JPH0722993A - Device for communication between flying body and satellite, and method for communication - Google Patents

Device for communication between flying body and satellite, and method for communication

Info

Publication number
JPH0722993A
JPH0722993A JP5151756A JP15175693A JPH0722993A JP H0722993 A JPH0722993 A JP H0722993A JP 5151756 A JP5151756 A JP 5151756A JP 15175693 A JP15175693 A JP 15175693A JP H0722993 A JPH0722993 A JP H0722993A
Authority
JP
Japan
Prior art keywords
data
transmission
fixed station
radio wave
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5151756A
Other languages
Japanese (ja)
Other versions
JP2503883B2 (en
Inventor
Hidenori Moriya
秀則 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5151756A priority Critical patent/JP2503883B2/en
Publication of JPH0722993A publication Critical patent/JPH0722993A/en
Application granted granted Critical
Publication of JP2503883B2 publication Critical patent/JP2503883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To permit the rotary wing of a flying body to shut off a radio wave propagation route between the artificial satellites and to prevent the deterioration of line quality of the satellite communication line constituted between a fixed station. CONSTITUTION:The device is provided with a fixed station 2, a flying body such as helicopter, and a satellite 7. The communication between the fixed station 2 and the flying body is performed through the satellite 7. In the flying body, the interception of the radio wave which is periodically generated by a rotary wing 4 is detected and the communication is performed within time except the timing synchronized with the interception of the radio wave. Thus, the influence of the interception of the radio wave can be removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は飛翔体衛星通信装置及び
その通信方法に関し、特にヘリコプタ等の飛翔体の回転
翼が人工衛星との間の電波伝搬路を遮蔽し、固定局との
間に構成される衛星通信回線の回線品質を劣化させるこ
とを防ぐ飛翔体衛星通信装置及びその通信方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spacecraft satellite communication device and a communication method therefor, and in particular, a rotor of a spacecraft such as a helicopter shields a radio wave propagation path between the satellite and a satellite, and a space between the satellite and a fixed station. TECHNICAL FIELD The present invention relates to a flying satellite communication device and a communication method thereof that prevent deterioration of the line quality of a configured satellite communication line.

【0002】[0002]

【従来の技術】従来の衛星通信方式は、伝搬路上での電
波の遮蔽に伴う回線品質の劣化を防ぐために送信データ
をブロック符号、畳み込み符号などで符号化する誤り訂
正技術(衛星通信と誤り訂正符号化技術 衛星通信研究
No.39号 財団法人国際衛星通信協会)、送信デー
タを繰り返し送信する技術、送受信アンテナを複数台設
置しダイバーシチ送受信を行う技術(公開特許 平2−
295205)、対向する地球局からの電波が受信可能
なときのみ送信を行う技術;(フィールド トライアル
アンド パフォーマンス オブ ランド モービルメ
ッセージ コミュニケーションズ ユージング Kuバ
ンド サテライト、Field Trial and
Performance of LandMobile
Message Communications U
singKu−Band Satellite、IEI
CE TRANS.COMMUN.VOL.E76−
B、NO.2 FEBRUARY 1993)、などの
技術が用いられていた。
2. Description of the Related Art The conventional satellite communication system is an error correction technique (satellite communication and error correction) that encodes transmission data with a block code, a convolutional code, etc. in order to prevent deterioration of line quality due to blocking of radio waves on a propagation path. Encoding technology Satellite communication research No. 39 International Satellite Communication Association), technology for repeatedly transmitting transmission data, technology for performing diversity transmission / reception by installing multiple transmission / reception antennas (Patent Publication 2-
295205), a technology that transmits only when radio waves from the opposite earth station are receivable; (Field Trial and Performance of Mobile Message Communications, Using Ku Band Satellite, Field Trial and
Performance of LandMobile
Message Communications U
singKu-Band Satellite, IEI
CE TRANS. COMMUN. VOL. E76-
B, NO. 2 FEBRARY 1993), and the like.

【0003】[0003]

【発明が解決しようとする課題】この従来の衛星通信方
式では、次のような問題点があった。
The conventional satellite communication system has the following problems.

【0004】1.送信データをブロック符号、畳み込み
符号などで符号化する誤り訂正技術では、伝搬路上での
電波の遮蔽の有無に無関係に送信データは符号化され冗
長データが付加されるのでデータ伝送効率が低下する。
1. In the error correction technique that encodes the transmission data with a block code, a convolutional code, or the like, the transmission data is encoded and redundant data is added regardless of whether or not the radio wave is shielded on the propagation path, so that the data transmission efficiency is reduced.

【0005】2.送信データを繰り返し送信する技術で
は、伝搬路上での電波の遮蔽の有無に無関係にデータを
繰り返し送信する場合にはデータ伝送効率が低下する。
また遮蔽物の影響を受けたデータのみ再送する場合には
伝送遅延が大きくなる。
2. In the technique of repeatedly transmitting the transmission data, the data transmission efficiency is reduced when the data is repeatedly transmitted regardless of whether the radio wave is shielded on the propagation path.
Further, when only the data affected by the shield is retransmitted, the transmission delay becomes large.

【0006】3.送受信アンテナを複数台設置しダイバ
ーシチ送受信を行う技術では、アンテナが複数台必要と
なる。アンテナの切替制御を行う必要がある。
3. The technique of installing multiple transmitting / receiving antennas and performing diversity transmission / reception requires multiple antennas. It is necessary to control the switching of the antenna.

【0007】4.対向する地球局からの電波が受信可能
なときのみ送信を行う技術では、伝搬路が長く伝搬遅延
時間が大きい場合もしくは地球局が移動しながら通信を
行い人工衛星との距離が刻々と変化する場合などには対
向する地球局の送信タイミングと遮蔽タイミングにずれ
が生ずるため回線品質が劣化する。
4. In the technology that transmits only when radio waves from the opposite earth station can be received, when the propagation path is long and the propagation delay time is long, or when the earth station communicates while moving and the distance from the artificial satellite changes momentarily. In this case, the transmission quality of the opposite earth station and the shielding timing are deviated from each other, which deteriorates the line quality.

【0008】それ故に、本発明の課題は、ヘリコプタ等
の飛翔体において回転翼が人工衛星との間の電波伝搬路
を遮蔽し、固定局との間に構成される衛星通信回線の回
線品質を劣化させることを防ぐ飛翔体衛星通信装置及び
その飛翔体衛星通信方法を提供することにある。
Therefore, an object of the present invention is to improve the line quality of a satellite communication line formed between a rotor and a satellite in a flying object such as a helicopter by blocking a radio wave propagation path between the rotor and the artificial satellite. An object of the present invention is to provide a flying satellite communication device and a flying satellite communication method for preventing the deterioration.

【0009】[0009]

【課題を解決するための手段】本発明によれば、固定局
と、飛翔体と、衛星とを備え、前記固定局を前記飛翔体
との間の通信を前記衛星を介して行う飛翔体衛星通信方
法において、前記飛翔体では、周期的に生じる電波の遮
蔽を検出し、該電波の遮蔽に同期したタイミングをい除
いた時間内に通信を行うことにより、前記電波の遮蔽に
よる影響を除去できることを特徴とする飛翔体衛星通信
方法が得られる。
According to the present invention, there is provided a fixed satellite, a flying vehicle, and a satellite, and a flying vehicle satellite for communicating with the fixed station via the satellite. In the communication method, it is possible to remove the influence of the radio wave shield by detecting the shield of the radio wave that occurs periodically in the flying object and performing communication within a time period excluding the timing synchronized with the shield of the radio wave. A spacecraft satellite communication method is obtained.

【0010】また、本発明によれば、固定局から送信さ
れる信号の受信レベルを検出する受信機と、該受信機の
受信レベル信号出力から前記固定局と飛翔局の間の伝搬
路上での電波の遮蔽タイミングを検出し、該電波の遮蔽
がないときにはデータを送信し、該電波の遮蔽があると
きにはデータ送信の停止を制御する送信タイミング制御
機と、該送信タイミング制御機の送信データ出力により
送信データ搬送波を変調する送信データ変調機と、前記
受信機の受信データ搬送波出力を受信データに復調しデ
ータ端末機に入力する受信データ復調機と、前記受信機
の受信レベル信号出力と前記データ端末機のデータ受信
タイミング信号出力から前記電波の前記遮蔽タイミング
と前記データ受信タイミングの位相差を検出し、前記電
波の遮蔽があるときには前記固定局のデータ送信を停止
するように前記固定局の前記送信タイミングを制御する
位相差検出機と、該位相差検出機の固定局送信タイミン
グ制御データ出力により制御データ搬送波を変調する制
御データ変調機と、前記送信データ搬送波と前記制御デ
ータ搬送波の出力を合成し前記固定局に送信する送信機
とにより構成されることを特徴とする飛翔体衛星通信装
置が得られる。
Further, according to the present invention, a receiver for detecting a reception level of a signal transmitted from a fixed station, and a reception level signal output of the receiver are used for the propagation path between the fixed station and the flying station. A transmission timing controller that detects the radio wave shielding timing, transmits data when the radio wave is not shielded, and controls the stop of data transmission when the radio wave is shielded, and a transmission data output of the transmission timing controller. A transmission data modulator for modulating a transmission data carrier, a reception data demodulator for demodulating a reception data carrier output of the receiver into reception data and inputting the reception data to a data terminal, a reception level signal output of the receiver and the data terminal When the phase difference between the shielding timing of the radio wave and the data receiving timing is detected from the data reception timing signal output of the machine, and the radio wave is shielded. Includes a phase difference detector that controls the transmission timing of the fixed station so as to stop the data transmission of the fixed station, and a control that modulates a control data carrier by the fixed station transmission timing control data output of the phase difference detector. There is provided a flying satellite communication device comprising a data modulator and a transmitter for combining outputs of the transmission data carrier and the control data carrier and transmitting the combined outputs to the fixed station.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の飛翔体衛星通信装置を利用した衛星
通信システムの回線構成図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a circuit configuration diagram of a satellite communication system using the spacecraft satellite communication device of the present invention.

【0012】図1を参照して、飛翔体衛星通信装置は、
固定局2と、ヘリコプタのような飛翔体と、衛星7とを
備え、固定局2と飛翔体との間の通信を人口衛星7を介
して行う。飛翔体は、飛翔局1と、回転翼4と、送受信
機5とを有している。
Referring to FIG. 1, the spacecraft satellite communication device comprises:
The fixed station 2, a flying object such as a helicopter, and a satellite 7 are provided, and communication between the fixed station 2 and the flying object is performed via the artificial satellite 7. The flying body has a flying station 1, a rotor 4, and a transceiver 5.

【0013】飛翔体では、周期的に生じる電波の遮蔽を
検出し、電波の遮蔽に同期したタイミングをい除いた時
間内に通信を行うことにより、電波の遮蔽による影響を
除去する。
In a flying object, the shielding of radio waves that occurs periodically is detected, and the influence of the shielding of radio waves is eliminated by performing communication within a time period excluding the timing synchronized with the shielding of radio waves.

【0014】飛翔局1は、固定局2から送信される受信
データ搬送波3を受信するが、伝搬路には回転翼4があ
るために受信レベルは断続的に低下する。送受信機5で
はこの受信レベルの断続タイミングを用いて、送信タイ
ミングを発生し飛翔局送信データのオンオフを行なう。
The flying station 1 receives the reception data carrier wave 3 transmitted from the fixed station 2, but the reception level is intermittently lowered because of the rotary blade 4 in the propagation path. The transceiver 5 uses the intermittent timing of the reception level to generate transmission timing and turn on / off the flight station transmission data.

【0015】また、送受信機5では回転翼4により伝搬
路が遮蔽されることに起因する固定局2からの受信信号
のレベル低下と固定局2の送信データタイミングを比較
し、この2つのタイミングが一致するように固定局送信
タイミング制御データを生成し、このデータを制御デー
タ搬送波6により人工衛星7を経由して固定局2に送り
固定局2の送信データタイミングを制御する。
Further, in the transceiver 5, the level decrease of the received signal from the fixed station 2 due to the propagation path being shielded by the rotor 4 and the transmission data timing of the fixed station 2 are compared. The fixed station transmission timing control data is generated so that they match, and this data is sent to the fixed station 2 via the artificial satellite 7 by the control data carrier 6 to control the transmission data timing of the fixed station 2.

【0016】図2は、図1の送受信機5の構成図であっ
て、送受信機5は、固定局2から送信される信号の受信
レベルを検出する受信機9と、受信機9の受信レベル信
号出力から固定局2と飛翔局1の間の伝搬路上での電波
の遮蔽タイミングを検出する送信タイミング制御機10
とを有している。送信タイミング制御機10は、電波の
遮蔽がないときにはデータを送信し、電波の遮蔽がある
ときにはデータ送信の停止を制御する。
FIG. 2 is a block diagram of the transceiver 5 of FIG. 1. The transceiver 5 includes a receiver 9 for detecting the reception level of a signal transmitted from the fixed station 2 and a reception level of the receiver 9. A transmission timing controller 10 for detecting the radio wave shielding timing on the propagation path between the fixed station 2 and the flying station 1 from the signal output.
And have. The transmission timing controller 10 transmits data when the radio wave is not blocked and controls the stop of data transmission when the radio wave is blocked.

【0017】さらに、送受信機5は、送信タイミング制
御機10の送信データ出力により送信データ搬送波を変
調する送信データ変調機12と、受信機9の受信データ
搬送波出力を受信データに復調しデータ端末機11に入
力する受信データ復調機15と、受信機9の受信レベル
信号出力とデータ端末機11のデータ受信タイミング信
号出力から電波の遮蔽タイミングとデータ受信タイミン
グの位相差を検出し、電波の遮蔽があるときには固定局
2のデータ送信を停止するように固定局2の送信タイミ
ングを制御する位相差検出機14と、位相差検出機14
の固定局送信タイミング制御データ出力により制御デー
タ搬送波を変調する制御データ変調機16と、送信デー
タ搬送波と制御データ搬送波の出力を合成し固定局2に
送信する送信機13とを有している。
Further, the transceiver 5 demodulates the transmission data modulator 12 which modulates the transmission data carrier by the transmission data output of the transmission timing controller 10 and the reception data carrier output of the receiver 9 into reception data, and the data terminal unit. From the reception data demodulator 15 input to 11, the reception level signal output of the receiver 9 and the data reception timing signal output of the data terminal device 11, the phase difference between the radio wave shielding timing and the data receiving timing is detected, and the radio wave shielding is performed. At some time, the phase difference detector 14 that controls the transmission timing of the fixed station 2 so as to stop the data transmission of the fixed station 2, and the phase difference detector 14
The control data modulator 16 modulates the control data carrier by the fixed station transmission timing control data output, and the transmitter 13 that synthesizes the output of the transmission data carrier and the output of the control data carrier and transmits to the fixed station 2.

【0018】固定局2からの受信信号はアンテナ8で受
信されたのちに受信機9で受信される。受信機9の受信
レベル信号出力は、送信タイミング制御機10に入力さ
れる。送信タイミング制御機10ではデータ端末機11
から出力された送信データを受信レベル信号のレベル低
下タイミングを基準としてオンオフする。
The received signal from the fixed station 2 is received by the antenna 8 and then the receiver 9. The reception level signal output of the receiver 9 is input to the transmission timing controller 10. In the transmission timing controller 10, the data terminal 11
The transmission data output from is turned on / off with reference to the timing of the level reduction of the reception level signal.

【0019】送信データ変調機12では、送信タイミン
グ制御機10から出力された送信データを用いて送信デ
ータ搬送波を変調し送信機13に出力する。
The transmission data modulator 12 modulates the transmission data carrier using the transmission data output from the transmission timing controller 10 and outputs it to the transmitter 13.

【0020】一方、受信機9の受信レベル信号出力は位
相差検出機14に入力される。また受信機9の受信デー
タ搬送波出力は受信データ復調機15に入力され復調さ
れた受信データはデータ端末機11に入力される。位相
差検出機14ではデータ端末機11のデータ受信タイミ
ング信号出力と受信レベル信号のレベル低下タイミング
を比較し、この2つのタイミングが一致するような固定
局送信タイミング制御データを生成する。この固定局送
信タイミング制御データは制御データ変調機16に入力
され制御データ搬送波を変調し送信機13に出力され
る。
On the other hand, the reception level signal output of the receiver 9 is input to the phase difference detector 14. Further, the reception data carrier wave output of the receiver 9 is inputted to the reception data demodulator 15, and the demodulated reception data is inputted to the data terminal unit 11. The phase difference detector 14 compares the data reception timing signal output of the data terminal 11 with the level reduction timing of the reception level signal, and generates fixed station transmission timing control data such that these two timings match. This fixed station transmission timing control data is input to the control data modulator 16, which modulates the control data carrier and is output to the transmitter 13.

【0021】送信機13では送信データ搬送波と制御デ
ータ搬送波を合成しアンテナ8を介して固定局2に向け
て送信する。
The transmitter 13 combines the transmission data carrier wave and the control data carrier wave and transmits them to the fixed station 2 via the antenna 8.

【0022】図3は本発明のタイミングチャートであ
る。17は回転翼4による伝搬路の遮蔽タイミングであ
り、飛翔体の飛行が安定すると定周期となる。18は受
信機9の受信レベルであり回転翼4の遮蔽があるときに
電力レベルは0になる。19は送信タイミング制御機1
0の送信制御タイミングであり伝搬路の遮蔽タイミング
の反転である。20は固定局2での受信データタイミン
グであり飛翔局1の送信データタイミングから伝搬遅延
時間ΔT0だけオフセットする。21は固定局2からの
送信データタイミングであり飛翔局1から指定されたオ
フセット時間ΔT1だけ受信データタイミングからオフ
セットされる。22は固定局2から送信されたデータを
飛翔局1で受信したタイミングであり、固定局2の送信
データタイミングから伝搬遅延時間ΔT0だけオフセッ
トし、さらに回転翼4の遮蔽タイミングでデータが欠落
する。ΔT2は固定局2から送信されるデータの飛翔局
1で受信されるタイミングと回転翼2の伝搬路遮断タイ
ミングのずれである。
FIG. 3 is a timing chart of the present invention. Reference numeral 17 denotes a timing of shielding the propagation path by the rotary blades 4, which becomes a fixed period when the flight of the flying object is stabilized. Reference numeral 18 denotes the reception level of the receiver 9, and the power level becomes 0 when the rotary blade 4 is shielded. 19 is a transmission timing controller 1
The transmission control timing is 0, which is the reversal of the channel shielding timing. Reference numeral 20 denotes a reception data timing at the fixed station 2, which is offset from the transmission data timing at the flying station 1 by the propagation delay time ΔT0. Reference numeral 21 denotes a transmission data timing from the fixed station 2, which is offset from the reception data timing by the offset time ΔT1 designated by the flying station 1. Reference numeral 22 denotes a timing at which the data transmitted from the fixed station 2 is received by the flying station 1. The data 22 is offset from the transmission data timing of the fixed station 2 by the propagation delay time ΔT0, and the data is lost at the shielding timing of the rotor 4. ΔT2 is the difference between the timing of the data transmitted from the fixed station 2 being received by the flying station 1 and the propagation path cutoff timing of the rotor 2.

【0023】往復の伝搬遅延時間と固定局2でのオフセ
ット時間の和(ΔT0+ΔT1+ΔT0)が回転翼4に
よる伝搬路の遮断周期の整数倍のときはΔT2を0とす
ることができる。
When the sum of the round trip propagation delay time and the offset time at the fixed station 2 (ΔT0 + ΔT1 + ΔT0) is an integral multiple of the period of interruption of the propagation path by the rotor 4, ΔT2 can be set to 0.

【0024】次に一例として伝搬路上の遮蔽物を飛翔体
(ヘリコプタ)の回転翼4とした場合の伝送効率を表1
に示す。(電波伝搬路と回転翼4は回転中心と回転翼端
から等しい距離の地点(=1/2回転翼長)で交差する
こととする。)
Next, as an example, Table 1 shows the transmission efficiency when the shield on the propagation path is the rotor 4 of the flying object (helicopter).
Shown in. (It is assumed that the radio wave propagation path and the rotary blade 4 intersect at a point (= 1/2 rotary blade length) at the same distance from the center of rotation and the rotary blade tip.)

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示す通り本発明を用いることにより
従来の方式に比べ高い伝送効率を得ることができる。
As shown in Table 1, by using the present invention, higher transmission efficiency can be obtained as compared with the conventional system.

【0027】なお、表1における機種名AH−1Sにお
ける伝送効率の算出例を数式1に示す。
Formula 1 shows a calculation example of the transmission efficiency in the model name AH-1S in Table 1.

【0028】[0028]

【数1】 [Equation 1]

【0029】[0029]

【発明の効果】以上説明したように本発明は、あらかじ
め予測される伝搬路上での電波の遮蔽タイミングを用い
て送信局のデータ送信タイミングを制御することで伝送
効率の向上を図ることができる。
As described above, according to the present invention, it is possible to improve the transmission efficiency by controlling the data transmission timing of the transmitting station by using the predicted radio wave shielding timing on the propagation path.

【0030】本発明においては、回線品質の維持に冗長
データ等を用いないために伝送効率の最大値は伝搬路上
に遮蔽物が存在する時間率とすることができる。
In the present invention, since the redundant data or the like is not used for maintaining the line quality, the maximum value of the transmission efficiency can be the time rate at which the shield exists on the propagation path.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を本発明の飛翔体衛星通信装置及びその
通信方法を利用した衛星通信システムの構成図である。
FIG. 1 is a configuration diagram of a satellite communication system using the present invention satellite communication device and communication method thereof.

【図2】図1の送受信機の構成図である。FIG. 2 is a block diagram of the transceiver of FIG.

【図3】本発明の飛翔体衛星通信装置及びその通信方法
におけるタイミングチャートである。
FIG. 3 is a timing chart in the flying satellite communication device and the communication method thereof according to the present invention.

【符号の説明】[Explanation of symbols]

1 飛翔局 2 固定局 3 受信データ搬送波 4 回転翼 5 送受信機 6 制御データ搬送波 7 人工衛星 8 アンテナ 9 受信機 10 送信タイミング制御機 11 データ端末機 12 送信データ変調機 13 送信機 14 位相差検出機 15 受信データ復調機 16 制御データ変調機 1 Flying Station 2 Fixed Station 3 Received Data Carrier 4 Rotor 5 Transceiver 6 Control Data Carrier 7 Artificial Satellite 8 Antenna 9 Receiver 10 Transmission Timing Controller 11 Data Terminal 12 Transmitted Data Modulator 13 Transmitter 14 Phase Difference Detector 15 Received data demodulator 16 Control data modulator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固定局と、飛翔体と、衛星とを備え、前
記固定局を前記飛翔体との間の通信を前記衛星を介して
行う飛翔体衛星通信方法において、前記飛翔体では、周
期的に生じる電波の遮蔽を検出し、該電波の遮蔽に同期
したタイミングをい除いた時間内に通信を行うことによ
り、前記電波の遮蔽による影響を除去できることを特徴
とする飛翔体衛星通信方法。
1. A flying body satellite communication method comprising a fixed station, a flying body, and a satellite, wherein communication between the fixed station and the flying body is performed via the satellite, wherein the flying body has a cycle. A method of communicating a satellite for satellites, characterized in that the influence of the shielding of the radio wave can be eliminated by detecting the shielding of the radio wave that occurs during the period of time and performing the communication within a time period excluding the timing synchronized with the shielding of the radio wave.
【請求項2】 固定局から送信される信号の受信レベル
を検出する受信機と、該受信機の受信レベル信号出力か
ら前記固定局と飛翔局の間の伝搬路上での電波の遮蔽タ
イミングを検出し、該電波の遮蔽がないときにはデータ
を送信し、該電波の遮蔽があるときにはデータ送信の停
止を制御する送信タイミング制御機と、該送信タイミン
グ制御機の送信データ出力により送信データ搬送波を変
調する送信データ変調機と、前記受信機の受信データ搬
送波出力を受信データに復調しデータ端末機に入力する
受信データ復調機と、前記受信機の受信レベル信号出力
と前記データ端末機のデータ受信タイミング信号出力か
ら前記電波の前記遮蔽タイミングと前記データ受信タイ
ミングの位相差を検出し、前記電波の遮蔽があるときに
は前記固定局のデータ送信を停止するように前記固定局
の送信タイミングを制御する位相差検出機と、該位相差
検出機の固定局送信タイミング制御データ出力により制
御データ搬送波を変調する制御データ変調機と、前記送
信データ搬送波と前記制御データ搬送波の出力を合成し
前記固定局に送信する送信機とにより構成されることを
特徴とする飛翔体衛星通信装置。
2. A receiver for detecting a reception level of a signal transmitted from a fixed station, and detecting a radio wave shielding timing on a propagation path between the fixed station and a flying station from a reception level signal output of the receiver. However, when the radio wave is not shielded, data is transmitted, and when the radio wave is shielded, a transmission timing controller that controls the stop of data transmission, and a transmission data carrier is modulated by the transmission data output of the transmission timing controller. A transmission data modulator, a reception data demodulator that demodulates a reception data carrier output of the receiver into reception data and inputs the reception data to a data terminal, a reception level signal output of the receiver, and a data reception timing signal of the data terminal. The phase difference between the shield timing of the radio wave and the data reception timing is detected from the output, and when the radio wave is shielded, the data of the fixed station is detected. A phase difference detector for controlling the transmission timing of the fixed station so as to stop data transmission, a control data modulator for modulating a control data carrier by the fixed station transmission timing control data output of the phase difference detector, and the transmission A flying object satellite communication device comprising: a transmitter which combines a data carrier wave and an output of the control data carrier wave and transmits the combined output to the fixed station.
JP5151756A 1993-06-23 1993-06-23 Flight satellite communication device and communication method thereof Expired - Lifetime JP2503883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5151756A JP2503883B2 (en) 1993-06-23 1993-06-23 Flight satellite communication device and communication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151756A JP2503883B2 (en) 1993-06-23 1993-06-23 Flight satellite communication device and communication method thereof

Publications (2)

Publication Number Publication Date
JPH0722993A true JPH0722993A (en) 1995-01-24
JP2503883B2 JP2503883B2 (en) 1996-06-05

Family

ID=15525611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151756A Expired - Lifetime JP2503883B2 (en) 1993-06-23 1993-06-23 Flight satellite communication device and communication method thereof

Country Status (1)

Country Link
JP (1) JP2503883B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004337A1 (en) * 1995-07-17 1997-02-06 The Nippon Signal Co., Ltd. Object detection apparatus
JP2009171514A (en) * 2008-01-21 2009-07-30 Mitsubishi Electric Corp Helicopter-satellite communication system, helicopter-mounted communication apparatus used therefor, and ground station communication apparatus
JP2009212665A (en) * 2008-03-03 2009-09-17 Mitsubishi Electric Corp Method for helicopter-satellite communication, as well as, helicopter-carried communications equipment used for the same and ground station communications equipment
JP2011024038A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Communication device mounted on helicopter
EP2424127A3 (en) * 2006-10-22 2012-06-06 ViaSat, Inc. Cyclical obstruction communication system
US8976727B2 (en) 2006-10-22 2015-03-10 Viasat, Inc. Cyclical obstruction communication system
GB2584294A (en) * 2019-05-28 2020-12-02 Airbus Defence & Space Ltd Wireless communication
JPWO2022185408A1 (en) * 2021-03-02 2022-09-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6661066B2 (en) 2018-03-05 2020-03-11 三菱電機株式会社 Communication device, shielding prediction method, control circuit, and program storage medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004337A1 (en) * 1995-07-17 1997-02-06 The Nippon Signal Co., Ltd. Object detection apparatus
EP2424127A3 (en) * 2006-10-22 2012-06-06 ViaSat, Inc. Cyclical obstruction communication system
US8238284B2 (en) 2006-10-22 2012-08-07 Viasat, Inc. Cyclical obstruction communication system
US8976727B2 (en) 2006-10-22 2015-03-10 Viasat, Inc. Cyclical obstruction communication system
JP2009171514A (en) * 2008-01-21 2009-07-30 Mitsubishi Electric Corp Helicopter-satellite communication system, helicopter-mounted communication apparatus used therefor, and ground station communication apparatus
JP2009212665A (en) * 2008-03-03 2009-09-17 Mitsubishi Electric Corp Method for helicopter-satellite communication, as well as, helicopter-carried communications equipment used for the same and ground station communications equipment
JP4710922B2 (en) * 2008-03-03 2011-06-29 三菱電機株式会社 Helicopter satellite communication method, and helicopter-mounted communication device and ground station communication device used in the method
JP2011024038A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Communication device mounted on helicopter
GB2584294A (en) * 2019-05-28 2020-12-02 Airbus Defence & Space Ltd Wireless communication
US11842645B2 (en) 2019-05-28 2023-12-12 Airbus Defence And Space Limited Wireless communication
JPWO2022185408A1 (en) * 2021-03-02 2022-09-09
WO2022185408A1 (en) * 2021-03-02 2022-09-09 三菱電機株式会社 Terminal, base station, control circuit, storage medium, and communication method

Also Published As

Publication number Publication date
JP2503883B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
CN107852229B (en) Method and apparatus for discontinuous transmission in bent-tube relays in satellite communication systems
CN109792293B (en) Dynamic reverse link retransmission timeline in a satellite communication system
JP6767401B2 (en) Methods and equipment for efficient data transmission in half-duplex communication systems with large propagation delays
CN107408979B (en) Method and apparatus for avoiding exceeding interference limits of non-geostationary satellite systems
US10211909B2 (en) Link adaptation with RF intermediary element
EP1411648B1 (en) Communication methods and apparatus for controlling the transmission timing of a wireless transceiver
RU2136108C1 (en) Method for load allocation for several satellite retransmitters by extended spectrum signals from several antennas of ground stations
RU2153225C2 (en) Method for feedback power control in communication system using low-orbiting satellites
US5742639A (en) Mobile terminal apparatus and method for a satellite communication system
CN108141276B (en) Method and apparatus for HARQ process at inter-beam handover
EP1002379B1 (en) Method and apparatus for predictive parameter control with loop delay
US4639937A (en) HF avalanche relay communication technique
EP0825730B1 (en) Method and system for controlling uplink power in a high data rate satellite communication system employing on-board demodulation and remodulation
CA2638956A1 (en) Method and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
AU721111B2 (en) High power short message service using dedicated carrier frequency
JP2503883B2 (en) Flight satellite communication device and communication method thereof
JP6600101B2 (en) Asymmetric forward and reverse link subframe partitioning
US7751430B2 (en) Self optimization of time division duplex (TDD) timing and adaptive modulation thresholds
CN113783602B (en) Satellite communication data quality improving device
EP1950894B1 (en) Method for deep paging
JPH06503458A (en) Low orbit satellite communication system for terminals
EP2273695B1 (en) Transmit frequency precorrection for satellite terminals
CN103957046B (en) A kind of antenna for satellite communication in motion neighbour's star interference cuts forwarding method
CN115804165A (en) Method, apparatus, device and medium for updating uplink timing advance
WO2022135051A1 (en) Cross-carrier data transmission method and apparatus, terminal, and network device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960206