JPH07229829A - Total reflection prism cell - Google Patents

Total reflection prism cell

Info

Publication number
JPH07229829A
JPH07229829A JP2087194A JP2087194A JPH07229829A JP H07229829 A JPH07229829 A JP H07229829A JP 2087194 A JP2087194 A JP 2087194A JP 2087194 A JP2087194 A JP 2087194A JP H07229829 A JPH07229829 A JP H07229829A
Authority
JP
Japan
Prior art keywords
sample
prism
total reflection
reflection prism
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087194A
Other languages
Japanese (ja)
Inventor
Toshiko Fujii
稔子 藤井
Yuji Miyahara
裕二 宮原
Yoshio Watanabe
吉雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2087194A priority Critical patent/JPH07229829A/en
Publication of JPH07229829A publication Critical patent/JPH07229829A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Abstract

PURPOSE:To measure the infrared absorption spectrum of a liquid sample with high sensitivity by disposing a mesh metal carrying a sample under a prism. CONSTITUTION:A gold mesh 3(mesh metal) of 100pm thick is set under a semicylindrical total reflection prism 1 through an air gap of 20mum. A liquid sample 5 is then injected through an injection port 6 into the gold mesh 3 using a syringe 7. Infrared light 8 enters the end face of the prism 1 and partially reflected on the interface of the prism 1 and the air gap 2 while partially transmits the interface. The light impinging directly on the gold mesh 3 through the air gap 2 excites the local field on the surface of gold and increases the infrared absorption of the sample 5 at a part in contact with the excited part of gold mesh 3. The light impinging on the gold mesh 3 through the sample 5 is confined within a cavity defined by the gold mesh 3 and produces an interference field thus increasing infrared absorption of the sample 5 in the cavity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高感度に赤外吸収スペク
トルを測定する光学セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical cell for measuring an infrared absorption spectrum with high sensitivity.

【0002】[0002]

【従来の技術】全反射プリズムと金属を用いた高感度赤
外スペクトル測定法は、分光研究(1992年)第41
巻、第164ページから第173ページ及び分光研究
(1993年)第42巻、第127ページから第139ペー
ジにおいて述べられている。ここでは、全反射プリズム
と金属板もしくは金属薄膜の間に試料を挟むオットー
(Otto)配置や、プリズム上に金属薄膜を蒸着しその上
に試料を導入するクレツマン(Kretschmann)配置の高感
度赤外スペクトル測定法の原理モデルについて詳しく述
べられている。
2. Description of the Related Art A high-sensitivity infrared spectrum measuring method using a total reflection prism and a metal is described in Spectroscopic Research (1992) No. 41.
Vol. 164 to 173 and Spectroscopic Research (1993) Vol. 42, 127 to 139. Here, a high-sensitivity infrared sensor with an Otto arrangement in which a sample is sandwiched between a total reflection prism and a metal plate or a metal thin film, or a Kretschmann arrangement in which a metal thin film is vapor-deposited on the prism and the sample is introduced onto the prism. The principle model of the spectrum measurement method is described in detail.

【0003】Otto配置は、全反射プリズム−金属薄膜間
を一つの空洞と考えると、プリズム−金属間で全反射が
繰り返され、光が空洞中に閉じ込められることにより干
渉電場が励起される。またKretschmann 配置では、光が
金属薄膜を形成する金属微粒子に入射することにより、
金属微粒子のプラズマ振動が励起され微粒子近傍に局所
電場が形成される。この干渉電場と局在電場が赤外吸収
増大の原因であるとしている。
In the Otto arrangement, assuming that the space between the total reflection prism and the metal thin film is one cavity, total reflection is repeated between the prism and the metal, and the interference electric field is excited by confining light in the cavity. In the Kretschmann arrangement, light is incident on the metal particles forming the metal thin film,
Plasma vibrations of the metal particles are excited to form a local electric field near the particles. It is said that the interference electric field and the localized electric field are the causes of the increase in infrared absorption.

【0004】また液中の分子を高感度測定した例は、サ
ーフェイス サイエンス(1985年)第158巻、第
616ページから第623ページに述べられている。こ
こでは酸性水溶液中に溶解したメルカプトベンゾチアゾ
ール(MBT)の高感度検出を銀を蒸着した全反射プリ
ズムを用い、Kretschmann 配置で測定を行っている。M
BTのC=S伸縮振動のピークが消え、代わりにAg
(I)MBTのピークが増大されていることから、Kret
schmann 配置の局所電場は、ほんの数分子層程度の距離
にしか及ばないことが示唆されている。
An example of highly sensitive measurement of molecules in a liquid is described in Surface Science (1985), Volume 158, pp. 616 to 623. Here, high-sensitivity detection of mercaptobenzothiazole (MBT) dissolved in an acidic aqueous solution is performed using a total reflection prism on which silver is vapor-deposited, and measurement is performed in the Kretschmann arrangement. M
The peak of C = S stretching vibration of BT disappeared, and instead Ag
(I) Since the peak of MBT is increased, Kret
It has been suggested that the local electric field in the schmann configuration extends over distances of only a few molecular layers.

【0005】[0005]

【発明が解決しようとする課題】従来行われてきた金属
薄膜と全反射プリズムを用いた高感度赤外吸収スペクト
ル測定法は、主に固体試料を対象にしたもので、液体試
料を対象とした場合の測定例はKretschmann配置に限ら
れていた。このKretschmann配置の測定では、プリズム
上に蒸着した金属薄膜と液中分子の化学的な相互作用に
よってコンプレックスが形成されることにより、局所電
場が生じる金属近傍に測定対象の分子が存在することが
高感度化には不可欠であった。一方、Otto配置は、通常
全反射プリズム上に形成した極薄い固体試料の薄膜上に
金属を蒸着するかもしくは金属板を圧着して、測定を行
うもので、液体試料をこのような極薄い層状の形態で測
定することはできなかった。
The conventional high-sensitivity infrared absorption spectrum measurement method using a metal thin film and a total reflection prism mainly targets a solid sample and a liquid sample. The measurement examples in this case were limited to the Kretschmann arrangement. In the measurement of this Kretschmann configuration, it is highly likely that the molecule to be measured exists near the metal where the local electric field is generated due to the formation of a complex by the chemical interaction between the metal thin film deposited on the prism and the molecules in the liquid. It was essential for increasing sensitivity. On the other hand, the Otto arrangement is a method in which metal is vapor-deposited or a metal plate is pressure-bonded onto a thin film of an ultrathin solid sample usually formed on a total reflection prism for measurement. Could not be measured.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に、本発明は粘性もしくは液体の試料を、金属中に担持
できるように網状金属または溝を形成した金属を全反射
プリズム表面に設けた。
In order to solve the above problems, the present invention provides a total reflection prism surface with a mesh metal or a metal in which grooves are formed so that a viscous or liquid sample can be carried in the metal. .

【0007】[0007]

【作用】上記手段は以下のように作用する。すなわち、
赤外光は、光源から全反射プリズムへ入射し、全反射プ
リズム中を反射しながら検知器に出射する。この際、プ
リズム−試料(金属)界面にプリズム側から入射した光
は、プリズム側に反射される光と試料側に透過する光に
分れる。また臨界角以上でプリズム−試料(金属)界面に
入射した光は、プリズム側に全反射されるが、この際、
エバネッセント波として試料側に1〜2μm程度染み込
む。この時、網状金属もしくは溝を形成した金属板のプ
リズムに接する部位近傍には、プリズム側から金属への
光の入射による局在電場が励起される。この局在電場に
よって金属近傍の試料の赤外吸収が増大する。また網状
金属もしくは溝を形成した金属板のプリズム側には、金
属による極小さな空洞が形成されており、その空洞中に
試料を充填した構成となっている。従って、金属にプリ
ズム側から入射した光は、金属によって全反射される
が、通常のOtto配置に比べて空洞が極小さいので試料に
光が吸収されず金属の空洞中に閉じ込められた状態とな
り干渉電場が励起される。従ってこの干渉電場によって
空洞中の試料の赤外吸収が増大する。
The above means operates as follows. That is,
The infrared light enters the total reflection prism from the light source, and is emitted to the detector while being reflected in the total reflection prism. At this time, light incident on the prism-sample (metal) interface from the prism side is divided into light reflected on the prism side and light transmitted on the sample side. Light incident on the prism-sample (metal) interface at a critical angle or more is totally reflected on the prism side.
As an evanescent wave, it penetrates the sample side by about 1 to 2 μm. At this time, a localized electric field is excited in the vicinity of a portion of the metal plate in which the mesh metal or the groove is formed in contact with the prism by the incidence of light on the metal from the prism side. This localized electric field increases the infrared absorption of the sample near the metal. Further, an extremely small cavity made of metal is formed on the prism side of the mesh-shaped metal or the metal plate having the groove formed, and the cavity is filled with the sample. Therefore, the light incident on the metal from the prism side is totally reflected by the metal, but since the cavity is extremely small compared to the normal Otto arrangement, the light is not absorbed by the sample and is confined in the cavity of the metal and interferes. The electric field is excited. Therefore, this interference electric field increases the infrared absorption of the sample in the cavity.

【0008】従って、網状金属もしくは溝を形成した金
属板に試料を担持させてプリズム表面に設置することに
より、局在電場と干渉電場という二つの赤外吸収増大の
原因となる電場を励起することができ、局在電場と干渉
電場のどちらかの電場を選択しなければならない金属蒸
着膜を用いるOtto配置やKretschmann 配置に比べ、より
大きい赤外吸収の増大を行うことができる。
Therefore, by exciting a sample on a surface of a prism by supporting a sample on a metal mesh or a metal plate having grooves, a local electric field and an interference electric field, which are two electric fields that increase infrared absorption, are excited. Therefore, compared to the Otto configuration and the Kretschmann configuration, which use a vapor-deposited metal film in which either the localized electric field or the interference electric field must be selected, a larger increase in infrared absorption can be performed.

【0009】[0009]

【実施例】図1は本発明の第一の実施例である全反射プ
リズムセルの断面図である。半円柱型全反射プリズムセ
ル1の下に20μmのエアギャップ2を介して厚さ10
0μmの金メッシュ3を設置する。金メッシュ3の下に
はプール状の試料導入部4があり、下部に試料5をメッ
シュ3下側から注入するための試料注入口6がある。注
入口6からシリンジ7で液体試料を金メッシュの網中ま
で入るよう注入する。赤外光8はプリズム1端面から入
射し、プリズム−エアギャップ界面で一部は反射し、一
部は透過する。エアギャップを介して金メッシュ3に直
接入射した光は、金表面の局在電場を励起し、電場が励
起される金メッシュ部位に接触した試料の赤外吸収を増
大する。また試料を介して金メッシュ3に入射した光
は、金メッシュにより構成される空洞中に閉じ込めら
れ、干渉電場を形成し空洞中の試料の赤外吸収を増大す
る。
1 is a sectional view of a total reflection prism cell according to a first embodiment of the present invention. Below the semi-cylindrical total reflection prism cell 1, there is an air gap 2 of 20 μm and a thickness of 10
A 0 μm gold mesh 3 is installed. Below the gold mesh 3 is a pool-shaped sample introduction part 4, and at the bottom is a sample injection port 6 for injecting the sample 5 from the bottom side of the mesh 3. The liquid sample is injected from the injection port 6 with the syringe 7 so as to enter the mesh of the gold mesh. The infrared light 8 enters from the end surface of the prism 1, and is partially reflected and partially transmitted at the prism-air gap interface. The light that is directly incident on the gold mesh 3 through the air gap excites a localized electric field on the gold surface and increases the infrared absorption of the sample in contact with the gold mesh site where the electric field is excited. Further, the light incident on the gold mesh 3 via the sample is confined in the cavity formed by the gold mesh, forms an interference electric field, and increases the infrared absorption of the sample in the cavity.

【0010】図2は、本発明の第二の実施例である全反
射プリズムセルの断面図である。第一の実施例とほぼ同
様の構成であるが、プリズム1−金メッシュ3間にエア
ギャップを介さず、直接密着させたものである。干渉電
場の強度はエアギャップの距離に依存する傾向があるの
でこのように試料に応じてギャップの距離を変化させる
必要がある。
FIG. 2 is a sectional view of a total reflection prism cell which is a second embodiment of the present invention. The structure is almost the same as that of the first embodiment, but the prism 1 and the gold mesh 3 are directly adhered to each other without an air gap. Since the strength of the interference electric field tends to depend on the distance of the air gap, it is necessary to change the gap distance according to the sample in this way.

【0011】図3は、本発明の第三の実施例である全反
射プリズムセルの断面図である。プリズム1の下に直接
溝を形成した銀板9と銀板保持部10を配し、銀板の溝
中に試料5を導入する構成となっている。
FIG. 3 is a sectional view of a total reflection prism cell which is a third embodiment of the present invention. Under the prism 1, a silver plate 9 having a groove formed directly and a silver plate holding portion 10 are arranged, and the sample 5 is introduced into the groove of the silver plate.

【0012】図4は、第3の実施例の銀板9と銀板保持
部10をプリズム側から見た平面図である。銀板9上に
は溝11が複数形成されておりこの溝の幅は、プリズム
1に入射する赤外光束の径以下である。また溝が形成さ
れていない試料だめ12があり、これは銀板保持部10
に形成された試料注入口6から注入された試料をプール
し、溝11に毛細管現象により試料を送りこむ。
FIG. 4 is a plan view of the silver plate 9 and the silver plate holder 10 of the third embodiment as seen from the prism side. A plurality of grooves 11 are formed on the silver plate 9, and the width of the grooves 11 is equal to or smaller than the diameter of the infrared light flux incident on the prism 1. Further, there is a sample reservoir 12 in which no groove is formed, which is a silver plate holding portion 10.
The sample injected from the sample injection port 6 formed in 1 is pooled, and the sample is sent into the groove 11 by the capillary phenomenon.

【0013】図5は、本発明の第四の実施例の全反射プ
リズムセルの断面図である。プリズム1をプリズム保持
板13によって保持し、その表面に金メッシュ3と試料
5を吸収させた、例えば、濾紙のような平板型の吸水材
料14を重ねたものを、圧着板15によってメッシュ3
がプリズム側になるよう、プリズム1表面に圧着する。
吸水材料14に吸収された試料5はプリズムに圧着され
ることにより、金メッシュ3中に染み込み、余分な試料
は間隙16から保持板13上に排出される。
FIG. 5 is a sectional view of a total reflection prism cell according to a fourth embodiment of the present invention. The prism 1 is held by the prism holding plate 13, and the gold mesh 3 and the sample 5 are absorbed on the surface thereof.
Is pressure-bonded to the surface of the prism 1 so that is on the prism side.
The sample 5 absorbed by the water absorbing material 14 is pressed into the prism, so that the sample 5 permeates into the gold mesh 3, and the excess sample is discharged from the gap 16 onto the holding plate 13.

【0014】図6は、本発明の第五の実施例の全反射プ
リズムセルの断面図である。第四の実施例のプリズム−
メッシュ界面にプリズムより屈折率の低い、例えば屈折
率1.6 で水に不溶なサファイアのような透明光学材料
膜17を形成し、プリズム−メッシュ間の距離を調節す
る。
FIG. 6 is a sectional view of a total reflection prism cell according to a fifth embodiment of the present invention. Fourth Embodiment Prism-
A transparent optical material film 17 having a refractive index lower than that of the prism, for example, sapphire which is insoluble in water and has a refractive index of 1.6 is formed on the mesh interface, and the distance between the prism and the mesh is adjusted.

【0015】図7は、本発明の第二の実施例を用いた血
液測定装置のブロック図である。この血液測定装置は、
分光器部18とコンピュータ部19の二つに大別でき、
分光器部18では血液の赤外吸収の測定を、コンピュー
タ部19では分光器で測定した信号のフーリエ変換,濃
度測定などの計算処理を行う。以下測定法を概述する。
赤外光源20から出射した赤外光21は、試料室22に
入射する。この試料室には本発明の第二の実施例の全反
射プリズムセルが設置されており、セル中の血液によっ
て赤外光21はある特定の波長の光を吸収され、マイケ
ルソン干渉計23に入射する。マイケルソン干渉計23
は、入射光をその波数に比例した断続周波数に振幅変調
する。変調された光は検知器24によって電気信号に変
換され、AD変換器25によってコンピュータ部19に
取り込まれる。
FIG. 7 is a block diagram of a blood measuring apparatus using the second embodiment of the present invention. This blood measuring device
The spectroscope section 18 and the computer section 19 can be roughly divided into
The spectroscope unit 18 measures the infrared absorption of blood, and the computer unit 19 performs calculation processing such as Fourier transform of signals measured by the spectroscope and concentration measurement. The measuring method is outlined below.
The infrared light 21 emitted from the infrared light source 20 enters the sample chamber 22. The total reflection prism cell of the second embodiment of the present invention is installed in this sample chamber, and the infrared light 21 absorbs the light of a specific wavelength by the blood in the cell, and the infrared light 21 is absorbed by the Michelson interferometer 23. Incident. Michelson interferometer 23
Amplitude-modulates the incident light to an intermittent frequency proportional to its wave number. The modulated light is converted into an electric signal by the detector 24, and is taken into the computer unit 19 by the AD converter 25.

【0016】図8は、本血液測定装置の試料セル及び試
料流路図である。全反射プリズム1の下に金メッシュ3
を密着させて配し、金メッシュの下に試料流路26を設
けている。試料流路26には試料を入れるサンプルカッ
プ27,洗浄液ボトル28,廃液ボトル29が付いてい
る。サンプルカップ27から試料がポンプ30によって
吸い上げられ、金メッシュ3下の流路26を満たすと、
試料の赤外吸収が測定される。測定が終了すると電磁弁
31によって流路が洗浄液方向に切り替わり、洗浄液が
流路中を充填しセル内の洗浄が行われる。排出された血
液及び洗浄液は廃液ボトル29に廃棄される。なお、ポ
ンプ30及び電磁弁31はコンピュータ部19によって
制御されている。
FIG. 8 is a diagram of a sample cell and a sample flow path of this blood measuring apparatus. Gold mesh 3 under the total reflection prism 1
Are arranged in close contact with each other, and the sample channel 26 is provided under the gold mesh. The sample flow path 26 is provided with a sample cup 27 for containing a sample, a washing liquid bottle 28, and a waste liquid bottle 29. When the sample is sucked up by the pump 30 from the sample cup 27 and the flow path 26 under the gold mesh 3 is filled,
The infrared absorption of the sample is measured. When the measurement is completed, the flow path is switched to the cleaning liquid direction by the solenoid valve 31, the cleaning liquid fills the flow path, and the inside of the cell is cleaned. The discharged blood and washing liquid are discarded in the waste liquid bottle 29. The pump 30 and the solenoid valve 31 are controlled by the computer section 19.

【0017】図9と図10は本発明の効果をあらわす特
性図である。図9は本発明を用いた血液測定装置により
測定した赤外吸収スペクトルと従来の全反射法を用いた
血液測定装置により測定した赤外吸収スペクトルの比較
である。吸光度を単純比較すると本実施例は従来法に比
べ約30倍高感度化している。
9 and 10 are characteristic charts showing the effect of the present invention. FIG. 9 is a comparison of the infrared absorption spectrum measured by the blood measuring apparatus using the present invention and the infrared absorption spectrum measured by the conventional blood measuring apparatus using the total reflection method. When the absorbances are simply compared, the sensitivity of this example is about 30 times higher than that of the conventional method.

【0018】図10は、赤外吸収を用いて血液中の尿素
を測定した値(縦軸)とウレアーゼ法によって測定した
血中尿素の値の相関である。白抜きのデータポイントは
従来の全反射法を用いた血液測定装置により測定した尿
素濃度とウレアーゼ法で測定した尿素濃度との相関、黒
塗のデータポイントは本実施例を用いた血液測定装置に
より測定した尿素濃度とウレアーゼ法により測定した尿
素濃度の相関である。従来法は感度が低いため20mg
/dl以下は検出できないが、本実施例によると低濃度
の尿素も精度良く測定できていることがわかる。
FIG. 10 shows the correlation between the value of urea in blood measured by infrared absorption (vertical axis) and the value of urea in blood measured by the urease method. The white data points are the correlation between the urea concentration measured by the blood measuring device using the conventional total internal reflection method and the urea concentration measured by the urease method, and the data points in black are the blood measuring devices using this example. It is a correlation between the measured urea concentration and the urea concentration measured by the urease method. 20 mg because the conventional method has low sensitivity
Although / dl or less cannot be detected, it can be seen from this example that even a low concentration of urea can be accurately measured.

【0019】[0019]

【発明の効果】本発明によれば、液体試料の赤外吸収ス
ペクトルを高感度に測定することができる。
According to the present invention, the infrared absorption spectrum of a liquid sample can be measured with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の断面図。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の第二の実施例の断面図。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の第三の実施例の断面図。FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の第三の実施例の試料導入部の平面図。FIG. 4 is a plan view of a sample introducing part according to a third embodiment of the present invention.

【図5】本発明の第四の実施例の断面図。FIG. 5 is a sectional view of a fourth embodiment of the present invention.

【図6】本発明の第五の実施例の断面図。FIG. 6 is a sectional view of a fifth embodiment of the present invention.

【図7】血液測定装置のブロック図。FIG. 7 is a block diagram of a blood measuring device.

【図8】血液測定装置の試料セルの周辺の説明図。FIG. 8 is an explanatory diagram around the sample cell of the blood measurement apparatus.

【図9】本発明の効果を表す特性図。FIG. 9 is a characteristic diagram showing the effect of the present invention.

【図10】本発明の効果を表す特性図。FIG. 10 is a characteristic diagram showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…全反射プリズムセル、2…エアギャップ、3…金メ
ッシュ、4…試料導入部、5…試料、6…試料注入口、
7…シリンジ、8…赤外光。
DESCRIPTION OF SYMBOLS 1 ... Total reflection prism cell, 2 ... Air gap, 3 ... Gold mesh, 4 ... Sample introduction part, 5 ... Sample, 6 ... Sample injection port,
7 ... Syringe, 8 ... Infrared light.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高屈折率物質のプリズム表面に直接または
間隙を介して試料を導入し、赤外光が前記プリズム中を
全反射することによって前記試料の吸収スペクトルを測
定するセルにおいて、前記プリズム上に直接または10
0μm以下の間隙を介して前記試料を担持した網状金属
を設置したことを特徴とする全反射プリズムセル。
1. A cell for measuring an absorption spectrum of a sample by introducing the sample directly or through a gap into a prism surface of a high refractive index substance and by totally reflecting infrared light in the prism. Directly on or 10
A total reflection prism cell in which a reticulated metal carrying the sample is placed through a gap of 0 μm or less.
【請求項2】高屈折率物質のプリズム表面に直接または
間隙を介して試料を導入し、赤外光が前記プリズム中を
全反射することによって前記試料の吸収スペクトルを測
定するセルにおいて、前記プリズム上に直接または10
0μm以下の間隙を介して溝を複数形成した金属板と、
溝中に導入した前記試料を、前記試料が露出している面
をプリズム表面に向けて設置したことを特徴とする全反
射プリズムセル。
2. A cell in which a sample is introduced into a prism surface of a high refractive index material directly or through a gap, and infrared light is totally reflected in the prism to measure an absorption spectrum of the sample. Directly on or 10
A metal plate having a plurality of grooves formed with a gap of 0 μm or less;
A total reflection prism cell, wherein the sample introduced into the groove is installed with the surface of the sample exposed facing the prism surface.
【請求項3】請求項1または2において、前記網状金属
及び前記金属板が、金,銀,銅,白金のいずれかから構
成される全反射プリズムセル。
3. The total reflection prism cell according to claim 1, wherein the mesh metal and the metal plate are made of any one of gold, silver, copper and platinum.
【請求項4】請求項1において、前記網状金属は、網目
の大きさが全反射プリズムに入射する光束径以下である
全反射プリズムセル。
4. The total reflection prism cell according to claim 1, wherein the mesh metal has a mesh size equal to or smaller than a diameter of a light beam incident on the total reflection prism.
【請求項5】請求項1において、前記間隙は、全反射プ
リズムに入射する赤外光に対して透明でかつ屈折率が前
記全反射プリズムより小さい物質から構成される全反射
プリズムセル。
5. The total reflection prism cell according to claim 1, wherein the gap is transparent to infrared light incident on the total reflection prism and has a refractive index smaller than that of the total reflection prism.
【請求項6】請求項1において、前記全反射プリズム
は、セレン化亜鉛,珪素,ゲルマニウムである全反射プ
リズムセル。
6. The total reflection prism cell according to claim 1, wherein the total reflection prism is zinc selenide, silicon, or germanium.
【請求項7】請求項1において、赤外光源,前記全反射
プリズムセル,干渉計,検知器及び前記検知器により検
出した信号を処理するためのコンピュータから構成され
る血液測定装置。
7. The blood measuring apparatus according to claim 1, comprising an infrared light source, the total reflection prism cell, an interferometer, a detector, and a computer for processing a signal detected by the detector.
JP2087194A 1994-02-18 1994-02-18 Total reflection prism cell Pending JPH07229829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087194A JPH07229829A (en) 1994-02-18 1994-02-18 Total reflection prism cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087194A JPH07229829A (en) 1994-02-18 1994-02-18 Total reflection prism cell

Publications (1)

Publication Number Publication Date
JPH07229829A true JPH07229829A (en) 1995-08-29

Family

ID=12039240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087194A Pending JPH07229829A (en) 1994-02-18 1994-02-18 Total reflection prism cell

Country Status (1)

Country Link
JP (1) JPH07229829A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515966A (en) * 1996-07-11 2000-11-28 イーツェーベー インスティテュート ファー ヒェモ−ウント ビオゼンゾリック ミュンスター エー.ファー. Apparatus and method for performing a quantitative fluorescent mark affinity test
WO2007037520A1 (en) * 2005-09-30 2007-04-05 Fujifilm Corporation Sensing system
JP2007304084A (en) * 2006-04-11 2007-11-22 Canon Inc Inspecting apparatus and method
JP2011180043A (en) * 2010-03-02 2011-09-15 Fujitsu Ltd Observation apparatus and observation cell
JP2012207936A (en) * 2011-03-29 2012-10-25 Fujitsu Ltd Observation device
JP2014228432A (en) * 2013-05-23 2014-12-08 日本電信電話株式会社 Method for cleaning micro flow channel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515966A (en) * 1996-07-11 2000-11-28 イーツェーベー インスティテュート ファー ヒェモ−ウント ビオゼンゾリック ミュンスター エー.ファー. Apparatus and method for performing a quantitative fluorescent mark affinity test
WO2007037520A1 (en) * 2005-09-30 2007-04-05 Fujifilm Corporation Sensing system
US7843571B2 (en) 2005-09-30 2010-11-30 Fujifilm Corporation Sensing system
JP2007304084A (en) * 2006-04-11 2007-11-22 Canon Inc Inspecting apparatus and method
JP2011180043A (en) * 2010-03-02 2011-09-15 Fujitsu Ltd Observation apparatus and observation cell
JP2012207936A (en) * 2011-03-29 2012-10-25 Fujitsu Ltd Observation device
JP2014228432A (en) * 2013-05-23 2014-12-08 日本電信電話株式会社 Method for cleaning micro flow channel

Similar Documents

Publication Publication Date Title
US6870627B2 (en) System for directed molecular interaction in surface plasmon resonance analysis
JP3100360B2 (en) Immunoassay method and apparatus using fluorescence-induced surface plasma emission
Melendez et al. A commercial solution for surface plasmon sensing
US7271914B2 (en) Biomolecular sensor system utilizing a transverse propagation wave of surface plasmon resonance (SPR)
JP3452837B2 (en) Localized plasmon resonance sensor
US6534011B1 (en) Device for detecting biochemical or chemical substances by fluorescence excitation
KR102564947B1 (en) Hand-held, field-portable, surface plasmon resonance devices and their applications to chemical and biological agents
US7915053B2 (en) Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor
Mayo et al. Immunoassay based on surface plasmon oscillations
JPH052181B2 (en)
JPS62503053A (en) Optical sensor that selectively detects substances and detects changes in refractive index within the substance being measured
JPH06506298A (en) Analysis equipment
CN108709874B (en) Surface plasma resonance sensing device and method based on self-mixing interference
JP2007501403A (en) Optical fiber array biochip based on spectral change rule of white light reflection interference
US20090066957A1 (en) Method and Apparatus for Sensing a Target Substance by Analysing Time Series of Said Target Substance
JPH07229829A (en) Total reflection prism cell
US7846396B2 (en) Sample holder for surface plasmon resonance measuring instruments
JPS60119440A (en) Method of analyzing sample and sample carrier for said method
JP2000356582A (en) Optical measuring apparatus for measuring transmitted light and scattered light
JP3460923B2 (en) Surface plasmon sensor
JP2004077411A (en) Surface plasmon sensor and spr device
JP2003254906A (en) Sensor using evanescent wave
JP3702340B2 (en) Refractive index measurement method
CA2046630A1 (en) Sensor
JPH0650314B2 (en) Immune reaction measuring device