JPH07229891A - Analysis of ozone treatment characteristics and membrane treatment of ozone-treated water - Google Patents

Analysis of ozone treatment characteristics and membrane treatment of ozone-treated water

Info

Publication number
JPH07229891A
JPH07229891A JP2166994A JP2166994A JPH07229891A JP H07229891 A JPH07229891 A JP H07229891A JP 2166994 A JP2166994 A JP 2166994A JP 2166994 A JP2166994 A JP 2166994A JP H07229891 A JPH07229891 A JP H07229891A
Authority
JP
Japan
Prior art keywords
ozone
water
ozone treatment
treated
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2166994A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyanagi
重夫 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2166994A priority Critical patent/JPH07229891A/en
Publication of JPH07229891A publication Critical patent/JPH07229891A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove a precursor substance having trihalomethane forming capacity by successively filtering ozone-treated water by a ultrafiltration membrane having two or more of preset mol.wt. fractionation stages and measuring the water quality control items of the obtained conc. soln. to evaluate ozone treatment characteristics. CONSTITUTION:Ozone gas from an ozone generator is diffused into water to be treated in an ozone treatment tank and sterilization, deodorizing and decoloration are performed by its oxidizing power and sterilizing power. This ozone treated water is filtered with an ultrafiltration membrane having many mol.wt. fractionation stages wherein MW is 300K, 50K, 30K, 10K, 3K, 1K and 0.5K. Subsequently, water quality control items such as dissolved organic carbon, chemical oxygen demand, ultraviolet absorbancy at a wavelength of 260nm, the residual ratio change of trihalomethane forming capacity or the like are measured. By this constitution, the ozone treatment for ensuring objective water quality can be effectively controlled. Especially, when an ultrafiltration membrane of 0.5K is used, a precursor substance having trihalomethane forming capacity can be almost removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高度浄水処理法として
のオゾン処理装置におけるオゾン処理特性の解析方法及
びオゾン処理水からトリハロメタン生成能を有する前駆
物質を除去するための膜処理法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing ozone treatment characteristics in an ozone treatment apparatus as an advanced water treatment method and a membrane treatment method for removing a precursor having a trihalomethane-forming ability from ozone-treated water. is there.

【0002】[0002]

【従来の技術】我国の水道の普及率は現時で約94.7
%であり、しかも水道水の清潔保持のための維持管理体
制は世界有数のレベルに達している。これは全国のどこ
でも水道水を安心して飲用できることからも自明であ
る。
2. Description of the Related Art The current water supply penetration rate in Japan is about 94.7.
%, And the maintenance system for maintaining cleanliness of tap water has reached one of the highest levels in the world. This is obvious from the fact that tap water can be safely consumed anywhere in the country.

【0003】一般に河川などから取水した原水を浄化す
るには、凝集沈殿池で原水中に凝集剤を注入,混合し、
撹拌及び滞留処理により原水中の懸濁物質(砂,粘土,
藻類等の有機物等)を凝集して沈澱,分離する。このプ
ロセスでは殺藻処理や鉄,マンガンなどの色度成分の除
去を目的とした塩素処理が組み込まれている。
Generally, in order to purify raw water taken from a river or the like, a coagulant is injected into and mixed with raw water in a coagulating sedimentation tank,
Suspended substances (sand, clay,
Organic substances such as algae) are aggregated, precipitated, and separated. This process incorporates chlorine treatment for the purpose of algicidal treatment and removal of chromaticity components such as iron and manganese.

【0004】一方、近年の各種工業の発展に伴って化学
物質による自然水域の汚染が進行しており、この対応に
苦慮しているのが現実である。例えば塩素処理等消毒副
生成物に起因するTHM(トリハロメタン)対策とか、
田畑及びゴルフ場等で使用される農薬による原水及び地
下水の汚染、更には閉鎖系水域での臭気性藻類の増殖に
よる異臭味の発生等の問題が挙げられる(安藤正典、都
薬雑誌、15−10、55,1993年参照)。
On the other hand, with the recent development of various industries, pollution of natural waters with chemical substances is progressing, and it is a reality that it is difficult to cope with this. For example, THM (trihalomethane) countermeasures caused by disinfection by-products such as chlorine treatment,
Problems such as contamination of raw water and groundwater by pesticides used in fields and golf courses, and generation of off-flavor due to the growth of odorous algae in closed water areas (Masanori Ando, Toyaku Magazine, 15- 10, 55, 1993).

【0005】特に上記THMの場合、U.S.EPAは
1979年に水道水中の総トリハロメタン濃度の合計を
0.1mg/l以下とする規則を制定した。我国におい
ても1981年にトリハロメタンの当面の制御目標値を
全THMの年平均で0.1mg/lと設定した(丹保憲
仁編著、水道とトリハロメタン、技報堂出版、1983
年参照)。更に1992年の水道水質に関する基準の制
定で、トリハロメタンの制御目標値を基準とするととも
に、個々のトリハロメタン4物質についても基準を制定
している(生物処理技術部会、第57回定例会資料、1
993年参照)。
Particularly in the case of the above-mentioned THM, the U.S.M. S. In 1979, the EPA established a rule that the total trihalomethane concentration in tap water should be 0.1 mg / l or less. In Japan as well, in 1981, the immediate control target value for trihalomethane was set to 0.1 mg / l on an annual average of all THMs (edited by Kenji Tanbo, water supply and trihalomethane, Gihodo Publishing, 1983).
See year). In addition, in 1992, the standard for tap water quality was established based on the control target value of trihalomethane, and the standard was established for each of the four trihalomethane substances (Biotreatment Technology Subcommittee, 57th regular meeting materials, 1
993).

【0006】THMとは最も簡単な炭化水素であるメタ
ン(CH4)の水素の3個が塩素、ヨウ素、臭素等のハ
ロゲン原子で置換されたものであり、これらのうちで水
道水中に発現するものはクロロホルムが最も大きな割合
を占め、ブロモジクロロメタン、ジブロモクロロメタ
ン、ブロモホルムの4種類のトリハロメタン化合物を総
計して総トリハロメタン量と定義している。4種類のう
ちのクロロホルムについては発ガン性物質であることが
確認されている。
THM is one in which three hydrogen atoms of methane (CH 4 ) which is the simplest hydrocarbon are replaced by halogen atoms such as chlorine, iodine and bromine, and among them, it is expressed in tap water. Chloroform occupies the largest proportion, and four trihalomethane compounds of bromodichloromethane, dibromochloromethane, and bromoform are summed up and defined as the total trihalomethane content. It has been confirmed that chloroform of the four types is a carcinogen.

【0007】水道水中に生じるTHMは、天然に存在す
る有機着色成分であるフミン質とかそれに類似の安定有
機物を前駆物質とし、前塩素処理や消毒のための塩素添
加によって生じるものとされている。このような前駆物
質の最も代表的なものは泥炭地着色水といわれるものの
主成分であるフミン酸、フルボ酸類である。これらの成
分は微生物群の代謝活動の結果から生じる安定な代謝廃
棄物であって、屎尿処理場の高色度廃水はもとより、一
般の下水処理場の放流水にも出現する。
[0007] The THM generated in tap water is said to be generated by pre-chlorination or chlorine addition for disinfection using as a precursor a humic substance which is a naturally occurring organic coloring component or a stable organic substance similar thereto. The most representative of such precursors are humic acids and fulvic acids, which are the main components of what is called peatland colored water. These components are stable metabolic wastes resulting from the metabolic activity of microbial communities and appear in high-color wastewater from human waste treatment plants as well as in effluents of general sewage treatment plants.

【0008】このような背景から、近時は上記THM前
駆物質の低減を目的として、塩素処理の代替としてオゾ
ン処理と活性炭処理とを組み合わせた高度浄水処理シス
テムの検討が積極的に行われている。具体的に述べる
と、オゾン処理塔によりオゾン処理を行い、生物濾過塔
により色度成分などを除去した後、砂濾過池等で濾過し
て浄水池に送水する方法が採用され、オゾンの持つ強い
酸化力と殺菌力を利用して効果的に殺菌、脱臭及び脱色
を行っている。特に生物活性炭処理の前にオゾン処理を
行うことにより、負荷変動に対する許容度や活性炭の寿
命の向上をはかることができる。
From such a background, recently, for the purpose of reducing the THM precursor, an advanced water purification system combining ozone treatment and activated carbon treatment instead of chlorine treatment has been actively studied. . Specifically, a method of performing ozone treatment with an ozone treatment tower, removing chromaticity components, etc. with a biological filtration tower, then filtering with a sand filtration pond, etc. and sending it to a water purification pond is adopted. It effectively sterilizes, deodorizes and decolorizes by utilizing its oxidative power and bactericidal power. In particular, by performing the ozone treatment before the biological activated carbon treatment, it is possible to improve the tolerance for load fluctuation and the life of the activated carbon.

【0009】[0009]

【発明が解決しようとする課題】従来のオゾン処理特性
の質的変化の解析方法として、通常SephadexG
25等のソフトゲルを筒体中に入れて濾過する手段が採
用されているが、この方法は分画分子量範囲がMW 5
K以下と狭く、分取量も5ml程度と少ないので、各分
画毎の溶存有機炭素(DOC)、化学的酸素要求量(C
ODcr、)、トリハロメタン生成能(THMFP)等
の水質管理項目について十分に検討することができない
という問題点があった。
As a conventional method for analyzing qualitative changes in ozone treatment characteristics, Sephadex G is usually used.
A means for putting soft gel such as 25 into a cylindrical body and filtering is adopted, but this method has a molecular weight cut-off range of MW 5
Since it is as narrow as K or less and the fractionation amount is as small as about 5 ml, dissolved organic carbon (DOC) and chemical oxygen demand (C
There is a problem that it is not possible to sufficiently examine water quality control items such as ODcr,) and trihalomethane production capacity (THMFP).

【0010】又、オゾン処理の制御方法として、一般に
オゾンの放散量を処理水量に比例させた制御とか、注入
オゾン濃度を一定にする制御もしくは排オゾン濃度を一
定にする制御等のシンプルな制御方法が採用されてお
り、オゾン処理特性の質的変化の解析に基づいた制御は
実施されていないのが実情である。このような方法では
流入水質の変動とか水温の変動等の外乱によってオゾン
の過不足を生じる惧れがあり、安定した処理水質を得る
ことが困難であるという問題が生じる。
Further, as a method for controlling ozone treatment, generally, a simple control method such as a control in which the amount of emitted ozone is proportional to the amount of treated water, a control in which the injected ozone concentration is constant or a control in which the exhaust ozone concentration is constant, etc. Is adopted, and the actual situation is that the control based on the analysis of the qualitative change in the ozone treatment characteristics is not carried out. In such a method, there is a possibility that excess or deficiency of ozone may occur due to disturbance such as fluctuation of inflow water quality and fluctuation of water temperature, and it is difficult to obtain stable treated water quality.

【0011】更に従来から懸濁質領域成分の除去を対象
として、精密濾過法(MF法)とか限外濾過法(UF
法)によるダイレクトフィルトレーションが知られてお
り、濁度とかss成分(Suspended solid,水中の懸濁
物質)はほぼ100%、色度は50〜90%、大腸菌群
は100%、一般細菌及び従属細菌は99.5%以上が
除去されているが、THMFPを有する前駆物質の除去
は考慮していないのが現状である。
Further, conventionally, the removal of components in the suspended matter region has been targeted, such as a microfiltration method (MF method) or an ultrafiltration method (UF).
Direct filtration is known. Turbidity and ss component (Suspended solid, suspended solids in water) are almost 100%, chromaticity is 50-90%, coliform bacteria is 100%, general bacteria and Although 99.5% or more of subordinate bacteria are removed, the present situation is that the removal of precursors having THMFP is not considered.

【0012】そこで本発明は上記の問題点に鑑み、被処
理水をオゾン処理するに際して目標とする水質を確保す
るとともにTHMFPの質的変化を検出して解析し、こ
の解析結果をもとにして最適なオゾン処理槽の運転を実
施することを可能とし、しかもTHM生成能を有する前
駆物質を除去することができるオゾン処理特性の解析方
法及びオゾン処理水の膜処理法を提供することを目的と
するものである。
In view of the above problems, the present invention secures the target water quality when ozone-treating the water to be treated and detects and analyzes the qualitative change of THMFP, and based on this analysis result. An object of the present invention is to provide a method of analyzing ozone treatment characteristics and a method of treating ozone-treated water with a film, which makes it possible to carry out an optimal operation of the ozone treatment tank and remove precursors having THM generation ability. To do.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を達
成するために、オゾン発生装置で得られるオゾンガスを
オゾン処理槽内の被処理水中に順次放散して、オゾンガ
スの持つ酸化力と殺菌力を利用して殺菌、脱臭及び脱色
を行うようにしたオゾン処理装置において、先ず請求項
1により、オゾン処理水を予め設定した複数段の分子量
分画を有する限外濾過膜を用いて順次濾過し、得られた
濃縮液の水質管理項目を測定してオゾン処理特性を評価
するようにしたオゾン処理特性の解析方法を提供する。
In order to achieve the above object, the present invention sequentially diffuses ozone gas obtained by an ozone generator into the water to be treated in an ozone treatment tank, and oxidizes and sterilizes the ozone gas. In an ozone treatment apparatus adapted to perform sterilization, deodorization and decolorization using force, first, according to claim 1, ozone-treated water is sequentially filtered using an ultrafiltration membrane having a plurality of preset molecular weight fractions. Then, a method for analyzing ozone treatment characteristics is provided, in which the water quality control items of the obtained concentrated liquid are measured to evaluate the ozone treatment characteristics.

【0014】上記オゾン処理特性を評価する指標とし
て、溶存有機炭素(DOC)、化学的酸素要求量(CO
Dcr)、波長260nmにおける紫外線吸光度(E2
60)及びトリハロメタン生成能の残存率変化の各水質
管理項目を用い、複数段の分画分子量として、MWが3
00K以上,50−300K,30−50K,10−3
0K,3−10K,1−3K,0.5−1K,0.5K
未満の分子量分画に区分する。
As an index for evaluating the ozone treatment characteristics, dissolved organic carbon (DOC), chemical oxygen demand (CO
Dcr), UV absorbance (E2 at 260 nm wavelength)
60) and each water quality control item of the residual rate change of the trihalomethane production ability, the MW is 3 as the cut-off molecular weight in multiple stages.
00K or higher, 50-300K, 30-50K, 10-3
0K, 3-10K, 1-3K, 0.5-1K, 0.5K
Classify into molecular weight fractions below.

【0015】更に請求項4により、オゾン処理によりト
リハロメタン生成能の前駆物質を分解するとともに、オ
ゾン処理水を分画分子量が0.5Kの膜を用いて限外濾
過を実施することによってトリハロメタン生成能を有す
る前駆物質を除去するようにしたオゾン処理水の膜処理
法を提供する。
Further, according to claim 4, the precursor for trihalomethane-producing ability is decomposed by ozone treatment, and the ozone-treated water is subjected to ultrafiltration using a membrane having a molecular weight cutoff of 0.5 K to produce trihalomethane. Provided is a method for treating a film of ozone-treated water with a film so as to remove a precursor substance having a hydrogen atom.

【0016】[0016]

【作用】かかるオゾン処理特性の解析方法によれば、オ
ゾン発生装置から得られるオゾンガスがオゾン処理槽内
へ放散されて所望の殺菌、脱臭、脱色が行われるが、こ
のオゾン処理水を各分子量分画に区分された複数段の限
外濾過膜を用いて濾過してから水質管理項目を測定する
ことにより、オゾン処理特性の質的変化の解析を充分に
行うことができて、目標とする水質を確保するためのオ
ゾン処理の制御等に有効に生かすことができる。
According to such an ozone treatment characteristic analysis method, the ozone gas obtained from the ozone generator is diffused into the ozone treatment tank for desired sterilization, deodorization and decolorization. By measuring water quality control items after filtering using multiple stages of ultrafiltration membranes, it is possible to sufficiently analyze the qualitative changes in ozone treatment characteristics and achieve the target water quality. It can be effectively used for the control of ozone treatment for ensuring the above.

【0017】更に請求項4記載のオゾン被処理水の膜処
理法によれば、オゾン処理によりトリハロメタン生成能
の前駆物質が分解されるが、このオゾン処理水を、特に
分画分子量が0.5Kの濾過膜を用いて限外濾過するこ
とにより、上記トリハロメタン生成能を有する前駆物質
をほぼ除去することが可能となり、水道水として安全な
処理水質が得られる。
According to the film treatment method of ozone-treated water according to claim 4, the ozone-treated water decomposes the precursor capable of forming trihalomethane, and the ozone-treated water has a fractional molecular weight of 0.5 K in particular. By performing ultrafiltration using the filtration membrane of No. 2, it is possible to almost remove the precursor having the ability to generate trihalomethane, and a treated water quality that is safe as tap water can be obtained.

【0018】[0018]

【実施例】以下、本発明にかかるオゾン処理特性の解析
方法及び処理水の膜処理法の具体的な実施例を説明す
る。本実施例では分画分子量がMW 300K,50
K,30K,10K,3K,1K,0.5Kの複数段に
区分された限外濾過膜を用いてオゾン処理前後の凝集沈
澱水を順次濾過し、分子量分画に基づいてオゾン処理に
よる質的変化を解析し、且つTHMの前駆物質を除去す
ることができる限外濾過膜を選定することを主眼として
いる。
EXAMPLES Specific examples of the method for analyzing ozone treatment characteristics and the method for treating treated water according to the present invention will be described below. In this example, the molecular weight cutoff was MW 300K, 50.
Using the ultrafiltration membrane divided into multiple stages of K, 30K, 10K, 3K, 1K, and 0.5K, coagulated sediment water before and after ozone treatment is sequentially filtered, and qualitative treatment by ozone treatment is performed based on the molecular weight fraction. The main purpose is to analyze the change and select an ultrafiltration membrane that can remove the THM precursor.

【0019】本実施例で定義するオゾン処理とは、オゾ
ン発生装置から得られるオゾンガスをブロワを用いてオ
ゾン処理槽内部に配置した散気管に導き、該オゾンガス
をオゾン処理槽内の被処理水中へ放散することにより、
所望の殺菌、脱色、脱臭を行う方法である。
In the ozone treatment defined in this embodiment, ozone gas obtained from an ozone generator is introduced into a diffusing pipe arranged inside the ozone treatment tank by using a blower, and the ozone gas is introduced into the water to be treated in the ozone treatment tank. By dissipating,
This is a method of performing desired sterilization, decolorization, and deodorization.

【0020】本実施例では先ず凝集沈澱水とオゾン処理
水の各4リットルを0.22μmのメンブランフィルタ
で濾過してss成分を除去する。これを3.8kg/c
2(MW 300Kの場合には0.7kg/cm2)の
圧力下でアミコン社製ダイヤフローメンブレンを装着し
た撹拌式セルで限外濾過を行った。この時に精製水の濾
過流速と0.5%牛血清アルブミンの濾過流速及びアル
ブミンのダイヤフローメンブレンからの漏洩をチェック
し、該ダイヤフローメンブレンの装着具合を確認した。
In this embodiment, first, 4 liters of each of the coagulated sedimentation water and the ozone-treated water is filtered through a 0.22 μm membrane filter to remove the ss component. This is 3.8kg / c
Ultrafiltration was performed under a pressure of m 2 (0.7 kg / cm 2 in the case of MW 300K) with a stirring cell equipped with a diamond flow membrane manufactured by Amicon. At this time, the filtration flow rate of purified water, the filtration flow rate of 0.5% bovine serum albumin, and the leakage of albumin from the diaflow membrane were checked to confirm the attachment condition of the diaflow membrane.

【0021】図1の概略図に基づいて上記限外濾過装置
の概要と作用を説明する。即ち、サンプルを入れた容器
1内に窒素ガスボンベ2からN2ガスを供給し、濃縮液
3を限外濾過膜を組み込んだ加圧式セル4内に送り込ん
で濾過を行い、濾過された濾液5を容器6内に貯留す
る。
The outline and operation of the ultrafiltration device will be described with reference to the schematic view of FIG. That is, N 2 gas was supplied from the nitrogen gas cylinder 2 into the container 1 containing the sample, the concentrated liquid 3 was sent into the pressure type cell 4 incorporating the ultrafiltration membrane for filtration, and the filtered filtrate 5 was obtained. It is stored in the container 6.

【0022】この限外濾過装置(Ultrafilter)は、通
常コロイド粒子をも濾過する機能を有していて、一般に
は適当な半透膜を調製して限外濾過膜とし、これを袋状
にしたり、支持台に保持して取り付け、加圧又は減圧に
よってコロイド粒子と溶媒を分離する構造が採用されて
いる。通常上記濾過膜の目の大きさは濾過すべき成分の
濾過の難易から大体の目安を得るようにしている。
This ultrafilter usually has a function of filtering colloidal particles as well. Generally, a suitable semipermeable membrane is prepared as an ultrafiltration membrane, which is formed into a bag shape. A structure is adopted in which the colloidal particles and the solvent are separated from each other by being attached while being held on a support base. Usually, the size of the mesh of the filtration membrane is set to be a rough standard because it is difficult to filter the components to be filtered.

【0023】この限外濾過装置の固液分離効果を従来用
いられている遠心分離装置とか濾紙による固液分離法と
比較してみると、通常の遠心分離装置では、濾液中に残
存する固形物成分としてのss成分が数百〜数千mg/
lであり、更に濾紙を用いた場合の上記ss成分が数十
〜千mg/lであるのに対して、限外濾過装置を用いた
場合には、残存するss成分がほとんど検知することが
できない値となる。しかも固液分離装置自体の構成は簡
易化され、装置自体の自動化がはかれるという利点を有
している。
When the solid-liquid separation effect of this ultrafiltration device is compared with the conventionally used centrifugal separator or the solid-liquid separation method using filter paper, the solid substances remaining in the filtrate in the ordinary centrifugal separator are Hundreds to thousands of mg of ss component /
In the case of using a filter paper, the ss component is several tens to 1,000 mg / l, whereas in the case of using an ultrafiltration device, the remaining ss component can be almost detected. The value cannot be set Moreover, the solid-liquid separation device itself has a simple structure, and the device itself can be automated.

【0024】表1により凝集沈澱水のオゾン処理条件を
示す。
Table 1 shows the ozone treatment conditions for the coagulating sedimentation water.

【0025】[0025]

【表1】 [Table 1]

【0026】次にオゾン処理水を分画分子量がMW 3
00K,50K,30K,10K,3K,1K,0.5
Kのダイヤフローメンブレンを用いて順次濾過して約1
00mlの濃縮液を得た。アミコン社製限外濾過膜の種
類と濾過条件を表2に示す。
Next, the ozone-treated water has a molecular weight cut off of MW 3
00K, 50K, 30K, 10K, 3K, 1K, 0.5
Approximately 1 after being filtered sequentially using K's Diaflow membrane
00 ml of concentrated liquid was obtained. Table 2 shows the types of ultrafiltration membranes manufactured by Amicon and the filtration conditions.

【0027】[0027]

【表2】 [Table 2]

【0028】表2によれば、タイプYC 05,YM
1,3,10,30,XM 50,300の計7種の限
外濾過膜を用いることにより、分子量(MW)が300
K以上,50−300K,30−50K,10−30
K,3−10K,1−3K,0.5−1K,0.5K未
満の合計8種類の分子量分画に区分することができる。
According to Table 2, type YC 05, YM
The molecular weight (MW) is 300 by using seven kinds of ultrafiltration membranes of 1, 3, 10, 30, XM 50,300 in total.
K or more, 50-300K, 30-50K, 10-30
K, 3-10K, 1-3K, 0.5-1K, less than 0.5K can be classified into a total of eight types of molecular weight fractions.

【0029】次に本実施例では、オゾン処理前後におけ
るサンプルを上記複数段の分子量分画に基づいて限外濾
過してから、E260(波長260nmにおける紫外線
吸光度),CODcr(化学的酸素要求量),DOC
(溶存有機炭素)等の水質管理項目を測定した。
Next, in this example, the sample before and after the ozone treatment was subjected to ultrafiltration based on the above-mentioned molecular weight fractionation of a plurality of stages, and then E260 (UV absorbance at a wavelength of 260 nm) and CODcr (chemical oxygen demand). , DOC
Water quality control items such as (dissolved organic carbon) were measured.

【0030】尚、E260は島津製分光光度計UV−2
60を用いて測定し、DOCは島津製TOC−5000
を用い、CODcrはHACH社製Ultra low
range COD reagent 0−40 p
pm rangeを用い、THMFPは上水試験法に基
づいて測定した。
E260 is a Shimadzu spectrophotometer UV-2.
60 was used and DOC was Shimadzu TOC-5000.
And CODcr is Ultra low manufactured by HACH.
range COD reagent 0-40 p
THMFP was measured based on the clean water test method using pm range.

【0031】図2は上記の測定に基づくE260(×1
-2)の変化を示すグラフであり、同図によればオゾン
処理前後とも分子量分画が1−3KでE260のピーク
が表われているが、オゾン処理後にはMW 50K以上
での有機物がほぼゼロに近く、且つMW 10K以下で
の有機物の除去率は約60%であった。
FIG. 2 shows E260 (× 1) based on the above measurement.
It is a graph showing the change of 0 -2 ), and according to the figure, the peak of E260 appears at the molecular weight fraction of 1-3K before and after the ozone treatment, but after the ozone treatment, the organic matter at MW of 50K or higher is shown. The removal rate of organic matter was about 60% when the MW was 10 K or less and was almost zero.

【0032】紫外線吸光度(UV)とは紫外線の波長領
域である200〜400nmの範囲で光が物質に吸収さ
れることを利用した分析方法であり、通常は波長が26
0nmにおける吸光度(E260)と、波長が370n
mにおける吸光度(E370)を用いて実施される。上
記E260は過マンガン酸消費量(mg/l)との相関
が高く、E370は色度との相関が高いことが知られて
いる。
The ultraviolet absorbance (UV) is an analytical method utilizing the fact that light is absorbed by a substance in the range of 200 to 400 nm which is the wavelength range of ultraviolet rays, and usually has a wavelength of 26.
Absorbance at 0 nm (E260) and wavelength 370n
Performed using the absorbance at m (E370). It is known that E260 has a high correlation with the amount of permanganate consumed (mg / l), and E370 has a high correlation with the chromaticity.

【0033】図3は上記の測定に基づくCODcr(m
g)の変化を測定した結果を示すグラフであり、同図に
よればオゾン処理前後の分子量分画が30−50Kと5
0−300Kでの有機物除去率は各々75%,44%で
あったが、残りの分画での除去率は9%〜27%と比較
的除去されにくい傾向を示した。
FIG. 3 shows CODcr (m
It is a graph which shows the result of having measured the change of g), According to the figure, the molecular weight fraction before and behind ozone treatment is 30-50K and 5.
The organic matter removal rates at 0 to 300 K were 75% and 44%, respectively, but the removal rates in the remaining fractions were 9% to 27%, indicating a relatively difficult removal rate.

【0034】図4は上記の測定に基づくオゾン処理前後
のDOC(mg/l)の変化を示すグラフであり、MW
10Kでの有機物の一部がMW1K未満の有機物へ低分
子化できたことが確認された。通常、浄水過程でのオゾ
ン処理ではオゾン注入率が1〜2(mg/l)と低いた
め、顕著な低分子化はおきないものと考えられる。
FIG. 4 is a graph showing changes in DOC (mg / l) before and after ozone treatment based on the above measurement.
It was confirmed that a part of the organic matter at 10K could be reduced to a low molecular weight organic matter having a MW of less than 1K. Usually, in the ozone treatment in the water purification process, the ozone injection rate is as low as 1 to 2 (mg / l), so it is considered that no remarkable reduction in molecular weight occurs.

【0035】図3,図4によれば、溶存有機炭素(T−
DOC mg)、化学的酸素要求量(T−CODcr
mg)及び波長260nmにおける紫外線吸光度(T−
E260)の何れの項目もオゾン処理水における測定値
の方が下回っていることが分かる。
According to FIGS. 3 and 4, the dissolved organic carbon (T-
DOC mg), chemical oxygen demand (T-CODcr
mg) and the UV absorbance at a wavelength of 260 nm (T-
It can be seen that the measured values in the ozone-treated water are lower than the measured values in any of E260).

【0036】次に図5はオゾン処理後におけるサンプル
を上記複数段の分子量分画に基づいて限外濾過してから
THMFP、CHCl3生成能、CHBrCl2生成能、
CHBr2Cl生成能の残存率変化を測定した結果を示
すグラフであり、表3はオゾン処理によるTHMFPの
残存率変化(Ci/Co%)をまとめた結果である。
Next, FIG. 5 shows that after the ozone treatment, the sample was subjected to ultrafiltration on the basis of the above-mentioned molecular weight fractions, and then THMFP, CHCl 3 forming ability, CHBrCl 2 forming ability,
CHBr is a graph showing the 2 Cl results of the residual ratio changes in product performance as measured, Table 3 shows the results summarized remaining index change THMFP by ozone treatment (Ci / Co%).

【0037】[0037]

【表3】 [Table 3]

【0038】オゾン処理によってMW300K以上のC
HCl3前駆物質が優先的に分解され、一部がMW0.
5K〜1Kの前駆物質へ低分子化され、且つCHCl3
生成能が3倍に上昇しており、それと対応してTHMF
Pが8倍に上昇していることが判明した。
C of MW of 300K or more by ozone treatment
The HCl 3 precursor is preferentially decomposed, and part of the MW0.
Reduced to 5K-1K precursor and CHCl 3
The production capacity has tripled, and THMF has been correspondingly increased.
It was found that P increased eight times.

【0039】又、CHBrCl2の前駆物質は平均して
約50%除去された。しかしオゾン処理によりMW
0.5K〜10KのCHBr2Cl前駆物質は除去され
にくい傾向にある。又、CHBr3生成能は何れの分画
分子量範囲にも検出されなかった。
The CHBrCl 2 precursor was also removed on average by about 50%. However, by ozone treatment, MW
CHBr 2 Cl precursors of 0.5K to 10K tend to be difficult to remove. Further, the CHBr 3 production ability was not detected in any molecular weight cut-off range.

【0040】特に本実施例では分画分子量が0.5Kの
限外濾過膜を用いることにより、CHCl3生成能は1
00%、CHBrCl2生成能は55.2%、CHBr2
Cl生成能は38.2%、THM生成能は75.2%が
除去可能となった。従ってオゾン処理水を分画分子量が
0.5Kの膜を用いて限外濾過を行うことにより、TH
M生成能を有する有機物の前駆物質の70%以上は除去
可能であり、水道水として安全な浄水を供給することが
できる。
In particular, in this example, by using an ultrafiltration membrane having a molecular weight cutoff of 0.5 K, the CHCl 3 production capacity was 1%.
00%, CHBrCl 2 production capacity is 55.2%, CHBr 2
It was possible to remove Cl by 38.2% and THM by 75.2%. Therefore, by subjecting ozone-treated water to ultrafiltration using a membrane with a molecular weight cutoff of 0.5 K, TH
It is possible to remove 70% or more of the organic precursors having the ability to generate M, and it is possible to supply safe purified water as tap water.

【0041】[0041]

【発明の効果】以上詳細に説明したように、本発明によ
ればオゾン処理水を各分子量分画に区分された限外濾過
膜を用いて濾過してから水質管理項目を測定することに
よって充分なオゾン処理特性の質的変化の解析を行うこ
とができて、この解析結果をオゾン処理の制御に生かす
ことによって流入水質の変動その他の外乱に起因するオ
ゾンの過不足を防止して安定した処理水質を得ることが
できる。特に限外濾過膜の分画分子量範囲が広く、サン
プルの分取量も比較的多いので、各分画毎の水質管理項
目について充分に検討することができる。
As described in detail above, according to the present invention, it is sufficient to measure the water quality control item after filtering the ozone-treated water using the ultrafiltration membrane classified into each molecular weight fraction. It is possible to analyze qualitative changes in various ozone treatment characteristics, and by utilizing the results of this analysis for the control of ozone treatment, it is possible to prevent excess and deficiency of ozone due to fluctuations in inflow water quality and other disturbances, and to perform stable treatment. Water quality can be obtained. In particular, the range of molecular weight cut-off of the ultrafiltration membrane is wide, and the amount of sample collected is relatively large, so that water quality control items for each fraction can be sufficiently examined.

【0042】更に請求項4記載のオゾン処理水の膜処理
法によれば、オゾン処理によりトリハロメタン生成能の
前駆物質が分解された後、オゾン処理水を分画分子量が
0.5Kの濾過膜を用いて限外濾過することにより、ト
リハロメタン生成能を有する前駆物質がほぼ除去され、
オゾン処理に基づいて水道水として安全な処理水質が得
られるという効果を発揮する。
Further, according to the method for treating ozone-treated water according to claim 4, after the precursor capable of forming trihalomethane is decomposed by the ozone treatment, the ozone-treated water is passed through a filtration membrane having a molecular weight cutoff of 0.5K. By using the ultrafiltration, the precursor capable of producing trihalomethane is almost removed,
This produces the effect that safe treated water quality can be obtained as tap water based on ozone treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかる限外濾過法の一例を示す概要
図。
FIG. 1 is a schematic view showing an example of an ultrafiltration method according to this embodiment.

【図2】オゾン処理前後のサンプルを複数段の分子量分
画に基づいて限外濾過してからE260を測定した結果
を示すグラフ。
FIG. 2 is a graph showing the results of measuring E260 after ultrafiltration of a sample before and after ozone treatment based on a plurality of stages of molecular weight fractionation.

【図3】オゾン処理前後のサンプルを複数段の分子量分
画に基づいて限外濾過してからCODcrを測定した結
果を示すグラフ。
FIG. 3 is a graph showing the results of measuring CODcr after ultrafiltration of a sample before and after ozone treatment based on a plurality of stages of molecular weight fractionation.

【図4】オゾン処理前後のサンプルを複数段の分子量分
画に基づいて限外濾過してからDOCを測定した結果を
示すグラフ。
FIG. 4 is a graph showing the results of DOC measurement after ultrafiltration of a sample before and after ozone treatment based on molecular weight fractionation in multiple stages.

【図5】オゾン処理後におけるサンプルを複数段の分子
量分画に基づいて限外濾過してから各種トリハロメタン
生成能の残存率変化を測定した結果を示すグラフ。
FIG. 5 is a graph showing the results of measuring the residual rate change of various trihalomethane-producing ability after performing ultrafiltration on a sample after ozone treatment based on a plurality of stages of molecular weight fractions.

【符号の説明】[Explanation of symbols]

1…容器 2…窒素ガス 3…濃縮液 4…加圧式セル 5…濾液 6…容器 DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Nitrogen gas 3 ... Concentrated liquid 4 ... Pressurized cell 5 ... Filtrate 6 ... Container

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 オゾン発生装置で得られるオゾンガスを
オゾン処理槽内の被処理水中に順次放散して、オゾンガ
スの持つ酸化力と殺菌力を利用して殺菌、脱臭及び脱色
を行うようにしたオゾン処理装置において、 オゾン処理水を予め設定した複数段の分子量分画を有す
る限外濾過膜を用いて順次濾過し、得られた濃縮液の水
質管理項目を測定してオゾン処理特性を評価することを
特徴とするオゾン処理特性の解析方法。
1. Ozone gas obtained by an ozone generator is sequentially diffused into water to be treated in an ozone treatment tank, and sterilization, deodorization and decolorization are carried out by utilizing the oxidizing power and bactericidal power of ozone gas. In the treatment equipment, the ozone treatment water is sequentially filtered using an ultrafiltration membrane having a preset number of stages of molecular weight fractions, and the water quality control items of the resulting concentrate are measured to evaluate the ozone treatment characteristics. A method for analyzing ozone treatment characteristics, characterized by:
【請求項2】 上記オゾン処理特性を評価する指標とし
て、溶存有機炭素(DOC)、化学的酸素要求量(CO
Dcr)、波長260nmにおける紫外線吸光度(E2
60)及びトリハロメタン生成能の残存率変化の各水質
管理項目を用いた請求項1記載のオゾン処理特性の解析
方法。
2. Dissolved organic carbon (DOC) and chemical oxygen demand (CO) are used as indicators for evaluating the ozone treatment characteristics.
Dcr), UV absorbance (E2 at 260 nm wavelength)
60) and the method for analyzing ozone treatment characteristics according to claim 1, wherein each water quality control item of the residual rate change of the trihalomethane production ability is used.
【請求項3】 前記複数段の分画分子量として、MWが
300K以上,50−300K,30−50K,10−
30K,3−10K,1−3K,0.5−1K,0.5
K未満の分子量分画に区分した請求項1,2記載のオゾ
ン処理特性の解析方法。
3. The multi-stage molecular weight cutoff having a MW of 300K or more, 50-300K, 30-50K, 10-
30K, 3-10K, 1-3K, 0.5-1K, 0.5
The method for analyzing ozone treatment characteristics according to claim 1, wherein the ozone treatment characteristics are classified into molecular weight fractions less than K.
【請求項4】 オゾン発生装置で得られるオゾンガスを
オゾン処理槽内の被処理水中に順次放散して、オゾンガ
スの持つ酸化力と殺菌力を利用して殺菌、脱臭及び脱色
を行うようにしたオゾン処理装置において、 オゾン処理により被処理水中のトリハロメタン生成能の
前駆物質を分解するとともに、オゾン処理水を分画分子
量が0.5Kの膜を用いて限外濾過を実施することによ
って上記トリハロメタン生成能を有する前駆物質を除去
することを特徴とするオゾン処理水の膜処理法。
4. Ozone gas obtained by an ozone generator is sequentially diffused into water to be treated in an ozone treatment tank, and sterilization, deodorization and decolorization are carried out by utilizing the oxidizing power and bactericidal power of ozone gas. In the treatment equipment, the precursor for trihalomethane-forming ability in the water to be treated is decomposed by ozone treatment, and the ozone-treated water is subjected to ultrafiltration using a membrane having a molecular weight cutoff of 0.5 K to obtain the trihalomethane-forming ability. A method for treating a film of ozone-treated water, which comprises removing a precursor substance having:
JP2166994A 1994-02-21 1994-02-21 Analysis of ozone treatment characteristics and membrane treatment of ozone-treated water Pending JPH07229891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166994A JPH07229891A (en) 1994-02-21 1994-02-21 Analysis of ozone treatment characteristics and membrane treatment of ozone-treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166994A JPH07229891A (en) 1994-02-21 1994-02-21 Analysis of ozone treatment characteristics and membrane treatment of ozone-treated water

Publications (1)

Publication Number Publication Date
JPH07229891A true JPH07229891A (en) 1995-08-29

Family

ID=12061458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166994A Pending JPH07229891A (en) 1994-02-21 1994-02-21 Analysis of ozone treatment characteristics and membrane treatment of ozone-treated water

Country Status (1)

Country Link
JP (1) JPH07229891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158675A (en) * 1996-12-03 1998-06-16 Idemitsu Kosan Co Ltd Metal working oil composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158675A (en) * 1996-12-03 1998-06-16 Idemitsu Kosan Co Ltd Metal working oil composition

Similar Documents

Publication Publication Date Title
Li et al. Membrane bioreactor for the drinking water treatment of polluted surface water supplies
Tang et al. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment
Lebeau et al. Immersed membrane filtration for the production of drinking water: combination with PAC for NOM and SOCs removal
Cicek et al. Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds
Lalezary‐Craig et al. Optimizing the removal of geosmin and 2‐methylisoborneol by powdered activated carbon
Volk et al. Effects of conventional treatment on AOC and BDOC levels
Takeuchi et al. Removal of organic substances from water by ozone treatment followed by biological activated carbon treatment
Tian et al. Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: as compared to membrane bioreactor (MBR)
Wang et al. Effective control of membrane fouling by filamentous bacteria in a submerged membrane bioreactor
WO2000027756A1 (en) Water treating method
Benito-Alcázar et al. Study of different pretreatments for reverse osmosis reclamation of a petrochemical secondary effluent
Park et al. Performance evaluation of pretreatment processes in integrated membrane system for wastewater reuse
Rakruam et al. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration
Tian et al. Submerged membrane bioreactor (sMBR) for the treatment of contaminated raw water
WO2014034827A1 (en) Fresh water generation method
Seredyńska-Sobecka et al. Removal of humic acids by the ozonation–biofiltration process
Hosseinzadeh et al. Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment
Sridang et al. Performance and microbial surveying in submerged membrane bioreactor for seafood processing wastewater treatment
KR20140144933A (en) Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same
Xia et al. Characteristics and trihalomethane formation reactivity of dissolved organic matter in effluents from membrane bioreactors with and without filamentous bulking
JPH07229891A (en) Analysis of ozone treatment characteristics and membrane treatment of ozone-treated water
Tian et al. Comparison of biological activated carbon (BAC) and membrane bioreactor (MBR) for pollutants removal in drinking water treatment
Vera et al. Can microfiltration of treated wastewater produce suitable water for irrigation?
JP2887284B2 (en) Ultrapure water production method
Tan et al. Removing organic color and by-products from groundwater with ozone and pressurized biologically-active filtration