JPH07231566A - Control circuit for active filter - Google Patents

Control circuit for active filter

Info

Publication number
JPH07231566A
JPH07231566A JP6017995A JP1799594A JPH07231566A JP H07231566 A JPH07231566 A JP H07231566A JP 6017995 A JP6017995 A JP 6017995A JP 1799594 A JP1799594 A JP 1799594A JP H07231566 A JPH07231566 A JP H07231566A
Authority
JP
Japan
Prior art keywords
current
harmonic
signal
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6017995A
Other languages
Japanese (ja)
Inventor
Koichi Sano
耕市 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP6017995A priority Critical patent/JPH07231566A/en
Publication of JPH07231566A publication Critical patent/JPH07231566A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To prevent a harmonic current from increasing over a generation amount by interrupting the active filter (AF) operation when the sum of harmonic component current and compensation current exceeds a preset level during AF operation and controlling the compensation current to zero. CONSTITUTION:After starting AF operation, a harmonic component current ILh and a compensation current Ia are added through second addition 13 to produce a second addition signal Pt which is then converted through a DC converter 19 into a DC signal Pq. A comparator 14 compares the DC signal Pq with a set value Pr and the second addition output signal Pt is fed to a second gate circuit 15. When it is lower than the set value Pr, output signal Ps from the comparator goes Low. Consequently, a first gate circuit 12 is conducted to bring about a normal AF operation mode and the second addition output signal Pt approaches zero as closely as possible thus canceling the harmonic current ILh.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負荷側で発生した高調
波電流を打ち消すアクティブフィルタの制御回路に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control circuit for an active filter that cancels a harmonic current generated on the load side.

【0002】[0002]

【従来の技術】近年、インバータエアコンのように半導
体素子を用いた電力変換機器を有する電気製品が普及し
てきており、それに伴って高調波障害が多発している。
そのため、従来、高調波対策としてアクティブフィルタ
(能動型フィルタ)を導入するケースが増えつつあり、
その一具体例を図2(a)(b)を参照して次に説明す
る。まず図2(a)において(1)は電源、(2)は系
統母線、(3)は負荷、(4)はアクティブフィルタ
(以下、AFと称する。)、(5)は高調波電流検出用
第1変流器、(6)は補償電流検出用第2変流器であ
る。上記電源(1)は系統母線(2)を介して高調波発
生源となる負荷(3)に接続される。AF(4)は図2
(b)に示す制御回路(7)及び高周波インバータ(図
示せず)を有し、負荷(3)で発生した高調波電流(I
L)を打ち消す逆位相の補償電流(Ia)を上記インバー
タによって系統母線(2)に注入するもので、そのイン
バータ駆動を制御回路(7)によって制御する。制御回
路(7)は、図2(b)に示すように、第1変流器
(5)によって検出した高調波電流(IL)(但し、母
線電流と同一記号を使用する)から補償対象となる所定
次数の高調波成分電流(ILh)を検出する高調波検出器
(8)と、第2変流器(6)によって検出した補償電流
(Ia)(但し、母線電流と同一記号を使用する)と高調
波成分電流(ILh)とを加算する第1加算器(9)と、
第1加算器出力側に接続され、第1加算出力信号(ILh
+Ia)の正負を判別する零クロスヒステリシス比較器
(10)と、上記比較器出力側に接続され、その出力信号
が正の場合は補償電流(Ia)を増加させる方向、負の場
合は補償電流(Ia)を減少させる方向にそれぞれインバ
ータを駆動制御するインバータ駆動部(11)とを具備す
る。
2. Description of the Related Art In recent years, electric products having a power conversion device using a semiconductor element such as an inverter air conditioner have become widespread, and accordingly, harmonic interference frequently occurs.
Therefore, the number of cases in which an active filter (active filter) is introduced as a countermeasure against harmonics is increasing.
One specific example will be described below with reference to FIGS. First, in FIG. 2A, (1) is a power supply, (2) is a system bus, (3) is a load, (4) is an active filter (hereinafter referred to as AF), and (5) is for detecting harmonic current. The first current transformer, (6) is the second current transformer for detecting the compensation current. The power source (1) is connected to a load (3) serving as a harmonic generation source via a system bus (2). AF (4) is shown in FIG.
It has a control circuit (7) and a high frequency inverter (not shown) shown in (b), and the harmonic current (I
The compensating current (Ia) of the opposite phase for canceling L) is injected into the system bus (2) by the above-mentioned inverter, and the drive of the inverter is controlled by the control circuit (7). As shown in FIG. 2B, the control circuit (7) determines that the harmonic current (IL) detected by the first current transformer (5) (however, the same symbol as the bus current is used) is to be compensated. A harmonic detector (8) for detecting a harmonic component current (ILh) of a predetermined order and a compensation current (Ia) detected by the second current transformer (6) (however, the same symbol as the bus current is used. ) And a harmonic component current (ILh) are added to the first adder (9),
It is connected to the output side of the first adder and outputs the first addition output signal (ILh
+ Ia) Zero crossing hysteresis comparator (10) for discriminating between positive and negative, and the output side of the comparator is connected. If the output signal is positive, it increases the compensation current (Ia). If negative, the compensation current. An inverter drive unit (11) for controlling the drive of each inverter in the direction of decreasing (Ia).

【0003】ここで、図2(a)の等価回路を図2
(c)に示すと、上記等価回路は電源(1)を系統イン
ピーダンスで表現し、負荷(3)及びAF(4)をそれ
ぞれ電流源で表現したもので、補償電流(Ia)をAF
(4)から反B方向に系統母線(2)に注入し、それに
よって負荷(3)側でA方向に発生した高調波成分電流
(ILh)を打ち消して零にする構成になっている。
Here, the equivalent circuit of FIG.
As shown in (c), the above equivalent circuit is one in which the power source (1) is represented by system impedance and the load (3) and AF (4) are each represented by current sources.
It is configured such that the harmonic component current (ILh) generated in (A) on the load (3) side is canceled by injecting it into the system bus (2) from (4) in the anti-B direction.

【0004】[0004]

【発明が解決しようとする課題】解決しようとする課題
は、負荷側においてコンデンサ等の高調波に対して低イ
ンピーダンスとなる負荷(3a)が系統条件に加わった場
合にAF(4)を運転すると、負荷インピーダンス(-X
c)と系統インピーダンス(Xs)との間で高調波電流
(IL)の拡大が生じ、AF(4)による高調波電流
(IL)の打ち消しが不能になる点である。即ち、例え
ば図2(d)の等価回路に示すように、系統インピーダ
ンス(Xs)に負荷インピーダンス(-Xc)が電流源側か
ら見て並列につながれ、且つ、電流源{負荷(3)}か
ら発生する電流を(Io)、系統インピーダンス(Xs)及
び負荷インピーダンス(-Xc)への分流電流をそれぞれ
(Is)(Ic)、各インピーダンスの図中下から上に向う
電流方向を正とすると、Is={-Xc/(Xs-Xc)}・Io、Ic={Xs/
(Xs-Xc)}・Ioとなる。
The problem to be solved is to operate the AF (4) when a load (3a) having a low impedance with respect to harmonics such as a capacitor on the load side is added to the system condition. , Load impedance (-X
The harmonic current (IL) expands between c) and the system impedance (Xs), and the AF (4) cannot cancel the harmonic current (IL). That is, for example, as shown in the equivalent circuit of FIG. 2D, the load impedance (-Xc) is connected in parallel to the system impedance (Xs) as seen from the current source side, and the current source {load (3)} If the generated current is (Io), the shunt currents to the system impedance (Xs) and the load impedance (-Xc) are (Is) and (Ic), respectively, and the current direction from the bottom to the top of the figure for each impedance is positive, Is = {-Xc / (Xs-Xc)} ・ Io, Ic = {Xs /
(Xs-Xc)}-Io.

【0005】ここで、Xs>Xcとなる場合、電流(Io)が
正方向に流れれば、分流電流(Is)は負方向(上から
下)、分流電流(Ic)は正方向(下から上)へそれぞれ
流れる。そこで、電流(Io)として負荷(3)から高調
波成分電流(ILh)が正方向に流れた場合、第1変流器
(5)で負方向(反A方向)に流れる分流電流(Is)を
検出するため、補償電流(Ia)は図2(c)とは逆向き
(B方向)に流れる。そうすると、補償電流(Ia)は高
調波成分電流(ILh)と同様、正方向に流れるため、補
償電流(Ia)の系統インピーダンス(Xs)を流れる分流
電流(Isa)は分流電流(Is)と同じ方向(反A方向)
に流れる。その結果、第1変流器(5)において負方向
(反A方向)の検出電流が更に増加するため、補償電流
(Ia)が益々、増加して高調波成分電流(ILh)が拡大
し、制御不能になる。
When Xs> Xc, if the current (Io) flows in the positive direction, the shunt current (Is) is in the negative direction (from top to bottom) and the shunt current (Ic) is in the positive direction (from bottom to bottom). Flow to each of the above). Therefore, when the harmonic component current (ILh) flows from the load (3) in the positive direction as the current (Io), the shunt current (Is) that flows in the negative direction (anti-A direction) in the first current transformer (5). 2C, the compensation current (Ia) flows in the opposite direction (direction B) to that of FIG. 2C. Then, since the compensation current (Ia) flows in the positive direction like the harmonic component current (ILh), the shunt current (Isa) flowing through the system impedance (Xs) of the compensation current (Ia) is the same as the shunt current (Is). Direction (counter A direction)
Flow to. As a result, the detection current in the negative direction (anti-A direction) in the first current transformer (5) further increases, so that the compensation current (Ia) further increases and the harmonic component current (ILh) expands. Get out of control.

【0006】上記負荷インピーダンス(-Xc)が加わる
のは稀であるが、上記のような制御不能状態が発生する
と、系統インピーダンス(Xs)及び負荷インピーダンス
(-Xc)の分流電流(Is)(Ic)は共に大きくなり、本
来の高調波成分電流の打ち消しが出来ないだけでなく、
負荷側コンデンサの加熱等の不具合を生じる。
The load impedance (-Xc) is rarely applied, but when the uncontrollable state as described above occurs, the shunt currents (Is) (Ic) of the system impedance (Xs) and the load impedance (-Xc). ) Both become large, and not only the original harmonic component current cannot be canceled, but
Problems such as heating of the load side capacitor will occur.

【0007】尚、Xs<Xcとなる場合、電流(Io)が正方
向に流れれば、分流電流(Is)は正方向(下から上)、
分流電流(Ic)は負方向(上から下)へそれぞれ流れ
る。そこで、負荷(3)から高調波成分電流(ILh)が
正方向に流れた場合、第1変流器(5)において正方向
(A方向)に分流電流(Is)を検出するため、その分、
検出量は増えるが、補償電流(Ia)は図2(c)と同方
向(反B方向)に流れ、本来の高調波成分電流の打ち消
しを行なう。
When Xs <Xc, if the current (Io) flows in the positive direction, the shunt current (Is) is in the positive direction (from bottom to top),
The shunt current (Ic) flows in the negative direction (from top to bottom). Therefore, when the harmonic component current (ILh) flows from the load (3) in the positive direction, the shunt current (Is) is detected in the positive direction (direction A) in the first current transformer (5), and accordingly ,
Although the detection amount increases, the compensation current (Ia) flows in the same direction (anti-B direction) as in FIG. 2C and cancels the original harmonic component current.

【0008】[0008]

【課題を解決するための手段】本発明は、負荷側で発生
した高調波電流から高調波検出器により所定次数の高調
波成分電流を検出して第1加算器で補償電流と加算し、
その第1加算出力信号が零になるように補償電流発生用
インバータを駆動制御して上記高調波成分電流を打ち消
すアクティブフィルタの制御回路において、上記高調波
検出器と第1加算器入力との間に接続され、両者間を導
通又は遮断する第1ゲート回路と、上記高調波検出器に
より検出した高調波成分電流と補償電流とを加算する第
2加算器と、一方の入力側に上記第2加算器出力が直流
変換器を介して接続され、直流変換器出力信号と所定レ
ベルの設定値とを比較して第2加算出力信号を2値化し
て出力する比較器と、入力側を上記比較器出力に接続し
て出力側を第1反転器を介して第1ゲート回路のゲート
信号入力に接続した第2ゲート回路と、アクティブフィ
ルタ運転指令信号を一方の入力信号とし、出力側を第1
タイマを介して上記第2ゲート回路のゲート信号入力に
接続したアンド回路と、入力側を上記第2ゲート回路出
力に接続して出力側を第2反転器を介して上記アンド回
路の他方の入力に接続した第2タイマとを具備したこと
を特徴とする。
According to the present invention, a harmonic detector detects a harmonic component current of a predetermined order from a harmonic current generated on a load side, and a first adder adds the harmonic component current to a compensation current.
In the control circuit of the active filter, which drives and controls the compensation current generating inverter so that the first addition output signal becomes zero, and cancels the higher harmonic component current, in the control circuit between the higher harmonic detector and the first adder input. Connected to the first gate circuit for connecting or disconnecting the two, a second adder for adding the harmonic component current detected by the harmonic detector and the compensation current, and the second gate on one input side. The output of the adder is connected via a DC converter, the output signal of the DC converter is compared with a set value of a predetermined level, and a comparator for binarizing and outputting the second added output signal is compared with the input side. Gate circuit connected to the output of the first gate circuit and the second gate circuit connected to the gate signal input of the first gate circuit via the first inverter, and the active filter operation command signal as one input signal, and the first output side
An AND circuit connected to the gate signal input of the second gate circuit via a timer, and the other input of the AND circuit connected to the output of the second gate circuit with its input side connected to the output of the second gate circuit via a second inverter. And a second timer connected to.

【0009】[0009]

【作用】上記技術的手段によれば、AF運転時に高調波
成分電流と補償電流との加算値が所定レベルの設定値以
上になったことを検出すると、系統条件に高調波に対し
て低インピーダンスとなる負荷が加わって高調波電流の
拡大が生じたと判定し、AF運転を遮断して補償電流を
零に制御して負荷側の高調波発生量以上に高調波電流が
拡大しないようにする。又、第2タイマによって決まる
時間経過後、通常のAF運転モードに強制的に戻し、そ
の時の上記加算値をチェックした後、AF運転を継続又
は遮断する。
According to the above technical means, when it is detected during AF operation that the added value of the harmonic component current and the compensation current is equal to or greater than the set value of the predetermined level, the system condition has a low impedance for the harmonic. Then, it is determined that the harmonic current has expanded due to the addition of the load, and the AF operation is interrupted to control the compensation current to zero so that the harmonic current does not expand beyond the load-side harmonic generation amount. In addition, after a lapse of time determined by the second timer, the AF operation mode is forcibly returned to the normal AF operation mode, the added value at that time is checked, and then the AF operation is continued or interrupted.

【0010】[0010]

【実施例】本発明に係るアクティブフィルタの制御回路
の実施例を図1を参照して以下に説明する。図2(b)
に示す部分と同一部分には同一参照符号を付してその説
明を省略する。相違する点は図示点線内に示す検出制御
系を付加したことで、図において(12)は第1ゲート回
路、(13)は第2加算器、(14)は比較器、(15)は第
2ゲート回路、(16)はアンド回路、(17)(18)はそ
れぞれ第1、第2タイマである。上記第1ゲート回路
(12)は高調波検出器(8)と第1加算器(9)の入力
との間に接続され、第1ゲート信号(Ga)によって両者
間を導通又は遮断(出力ロウ)する。第2加算器(13)
は、高調波検出器(8)により検出した高調波成分電流
(ILh)と補償電流(Ia)とを加算する。比較器(14)
は、一方の入力側に第2加算器(13)の出力が直流変換
器(19)を介して接続され、直流変換器出力である直流
信号(Pq)と所定レベルの設定値(Pr)とを比較して第
2加算出力信号(Pt=ILh+Ia)を2値化して出力す
る。ここで、直流変換器(19)は全波整流器(20)と時
定数大のフィルタ(21)とを直列接続してなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a control circuit for an active filter according to the present invention will be described below with reference to FIG. Figure 2 (b)
The same parts as those shown in are denoted by the same reference numerals and the description thereof will be omitted. The difference is that the detection control system shown in the dotted line is added. In the figure, (12) is the first gate circuit, (13) is the second adder, (14) is the comparator, and (15) is the Two gate circuits, (16) is an AND circuit, and (17) and (18) are first and second timers, respectively. The first gate circuit (12) is connected between the harmonic detector (8) and the input of the first adder (9), and is electrically connected or cut off (output low) by the first gate signal (Ga). ) Do. Second adder (13)
Adds the harmonic component current (ILh) detected by the harmonic detector (8) and the compensation current (Ia). Comparators (14)
Is connected to one input side of the output of the second adder (13) via a DC converter (19), and outputs a DC signal (Pq) which is the DC converter output and a set value (Pr) of a predetermined level. And the second addition output signal (Pt = ILh + Ia) is binarized and output. Here, the direct-current converter (19) is formed by connecting a full-wave rectifier (20) and a filter (21) having a large time constant in series.

【0011】第2ゲート回路(15)は入力側を比較器出
力に接続して出力側を第1反転器(22)を介して第1ゲ
ート回路(12)のゲート信号入力に接続する。アンド回
路(16)はAF運転指令のハイ信号(Ha)を一方の入力
信号とし、出力側を第1タイマ(17)を介して第2ゲー
ト回路(15)のゲート信号入力に接続する。第2タイマ
(18)は入力側を第2ゲート回路(15)の出力に接続し
て出力側を第2反転器(23)を介してアンド回路(16)
の他方の入力に接続する。
The second gate circuit (15) has an input side connected to the comparator output and an output side connected to the gate signal input of the first gate circuit (12) via the first inverter (22). The AND circuit (16) uses the high signal (Ha) of the AF operation command as one input signal, and connects the output side to the gate signal input of the second gate circuit (15) via the first timer (17). The second timer (18) has an input side connected to the output of the second gate circuit (15) and an output side connected to the AND circuit (16) via the second inverter (23).
Connect to the other input of.

【0012】上記構成に基づき本発明の動作を次に説明
する。まずAF運転開始時、第2タイマ(18)の出力信
号がロウであるため、それが第2反転器(23)を介して
ハイに反転されてアンド回路(16)の他方の入力信号と
なる。そこで、AF運転と同時にハイの運転指令信号
(Ha)をアンド回路(16)の一方の端子に入力すると、
アンド回路出力がハイとなり、それが第1タイマ(17)
に入力されて一定時間経過後に第2ゲート信号(Gb)と
なり、第2ゲート回路(15)が導通する。即ち、AF運
転開始後、第1タイマ(17)によって決まる一定時間経
過後に図示点線内の検出制御系が作動する。
The operation of the present invention based on the above configuration will be described below. First, since the output signal of the second timer (18) is low at the start of AF operation, it is inverted to high via the second inverter (23) and becomes the other input signal of the AND circuit (16). . Therefore, if a high operation command signal (Ha) is input to one terminal of the AND circuit (16) at the same time as AF operation,
AND circuit output goes high, which is the first timer (17)
The second gate signal (Gb) becomes a second gate signal (Gb) after a lapse of a certain time after being input to the second gate circuit (15), and the second gate circuit (15) becomes conductive. That is, after the AF operation starts, the detection control system within the dotted line in the figure operates after a lapse of a fixed time determined by the first timer (17).

【0013】そこで、AF運転を開始して一定時間経過
後、第2加算器(13)によって高調波成分電流(ILh)
と補償電流(Ia)とを加算し、その第2加算出力信号
(Pt=ILh+Ia)を直流変換器(19)を介して直流信号
(Pq)に変換して出力する。そして、比較器(14)にお
いて直流信号(Pq)と設定値(Pr)とを比較して第2加
算出力信号(Pt)を2値化して出力し、第2ゲート回路
(15)に入力する。そこで、第2加算出力信号(Pt)、
即ち直流信号(Pq)が設定値(Pr)以下であると、比較
器出力信号(Ps)がロウとなる。それが第2ゲート回路
(15)の出力に現われ、第1反転器(22)を介してハイ
に反転されて第1ゲート信号(Ga)となる。それにより
第1ゲート回路(12)が導通して通常のAF運転モード
になり、第2加算出力信号(Pt)が限りなく零に近付い
て高調波成分電流(ILh)が打ち消される。
Therefore, after the AF operation is started and a certain time has elapsed, the harmonic component current (ILh) is set by the second adder (13).
And the compensation current (Ia) are added, and the second addition output signal (Pt = ILh + Ia) is converted into a DC signal (Pq) via the DC converter (19) and output. Then, the comparator (14) compares the direct current signal (Pq) with the set value (Pr), binarizes and outputs the second addition output signal (Pt), and inputs it to the second gate circuit (15). . Therefore, the second addition output signal (Pt),
That is, when the DC signal (Pq) is less than or equal to the set value (Pr), the comparator output signal (Ps) becomes low. It appears at the output of the second gate circuit (15) and is inverted to high through the first inverter (22) to become the first gate signal (Ga). As a result, the first gate circuit (12) is turned on to enter the normal AF operation mode, the second addition output signal (Pt) approaches zero as much as possible, and the harmonic component current (ILh) is canceled.

【0014】一方、負荷側にコンデンサ等の高調波に対
して低インピーダンスとなる負荷(3a)が加わって高調
波電流(IL)の拡大が生じると、第2加算出力信号(P
t)が増加して零よりも大きくなる。そうすると、直流
信号(Pq)が設定値(Pr)を越えて比較器出力信号(P
s)がハイになり、更にその出力信号(Ps)が第2ゲー
ト回路(15)の出力に現われ、第1反転器(22)を介し
てロウに反転されて第1ゲート信号(Ga)となる。それ
により高調波電流(IL)の拡大が生じたことを検知す
ると共に、第1ゲート回路(12)が遮断して補償電流
(Ia)を零に制御し、AF運転を遮断して高調波電流拡
大を助勢しないようにする。
On the other hand, when a load (3a) having a low impedance with respect to harmonics such as a capacitor is added to the load side to expand the harmonic current (IL), the second addition output signal (P
t) increases and becomes greater than zero. Then, the DC signal (Pq) exceeds the set value (Pr) and the comparator output signal (Pr)
s) becomes high, and its output signal (Ps) appears at the output of the second gate circuit (15) and is inverted to low through the first inverter (22) to generate the first gate signal (Ga). Become. As a result, it is detected that the harmonic current (IL) has expanded, and the first gate circuit (12) shuts off to control the compensation current (Ia) to zero. Don't help the expansion.

【0015】同時に、第2ゲート回路(15)の出力信号
(ハイ)は第2タイマ(18)に入力され、設定された一
定時間、ハイ信号が入力として継続すると、第2タイマ
出力がハイとなり、更にそれが第2反転器(23)を介し
てロウに反転されてアンド回路(16)の他方の入力信号
となる。そうすると、アンド回路(16)の出力信号がロ
ウとなって第1タイマ出力がロウとなり、第2ゲート信
号(Gb)がロウとなって第2ゲート回路(15)が遮断
(出力ロウ)する。そして、第1反転器(22)を介して
反転されて第1ゲート信号(Ga)がハイとなって第1ゲ
ート回路(12)が導通し、それにより一旦、通常のAF
運転モードに強制的に戻す。
At the same time, the output signal (high) of the second gate circuit (15) is input to the second timer (18), and when the high signal continues as an input for a set fixed time, the output of the second timer becomes high. Further, it is inverted to low through the second inverter (23) and becomes the other input signal of the AND circuit (16). Then, the output signal of the AND circuit (16) becomes low, the first timer output becomes low, the second gate signal (Gb) becomes low, and the second gate circuit (15) is cut off (output low). Then, it is inverted through the first inverter (22), the first gate signal (Ga) becomes high, and the first gate circuit (12) becomes conductive.
Forced return to operation mode.

【0016】尚、第2ゲート回路(15)の出力信号がロ
ウになった時点で、第2タイマ出力がロウとなり、それ
が第2反転器(23)を介してハイに反転されてアンド回
路(16)の他方の入力信号となる。それにより第1タイ
マ(17)で決まる時間経過後、第2ゲート信号(Gb)が
再びハイとなって第2ゲート回路(15)が導通する。
When the output signal of the second gate circuit (15) becomes low, the output of the second timer becomes low, which is inverted to high through the second inverter (23) and then the AND circuit. It becomes the other input signal of (16). As a result, after the time determined by the first timer (17) has elapsed, the second gate signal (Gb) becomes high again and the second gate circuit (15) becomes conductive.

【0017】そこで、通常のAF運転モードにおいて直
流信号(Pq)が設定値(Pr)以下であれば、そのままA
F運転モードを継続する一方、通常のAF運転モードに
戻しても依然として直流信号(Pq)が設定値(Pr)以上
の場合には、比較器出力信号(Ps)が再びハイになって
第2ゲート回路(15)の出力にそのまま現われ、更にそ
れが第1反転器(22)を介してロウに反転されて第1ゲ
ート信号(Ga)となり、第1ゲート回路(12)が遮断し
て補償電流(Ia)を零に制御する。
Therefore, if the DC signal (Pq) is less than the set value (Pr) in the normal AF operation mode, A is used as it is.
If the DC signal (Pq) is still above the set value (Pr) even after returning to the normal AF operation mode while continuing the F operation mode, the comparator output signal (Ps) becomes high again and the second It appears in the output of the gate circuit (15) as it is, and then it is inverted to low through the first inverter (22) to become the first gate signal (Ga), and the first gate circuit (12) cuts off and compensates. The current (Ia) is controlled to zero.

【0018】又、第2ゲート回路(15)の出力信号がハ
イになった時点で上記同様に第2タイマ(18)が作動
し、一定時間経過後、再び通常のAF運転モードに戻
る。上記動作を繰り返す。
When the output signal of the second gate circuit (15) becomes high, the second timer (18) operates in the same manner as described above, and after a lapse of a fixed time, the normal AF operation mode is resumed. The above operation is repeated.

【0019】[0019]

【発明の効果】本発明によれば、負荷側にコンデンサ等
の高調波に対して低インピーダンスとなる負荷が加わっ
て高調波電流の拡大が生じた場合、それを検知して高調
波打ち消し用補償電流を零に制御するようにしたから、
負荷側の高調波発生源の発生量以上に高調波電流が拡大
すること及び負荷側コンデンサの加熱等を防止出来る。
According to the present invention, when a load having a low impedance with respect to harmonics such as a capacitor is added to the load side to expand the harmonic current, it is detected to compensate for the harmonic cancellation. Since the current is controlled to zero,
It is possible to prevent the harmonic current from expanding beyond the generation amount of the harmonic generation source on the load side and to prevent the heating of the load side capacitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアクティブフィルタの制御回路の
実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a control circuit for an active filter according to the present invention.

【図2】(a)はアクティブフィルタの動作例を示すブ
ロック図である。(b)は従来のアクティブフィルタの
制御回路の一例を示すブロック図である。(c)は図2
(a)の等価回路図である。(d)は本発明の課題を説
明する等価回路図である。
FIG. 2A is a block diagram showing an operation example of an active filter. (B) is a block diagram showing an example of a control circuit of a conventional active filter. Figure 2 (c)
It is an equivalent circuit schematic of (a). (D) is an equivalent circuit diagram explaining the subject of this invention.

【符号の説明】[Explanation of symbols]

8 高調波検出器 9 第1加算器 12 第1ゲート回路 13 第2加算器 14 比較器 15 第2ゲート回路 16 アンド回路 17 第1タイマ 18 第2タイマ 19 直流変換器 8 Harmonic Detector 9 First Adder 12 First Gate Circuit 13 Second Adder 14 Comparator 15 Second Gate Circuit 16 AND Circuit 17 First Timer 18 Second Timer 19 DC Converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負荷側で発生した高調波電流から高調波
検出器により所定次数の高調波成分電流を検出して第1
加算器で補償電流と加算し、その第1加算出力信号が零
になるように補償電流発生用インバータを駆動制御して
上記高調波成分電流を打ち消すアクティブフィルタの制
御回路において、 上記高調波検出器と第1加算器入力との間に接続され、
両者間を導通又は遮断する第1ゲート回路と、上記高調
波検出器により検出した高調波成分電流と補償電流とを
加算する第2加算器と、一方の入力側に上記第2加算器
出力が直流変換器を介して接続され、直流変換器出力信
号と所定レベルの設定値とを比較して第2加算出力信号
を2値化して出力する比較器と、入力側を上記比較器出
力に接続して出力側を第1反転器を介して第1ゲート回
路のゲート信号入力に接続した第2ゲート回路と、アク
ティブフィルタ運転指令信号を一方の入力信号とし、出
力側を第1タイマを介して上記第2ゲート回路のゲート
信号入力に接続したアンド回路と、入力側を上記第2ゲ
ート回路出力に接続して出力側を第2反転器を介して上
記アンド回路の他方の入力に接続した第2タイマとを具
備したことを特徴とするアクティブフィルタの制御回
路。
1. A first harmonic wave component current of a predetermined order is detected by a harmonic wave detector from a harmonic current generated on a load side.
In the control circuit of the active filter, which adds the compensation current in the adder and controls the driving of the compensation current generating inverter so that the first addition output signal becomes zero, thereby canceling the harmonic component current, the harmonic detector Connected to the first adder input,
A first gate circuit for connecting or disconnecting the two, a second adder for adding the harmonic component current detected by the harmonic detector and the compensation current, and the second adder output on one input side. A comparator, which is connected through a DC converter, compares the DC converter output signal with a set value of a predetermined level and binarizes and outputs the second addition output signal, and connects the input side to the comparator output. Then, the output side is connected to the gate signal input of the first gate circuit via the first inverter, and the active filter operation command signal is one input signal, and the output side is connected via the first timer. An AND circuit connected to the gate signal input of the second gate circuit; and an AND circuit having an input side connected to the second gate circuit output and an output side connected to the other input of the AND circuit via a second inverter. It is equipped with 2 timers Control circuit of the active filter.
JP6017995A 1994-02-15 1994-02-15 Control circuit for active filter Withdrawn JPH07231566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6017995A JPH07231566A (en) 1994-02-15 1994-02-15 Control circuit for active filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6017995A JPH07231566A (en) 1994-02-15 1994-02-15 Control circuit for active filter

Publications (1)

Publication Number Publication Date
JPH07231566A true JPH07231566A (en) 1995-08-29

Family

ID=11959314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6017995A Withdrawn JPH07231566A (en) 1994-02-15 1994-02-15 Control circuit for active filter

Country Status (1)

Country Link
JP (1) JPH07231566A (en)

Similar Documents

Publication Publication Date Title
US4641042A (en) Power supply system and a control method thereof
JP2760666B2 (en) Method and apparatus for controlling PWM converter
US5771161A (en) Uninterruptable capability for an active power line conditioner
JPH0287976A (en) Power converter
JP3259308B2 (en) Inverter device and uninterruptible power supply using the same
JP2783771B2 (en) Starting operation method of grid-connected inverter device
JP2000083324A (en) System interconnection inverter system
JPH1014251A (en) Control circuit for uninterruptible power supply
JPH07231566A (en) Control circuit for active filter
JPH07298495A (en) Active filter control circuit
JPH10271829A (en) Rectifier circuit for general use inverter
JPH1132485A (en) Control device of thyristor commutator
JPH07231567A (en) Control circuit for active filter
JP2003032897A (en) Solar generator
JP3256650B2 (en) Stationary auxiliary power supply for vehicles
JP2665304B2 (en) Grid-connected inverter circuit for solar cells
JPS63206165A (en) Uninterruptible power supply
JPH0974771A (en) Inverter apparatus
JPH011431A (en) power supply
CN115769460A (en) Uninterruptible power supply device
JP2002078234A (en) Ac-feeding system
JPH04334930A (en) Series-type active filter
JP2001057738A (en) Active filter
JPH07298494A (en) Active filter control circuit
JPH10155281A (en) System interconnection inverter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508