and separation membrane having surface treated with the fouling prevention material
JP2009240508A (en) * 2008-03-31 2009-10-22 Kaneka Corp Modification method of blood contact material and blood contact material with suppressed complement activation
WO2012073566A1 (en) * 2010-12-01 2012-06-07 国立大学法人熊本大学 Pretreatment device for analysis of dissolved ion, dissolved ion analysis system, and pretreatment method for analysis of dissolved ion
JP2014210246A (en) * 2013-04-22 2014-11-13 国立大学法人神戸大学 Reverse osmosis membrane made of polyamide and manufacturing method thereof
WO2017200220A1 (en) * 2016-05-18 2017-11-23 한양대학교 에리카산학협력단 Cellulose microfiber surface modified with associative copolymer, and thickener composition comprising same
JP2019038861A (en) * 2017-08-22 2019-03-14 芳人 川瀬 Method for forming coating layer onto surface of resin molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009857A1 (en) * 2000-07-27 2002-02-07 Asahi Medical Co., Ltd. Modified hollow-fiber membrane
US7108787B2 (en) 2000-07-27 2006-09-19 Nof Corporation Modified hollow-fiber membrane
JP2005152707A (en) * 2003-11-21 2005-06-16 Shiseido Co Ltd Filter material
JP4530197B2 (en) * 2003-11-21 2010-08-25 株式会社資生堂 Filter material
JP2006239636A (en) * 2005-03-04 2006-09-14 Kazuhiko Ishihara Fouling prevention material and separation membrane having surface treated with the fouling prevention material
JP2009240508A (en) * 2008-03-31 2009-10-22 Kaneka Corp Modification method of blood contact material and blood contact material with suppressed complement activation
WO2012073566A1 (en) * 2010-12-01 2012-06-07 国立大学法人熊本大学 Pretreatment device for analysis of dissolved ion, dissolved ion analysis system, and pretreatment method for analysis of dissolved ion
US9103780B2 (en) 2010-12-01 2015-08-11 National University Corporation Kumamoto University Pretreatment device for dissolved ions analysis and dissolved ion analysis system
JP5888653B2 (en) * 2010-12-01 2016-03-22 国立大学法人 熊本大学 Pretreatment device for dissolved ion analysis and dissolved ion analysis system
JP2014210246A (en) * 2013-04-22 2014-11-13 国立大学法人神戸大学 Reverse osmosis membrane made of polyamide and manufacturing method thereof
WO2017200220A1 (en) * 2016-05-18 2017-11-23 한양대학교 에리카산학협력단 Cellulose microfiber surface modified with associative copolymer, and thickener composition comprising same
CN109153821A (en) * 2016-05-18 2019-01-04 汉阳大学校Erica产学协力团 Cellulose microfilaments surface-modified with associative copolymers and thickener composition comprising same
JP2019038861A (en) * 2017-08-22 2019-03-14 芳人 川瀬 Method for forming coating layer onto surface of resin molding

Also Published As

Publication number Publication date
JP3404514B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US5658561A (en) Method of producing anti-thrombogenic material and material produced thereby
Cheng et al. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes
Ishihara et al. Improvement of blood compatibility on cellulose dialysis membrane. III. Synthesis and performance of water‐soluble cellulose grafted with phospholipid polymer as coating material on cellulose dialysis membrane
EP0597593A1 (en) Thromboresistant articles
Kishida et al. Interactions of poly (ethylene glycol)-grafted cellulose membranes with proteins and platelets
AU3191301A (en) Non-thrombogenic semipermeable membrane and method of manufacture
JP3404514B2 (en) Antithrombotic regenerated cellulose-based membrane
WO2023216874A1 (en) Surface grafted cross-linked zwitterionic polymer coating, preparation method therefor, and use thereof
Ishihara et al. Improvement of hemocompatibility on a cellulose dialysis membrane with a novel biomedical polymer having a phospholipid polar group
JP3138316B2 (en) Water-soluble graft polymer
JP3126749B2 (en) Composite material compatible with blood
JPH07184989A (en) High polymer material having compatibility with blood for medical treatment and medical treating material
Khabibi et al. Preparation, Characterization, and In Vitro Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane
BRPI0622191B1 (en) use of a methacrylate copolymer in the manufacture of an antithrombogenic medical device, and use of a methacrylate copolymer as an antithrombogenic material for surface treatment
JP4033514B2 (en) Soluble cellulose derivatives and uses
JPH10151192A (en) Anti-thrombot composition and medical material
Paneva et al. Gel beads composed of chitosan and polyacids and their blood compatibility
JP2004298223A (en) Biocompatible material
Lin et al. Preparation of modified polysulfone material decorated by sulfonated citric chitosan for haemodialysis and its haemocompatibility
Fu et al. Preparation and blood compatibility of polyethersulfone dialysis membrane modified by apixaban as coagulation factor Xa inhibitor
Ishihara et al. Combination of two antithrombogenic methodologies for preventing thrombus formation on a poly (ether ether ketone) substrate
US5728437A (en) Articles exhibiting a blood-compatible surface layer and process for providing articles with such a surface layer
Schultze et al. Formation of thrombin-antithrombin III complex using polyamide and hemophan dialyzers
JPH09122224A (en) Anticoagulant material
KR19990038671A (en) Hemocompatible Polyurethane-Hydrophilic Polymer Blend

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees