JPH07229730A - Method for measuring thickness of amorphous coating film - Google Patents

Method for measuring thickness of amorphous coating film

Info

Publication number
JPH07229730A
JPH07229730A JP1287294A JP1287294A JPH07229730A JP H07229730 A JPH07229730 A JP H07229730A JP 1287294 A JP1287294 A JP 1287294A JP 1287294 A JP1287294 A JP 1287294A JP H07229730 A JPH07229730 A JP H07229730A
Authority
JP
Japan
Prior art keywords
substrate
thickness
angle
photoelectron
photoelectron emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1287294A
Other languages
Japanese (ja)
Inventor
Takayuki Ikeoku
孝幸 池奥
Tadahiro Yoneda
忠弘 米田
Taijo Nishioka
泰城 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to JP1287294A priority Critical patent/JPH07229730A/en
Publication of JPH07229730A publication Critical patent/JPH07229730A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To calculate the thickness of an amorphous coating film by selecting a take-off angle of photoelectron emission from a substrate and by calculating based on the take-off angle and a ratio of photoelectron emission from the substrate and photoelectron emission from the amorphous coating film. CONSTITUTION: The thickness of a thin oxide film 1 which is an amorphous coating film is calculated from Si in a substrate 2 and a ratio of Si2p inner shell photoelectron emission intensities Io and Ie against each of oxidized Si in the oxide film. These intensities are obtained by integrating XPS(X-ray photoelectron spectrometry) spectrum and by approximately subtracting background with linear interpolating between points of low binding energy side and high binding energy side with a spectral curve. Because of photoelectron forward scattering or photoelectron diffraction, dependency of photoelectron emission strength fluctuation according to take-off angle appears. When a take- off angle dependency of the photoelectron emission strength from the substrate 2 is measured in advance, and a measured thickness is calibrated, the exact thickness of an amorphous coating film on the crystal substrate 2 can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、全般的には薄膜の厚
さの測定方法、特に結晶性基板上の非晶質被膜の測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a method for measuring the thickness of a thin film, and more particularly to a method for measuring an amorphous film on a crystalline substrate.

【0002】[0002]

【従来の技術及び課題】最近のVLSIの最小寸法はサ
ブミクロンのかなり下まで減少してきている。将来、金
属−酸化物−半導体(MOS)電界効果トランジスタ
(FET)のゲート酸化膜の条件は6nm未満になろう。
自然酸化膜の厚さはゲート酸化膜の厚さと匹敵するよう
になる。従って、酸化の前に、自然酸化膜の厚さを正確
に測定することが不可欠である。従来、酸化膜の厚さ
は、高い精度が得られて操作が容易な楕円偏光法によっ
て測定されてきた。然し、厚さが約2nm未満の酸化膜で
は、楕円偏光法は最も信頼性のある測定方法ではない。
3nmより薄手の酸化膜では、X線光電子分光法(XP
S)が更に信頼性のある測定方法として受け入れられよ
うとしている(F.J.Himpsel他著「Phy
s.Rev.B38(1988)6084」)。
2. Description of the Prior Art The minimum dimensions of modern VLSI's have been reduced well below submicron. In the future, metal-oxide-semiconductor (MOS) field effect transistor (FET) gate oxide requirements will be less than 6 nm.
The native oxide thickness becomes comparable to the gate oxide thickness. Therefore, it is essential to accurately measure the thickness of the native oxide film before oxidation. Heretofore, the thickness of the oxide film has been measured by an ellipsometric method which is highly accurate and easy to operate. However, for oxide films less than about 2 nm thick, ellipsometry is not the most reliable measurement method.
For oxide films thinner than 3 nm, X-ray photoelectron spectroscopy (XP
S) is about to be accepted as a more reliable measurement method (F. J. Himpsel et al., “Phy.
s. Rev. B38 (1988) 6084 ").

【0003】薄い酸化膜のXPS解析では、酸化膜内に
あるSi原子からの光電子放出と、Si基板からの光電
子放出との比を用いて、厚さを計算するのが最も普通で
ある。従来、結晶性基板からの光電子放出強度の電子脱
出角(escape angle)又は離陸角(tak
e−off angle)に対する依存性が、この種の
計算では考慮に入れられていなかった。その一方、単結
晶GaAs基板から及び清浄表面上の種々の金属の原子
層並びに吸着分子からの光電子放出強度の角度依存曲線
に観測されるピークと谷についての研究が、Si基板に
関する最近の若干の報告とともに報告されている(L.
Kubler他著「Surf.Sci.251/252
(1991)305」)。角度依存性の由来は、光電子
回折又は電子集束又は前方散乱の何れかの名前で知られ
ている現象に帰せられる。
In XPS analysis of a thin oxide film, it is most common to calculate the thickness by using the ratio of the photoelectron emission from Si atoms in the oxide film to the photoelectron emission from the Si substrate. Conventionally, an electron escape angle (escape angle) or a take-off angle (tak) of a photoelectron emission intensity from a crystalline substrate.
The dependence on e-off angle) was not taken into account in this type of calculation. On the other hand, studies on the peaks and valleys observed in the angle-dependent curves of photoemission intensity from single-crystal GaAs substrates and from atomic layers of various metals on clean surfaces and from adsorbed molecules have shown some recent studies on Si substrates. Reported with the report (L.
Kubler et al., "Surf. Sci. 251/252.
(1991) 305 "). The origin of the angle dependence is attributed to a phenomenon known by the name of either photoelectron diffraction or electron focusing or forward scattering.

【0004】[0004]

【課題を解決するための手段及び作用】この発明は角度
依存性の現象がXPSによる厚さの測定にとって影響を
及ぼす誤差の要因であるとの認識に立ち、1)XPSに
よる厚さの測定に於けるサンプルの整合外れに対する許
容公差が不良になる惧れをなくすこと、並びに2)この
現象から生ずる誤差を最小限にすることを目的とする。
The present invention recognizes that the phenomenon of the angle dependence is an error factor that affects the thickness measurement by XPS, and 1) the thickness measurement by XPS is performed. The aim is to eliminate the risk of bad tolerances for misalignment of samples in the sample, and 2) to minimize the error resulting from this phenomenon.

【0005】即ち本願発明は、基盤上の非晶質被膜の厚
さを測定する方法に於て、基板からの光電子放出離陸角
θを選び、上記θと、基板からの光電子放出と非晶質被
膜からの光電子放出との比とに基いて非晶質被膜の厚さ
dを計算するステップを含む。
That is, the present invention is a method for measuring the thickness of an amorphous film on a substrate, in which the photoelectron emission takeoff angle from the substrate is selected, and the above θ, the photoelectron emission from the substrate and the amorphous state are selected. Calculating the thickness d of the amorphous coating based on the ratio of photoemission from the coating.

【0006】[0006]

【実施例】本発明の一実施例に係る測定方法を説明す
る。実際のこの測定に用いた基板は周知のSCl洗浄及
び希釈HF溶液による酸化膜の除去を含む一連の化学的
な予備処理の後、大気中で形成された自然酸化膜を持つ
(001)配向のSiウェーハから切出された。それ
を、超音波浴内でアセトン、エタノール及び超純水を用
いて脱脂、洗浄し、その後純粋な窒素で乾かしてから、
XPS装置の分析室にロードした。サンプルの寸法は2
0×20×0.6mm3 である。
EXAMPLE A measuring method according to an example of the present invention will be described. The substrate actually used for this measurement was (001) -oriented with a native oxide film formed in the atmosphere after a series of chemical pretreatments including the well-known SCl cleaning and the removal of the oxide film by a diluted HF solution. It was cut from a Si wafer. It is degreased and washed in an ultrasonic bath with acetone, ethanol and ultrapure water, then dried with pure nitrogen,
It was loaded into the analysis room of the XPS instrument. Sample size is 2
It is 0 × 20 × 0.6 mm 3 .

【0007】この作業に用いたX線光電子分光計は、M
gKα/AlKα源及び単色化したAlKα源を備えた
パーキン・エルマーPHI 5500マルチテクニク・
システムである。MgKα源をこの測定では、電子加速
電圧を12kVに設定して、250Wで動作させた。エネ
ルギ分解能は、Si2p3/2 ピークに対し、1.22eV
の半値全幅(FWHM)が得られる様に定めた。X線源
と電子エネルギ分析装置の開口部の幾何学的位置関係は
固定してあり、X線源及び電子エネルギ分析装置の分析
軸によって定められた平面(以降、分析平面と呼ぶ)に
対して垂直な軸線の周りにサンプル・ステージを回転さ
せて、光電子放出の極角角度走査ができる様にした。基
板の劈開側面は、結晶の等価
The X-ray photoelectron spectrometer used for this work is M
Perkin Elmer PHI 5500 Multitechnic with gKα / AlKα source and monochromated AlKα source
System. In this measurement, the MgKα source was operated at 250 W with the electron acceleration voltage set to 12 kV. Energy resolution is 1.22 eV for Si2p 3/2 peak
Of the full width at half maximum (FWHM) of The geometrical positional relationship between the X-ray source and the opening of the electron energy analyzer is fixed, with respect to the plane defined by the analysis axis of the X-ray source and the electron energy analyzer (hereinafter referred to as the analysis plane). The sample stage was rotated around a vertical axis to allow polar angle scanning of photoemission. The cleaved side of the substrate is equivalent to the crystal

【外1】 平面と平行であるが、同じ平面に整合させるか又はそれ
から45°にした。角度走査は、光電子放出の方向と基
板の表面の平面とによって定義される離陸角を変えるこ
とにより、標本マニピュレータを用いて行なった。離陸
角は、<001>の基板からの強い光電子放出ピークに
より、90°で較正し、離陸角を10°から100°ま
で走査した。
[Outer 1] Parallel to the plane, but aligned or at 45 ° to the same plane. Angular scanning was performed with a sample manipulator by changing the takeoff angle defined by the direction of photoemission and the plane of the surface of the substrate. The takeoff angle was calibrated at 90 ° due to the strong photoemission peaks from the <001> substrate and the takeoff angle was scanned from 10 ° to 100 °.

【0008】電子エネルギ分析装置の光学系は、公称の
円錐形受入れ半角が2°になる様に設定したが、これは
約4°の角度分解能に対応する。XPSによる測定は、
1×10-9Torrより低い背景圧力で行った。
The optics of the electron energy analyzer were set so that the nominal conical acceptance half-angle was 2 °, which corresponds to an angular resolution of about 4 °. The measurement by XPS is
It was carried out at a background pressure lower than 1 × 10 -9 Torr.

【0009】図1に示す様に、非晶質被膜である薄い酸
化膜(1)の厚さは、基板(2)内のSi並びに酸化膜
内の酸化Siの夫々に対するSi2p内殻光電子放出強
度Io及びIeの比から計算する。これらの強度は、X
PSスペクトルを積分し、スペクトル曲線の低結合エネ
ルギ側及び高結合エネルギ側と曲線の谷となる点との間
の線形補間によって背景を近似的に差引くことによって
求める。厚さdの計算に使用する式を下に示す(離陸角
依存性については後述する)。
As shown in FIG. 1, the thickness of the thin oxide film (1), which is an amorphous film, is determined by the Si2p core photoelectron emission intensity with respect to Si in the substrate (2) and oxidized Si in the oxide film. Calculated from the ratio of Io and Ie. These intensities are X
It is determined by integrating the PS spectrum and approximately subtracting the background by linear interpolation between the low and high binding energy sides of the spectral curve and the points that are the troughs of the curve. The formula used to calculate the thickness d is shown below (takeoff angle dependence will be described later).

【数1】 ここでKe及びKoが分光計関数、σe及びσoは原子
光電離断面積、No及びNeは単位容積当たりのSi原
子の密度、λo及びλeは夫々Si及びSiO2に対す
る電子脱出深さ、θは離陸角である。σo/σeに使用
する値は1.1であり、λo及びλeは、MgKα線に
よって励起されたSi2p内殻光電子に対して夫々2.
5nm及び2.3nmである。比Ke/Koは1と仮定す
る。
[Equation 1] Here, Ke and Ko are spectrometer functions, σe and σo are atomic photoionization cross sections, No and Ne are Si atom density per unit volume, λo and λe are electron escape depths for Si and SiO 2 , respectively, and θ is Takeoff angle. The value used for σo / σe is 1.1, and λo and λe are 2. respectively for the Si2p core photoelectrons excited by the MgKα line.
5 nm and 2.3 nm. The ratio Ke / Ko is assumed to be 1.

【0010】XPSによって測定されたSiウェーハ上
の自然酸化膜のみかけの厚さは、結晶方向の強い関数で
あることが示された。結晶性であるSiウェーハからの
光電子強度の角度依存曲線は、大きなピークと谷を持っ
ており、これに対して非晶質である酸化膜からの光電子
放出に対する角度依存曲線はそうではなかった。この違
いが、XPSによって測定された酸化膜の厚さの角度依
存性を説明するものである。結晶からの光電子放出の強
い角度依存性は、光電子前方散乱又は光電子回折として
知られる現象に帰せられる。
The apparent thickness of native oxide on Si wafers, measured by XPS, has been shown to be a strong function of crystallographic orientation. The angle-dependent curve of photoelectron intensity from a crystalline Si wafer has large peaks and valleys, whereas the angle-dependent curve for photoelectron emission from an amorphous oxide film was not. This difference explains the angular dependence of the oxide film thickness as measured by XPS. The strong angular dependence of photoemission from crystals is attributed to a phenomenon known as photoelectron forward scattering or photoelectron diffraction.

【0011】図2は、離陸角の関数として示した、XP
Sによって測定された酸化膜の厚さを示す。角度走査
は、基板の等価
FIG. 2 shows XP as a function of takeoff angle.
The thickness of the oxide film measured by S is shown. Angular scan is equivalent to board

【外2】 平面の内の1つに隣接する分析平面上で行なった。走査
のステップは2.5°であった。
[Outside 2] Performed on the analysis plane adjacent to one of the planes. The scanning step was 2.5 °.

【0012】予想される一定の厚さの値の代わりに、こ
の離陸角の範囲では、十分の数ナノメータの厚さ変動が
観測された。これは、特定の離陸角の点が曲線が強い依
存性を示す場所に選ばれた場合、サンプルの離陸角の整
合外れによって、サンプルの間の比較測定値にこの程度
の測定誤差が入り込むことがあることを意味している。
Instead of the expected constant thickness value, a thickness variation of a few nanometers was observed in this range of takeoff angles. This is because when a particular takeoff angle point is chosen where the curve has a strong dependence, misalignment of the takeoff angles of the samples can introduce this degree of measurement error into the comparative measurements between samples. It means that there is.

【0013】図3は、前に述べたのと同じ分析平面に対
するIe及びIoの角度依存曲線の比較を示す。Ie曲
線は山と谷を示しており、局部的に約30%まで変動
し、90°つまりは基板の<001>軸を中心にして対
称的な特徴を持つが、Ioは緩やかな角度依存性を示し
ている。この特徴の対照が、図2に見られる厚さ変動の
由来である。
FIG. 3 shows a comparison of the Ie and Io angle-dependent curves for the same analysis plane as previously described. The Ie curve shows peaks and troughs, which locally fluctuate up to about 30% and are symmetrical with respect to 90 °, that is, the <001> axis of the substrate, but Io has a gentle angular dependence. Is shown. The control for this feature is the origin of the thickness variation seen in FIG.

【0014】この対照は、光電子回折又は電子集束又は
前方散乱として知られている現象に帰することができ
る。この時、原子からの光電子放出は最隣接原子の方向
に強められる。角度による光電子放出の強化は、単結晶
であるSi基板からの光電子放出Ieに対して観測され
るが、非晶質である酸化膜からの光電子放出Ioに対し
ては観測されない。従って、ピークは、図4に示す様
に、結晶軸<111>,<112>,<113>,<1
15>及び<001>に帰因するとすることができる。
62.5°及び77.5°の間のピークは、夫々64.
8°及び74.2°に理論的に予想される<113>及
び<115>軸に対するピークの重ね合わせと解釈する
ことができる。
This contrast can be attributed to the phenomenon known as photoelectron diffraction or electron focusing or forward scattering. At this time, photoelectron emission from the atom is strengthened in the direction of the closest atom. The enhancement of the photoelectron emission depending on the angle is observed for the photoelectron emission Ie from the Si substrate which is a single crystal, but is not observed for the photoelectron emission Io from the oxide film which is an amorphous. Therefore, the peaks have crystal axes <111>, <112>, <113>, <1 as shown in FIG.
15> and <001>.
The peaks between 62.5 ° and 77.5 ° are 64.
This can be interpreted as the superposition of peaks for the <113> and <115> axes that are theoretically expected at 8 ° and 74.2 °.

【0015】図5は基板の(100)平面に隣接する分
析平面上で走査したIo及びIeの離陸角依存性を示
す。Ie曲線には、
FIG. 5 shows the takeoff angle dependence of Io and Ie scanned on the analysis plane adjacent to the (100) plane of the substrate. In the Ie curve,

【外3】 平面で走査したIeのピークに対する角度とは異なる角
度の所で、幾つかの主要なピークが見られる。これは、
この現象の性質が、XPS装置に対しての基板の結晶方
向に本質的に依存することを示している。ピークの角度
位置は、図6に示す様に、結晶軸<011>,<012
>,<013>及び<001>に対する角度で、上に述
べたのと同じ現象に対して予想される角度とよく一致し
ている。70°近くの幅の広いピークは、理論的には夫
々63.4°及び71.6°に現われると予想される<
012>及び<013>軸に対するピークの重ね合わせ
と解釈することができる。
[Outside 3] Several major peaks are seen at different angles to the Ie peaks scanned in the plane. this is,
It is shown that the nature of this phenomenon depends essentially on the crystallographic orientation of the substrate for the XPS device. The angular positions of the peaks are, as shown in FIG. 6, crystal axes <011>, <012
>, <013>, and <001> are in good agreement with those expected for the same phenomenon as described above. Broad peaks near 70 ° are theoretically expected to appear at 63.4 ° and 71.6 °, respectively <
It can be interpreted as a superposition of peaks on the 012> and <013> axes.

【0016】このIe曲線の別の注目すべき特徴は、5
0°及び62.5°の範囲にある弱い角度依存性を持つ
領域である。IoはIeと違って、強い角度依存性を持
たないから、この角度領域に対する比Io/Ieは、弱
い角度依存性を持つと予想され、従って、厚さの比較測
定でサンプルの離陸角の整合外れに対して他の領域より
も許容性が大きいと予想される。
Another noteworthy feature of this Ie curve is that
It is a region with weak angle dependence in the range of 0 ° and 62.5 °. Since Io, unlike Ie, does not have a strong angle dependence, the ratio Io / Ie to this angular region is expected to have a weak angle dependence, and therefore the takeoff angle of the sample is matched in the thickness comparison measurement. It is expected to be more tolerant of outliers than other areas.

【0017】この議論は、図7に示す様に、これらの曲
線に基づいて計算された厚さに対する角度依存曲線によ
って確かめられる。この曲線は50°及び62.5°の
間の領域での弱い角度依存性を示しており、厚さ変動は
0.06nm程度である。これは、{100}分析平面に
独特な領域であり、
This argument is confirmed by the angle-dependent curve for thickness calculated on the basis of these curves, as shown in FIG. This curve shows a weak angle dependence in the region between 50 ° and 62.5 °, with a thickness variation of the order of 0.06 nm. This is a region unique to the {100} analysis plane,

【外4】 平面に対する曲線では同等の角度幅のものは観測されな
い。これは、この種のXPSによる厚さの測定に対する
有用な「分析窓」になり得る。
[Outside 4] No equivalent angular width is observed in the curve to the plane. This can be a useful "analysis window" for this type of XPS thickness measurement.

【0018】上述の様に、通常、光電子前方散乱または
光電子回折により、離陸角による光電子放出強度の変動
の依存性が現われる。従って、ここでは結晶方向の影響
を考慮する必要があり得る。然し、基板からの光電子放
出強度の離陸角依存性を予め測定し、式(1)を用いて
測定された厚さを較正すれば、結晶性の基板上の非晶質
の薄膜の正確な厚さが常に得られる。
As described above, usually, due to the photoelectron forward scattering or photoelectron diffraction, the dependence of the fluctuation of the photoelectron emission intensity depending on the takeoff angle appears. Therefore, it may be necessary to consider the influence of the crystal orientation here. However, if the take-off angle dependence of the photoelectron emission intensity from the substrate is measured in advance and the thickness measured using equation (1) is calibrated, the accurate thickness of the amorphous thin film on the crystalline substrate can be calculated. Is always obtained.

【0019】上に述べた例では、単結晶シリコン上の薄
い酸化シリコンの測定について説明した。然し、この考
えは、任意の結晶基板の非晶質の任意の薄膜の組合せに
適用することができる。例えば、非晶質の薄膜は窒化シ
リコン、窒化酸化シリコン及び薄い強誘電体又は五酸化
タンタルの様な誘電定数の大きい材料であってよい。
In the example described above, the measurement of thin silicon oxide on single crystal silicon was described. However, this idea can be applied to any combination of amorphous thin films on any crystalline substrate. For example, the amorphous thin film may be a high dielectric constant material such as silicon nitride, silicon oxynitride and thin ferroelectrics or tantalum pentoxide.

【0020】更に以下の事項を開示する。Further, the following matters will be disclosed.

【0021】(1) 基板上の非晶質被膜の厚さを測定
する方法に於て、基板からの光電子放出離陸角θを選
び、上記θと、基板からの光電子放出と非晶質被膜から
の光電子放出強度との比とに基いて非晶質被膜の厚さd
を計算するステップを含む非晶質被膜の厚さを測定する
方法。
(1) In the method of measuring the thickness of an amorphous coating on a substrate, the photoelectron emission takeoff angle from the substrate is selected, and the above θ, the photoelectron emission from the substrate and the amorphous coating are selected. The thickness d of the amorphous film based on the ratio to the photoelectron emission intensity of
A method of measuring the thickness of an amorphous coating comprising the step of calculating.

【0022】(2) 非晶質被膜の厚さdを計算するス
テップが
(2) The step of calculating the thickness d of the amorphous coating is

【数2】 の計算を含む(1)に記載の方法。[Equation 2] The method according to (1), which includes the calculation of

【0023】(3) 基板がSi(111)又はSi
(100)であり、非晶質被膜がSiO2 である(1)
に記載の方法。
(3) The substrate is Si (111) or Si
(100) and the amorphous coating is SiO 2 (1)
The method described in.

【0024】(4) 光電子放出離陸角θを選ぶステッ
プが、光電子放出強度の離陸角の依存性を測定するステ
ップを含む(1)に記載の方法。
(4) The method according to (1), wherein the step of selecting the photoelectron emission takeoff angle θ includes the step of measuring the dependence of the photoelectron emission intensity on the takeoff angle.

【0025】(5) 光放出離陸角θを選ぶステップ
が、依存性が弱い所の離陸角を選ぶ(4)に記載の方
法。
(5) The method according to (4), wherein the step of selecting the light emission take-off angle θ selects a take-off angle where the dependence is weak.

【0026】(6) Si(100)基板の分析平面
{100}上で50°と62.5°の間の離陸角を選ぶ
(5)に記載の方法。
(6) The method according to (5), wherein the takeoff angle between 50 ° and 62.5 ° on the analysis plane {100} of the Si (100) substrate is selected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である、Si基板上に形成さ
れた薄い酸化膜のXPSによる厚さの測定を示す図。
FIG. 1 is a diagram showing the measurement of the thickness of a thin oxide film formed on a Si substrate by XPS, which is an embodiment of the present invention.

【図2】[Fig. 2]

【外5】 平面で走査した離陸角に対する酸化膜の厚さの依存性を
示すグラフ。
[Outside 5] The graph which shows the dependence of the thickness of an oxide film with respect to the takeoff angle scanned by the plane.

【図3】[Figure 3]

【外6】 平面で走査した離陸角に対するIe及びIoの依存性を
示すグラフ。
[Outside 6] The graph which shows the dependence of Ie and Io with respect to the takeoff angle scanned by the plane.

【図4】[Figure 4]

【外7】 平面に於ける光電子放出の強化の主要軸を示す略図。[Outside 7] Schematic diagram showing the principal axes of enhancement of photoemission in the plane.

【図5】(100)平面で走査した離陸角に対するIe
及びIoの依存性を示すグラフ。
FIG. 5: Ie for takeoff angle scanned in (100) plane
And a graph showing the dependency of Io.

【図6】(100)平面に於ける光電子放出の強化の主
要軸を示す略図。
FIG. 6 is a schematic diagram showing the principal axes of enhancement of photoemission in the (100) plane.

【図7】[Figure 7]

【外8】 平面で走査した離陸角に対する酸化膜の厚さの依存性を
示すグラフ。
[Outside 8] The graph which shows the dependence of the thickness of an oxide film with respect to the takeoff angle scanned by the plane.

【符号の説明】[Explanation of symbols]

1 非晶質被膜 2 基板 θ 基板からの光電子放出離陸角 1 Amorphous film 2 Substrate θ Photoemission from the substrate Takeoff angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 忠弘 茨城県つくば市御幸が丘17番地 テキサ ス・インスツルメンツ筑波研究開発センタ ー内 (72)発明者 西岡 泰城 茨城県つくば市御幸が丘17番地 テキサ ス・インスツルメンツ筑波研究開発センタ ー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadahiro Yoneda 17 Miyukigaoka, Tsukuba, Ibaraki Prefecture, Texas Instruments Tsukuba R & D Center (72) Inventor Yashiro Nishioka 17 Miyukigaoka, Tsukuba, Ibaraki Texba Instruments Tsukuba R & D Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上の非晶質被膜の厚さを測定する方
法に於て、 基板からの光電子放出離陸角θを選び、 上記θと、基板からの光電子放出と非晶質被膜からの光
電子放出との比に基いて非晶質被膜の厚さdを計算する
ステップを含む非晶質被膜の厚さを測定する方法。
1. A method for measuring the thickness of an amorphous coating on a substrate, wherein a photoelectron emission take-off angle from the substrate is selected, and the above θ and the photoelectron emission from the substrate and the amorphous coating are selected. A method of measuring the thickness of an amorphous coating comprising the step of calculating the thickness d of the amorphous coating based on the ratio with photoemission.
JP1287294A 1994-02-04 1994-02-04 Method for measuring thickness of amorphous coating film Pending JPH07229730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287294A JPH07229730A (en) 1994-02-04 1994-02-04 Method for measuring thickness of amorphous coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287294A JPH07229730A (en) 1994-02-04 1994-02-04 Method for measuring thickness of amorphous coating film

Publications (1)

Publication Number Publication Date
JPH07229730A true JPH07229730A (en) 1995-08-29

Family

ID=11817522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287294A Pending JPH07229730A (en) 1994-02-04 1994-02-04 Method for measuring thickness of amorphous coating film

Country Status (1)

Country Link
JP (1) JPH07229730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539432A (en) * 2005-04-29 2008-11-13 リヴェラ インコーポレイテッド Techniques for analyzing data generated by instruments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539432A (en) * 2005-04-29 2008-11-13 リヴェラ インコーポレイテッド Techniques for analyzing data generated by instruments

Similar Documents

Publication Publication Date Title
Green et al. Nucleation and growth of atomic layer deposited HfO 2 gate dielectric layers on chemical oxide (Si–O–H) and thermal oxide (SiO 2 or Si–O–N) underlayers
Keister et al. Structure of ultrathin SiO 2/Si (111) interfaces studied by photoelectron spectroscopy
EP1122795A2 (en) High dielectric constant gate oxides for silicon-based devices
Diebold et al. Characterization and production metrology of thin transistor gate oxide films
WO1999040617A1 (en) End point detecting method for semiconductor plasma processing
Fulton et al. Electronic states at the interface of Ti–Si oxide on Si (100)
US7570353B2 (en) Fabrication and test methods and systems
CA2311766A1 (en) Long range ordered and epitaxial oxides including sio2, on si, sixge1-x, gaas and other semiconductors, material synthesis, and applications thereof
US6420702B1 (en) Non-charging critical dimension SEM metrology standard
JPH07229730A (en) Method for measuring thickness of amorphous coating film
US6747748B2 (en) Manufacturing method for a field-effect transistor, manufacturing method for a semiconductor device, and apparatus therefor
JP3381407B2 (en) Plasma monitoring device and plasma monitoring method
JPH0817743A (en) Cvd device and film formation method using it
US6472236B1 (en) Determination of effective oxide thickness of a plurality of dielectric materials in a MOS stack
Sekiguchi et al. Electromigration in AlSiCu/TiN/Ti interconnects with Ti and TiN additional layers
Levenets et al. Chemical stability of HBF4-treated (100) Si surfaces
JPH0766195A (en) Deposition of oxide on surface of silicon wafer
JP3386392B2 (en) Film containing Ga, As, and at least one element different from Ga and As, and a method for analyzing the surface of a surface oxide film thereof
Diebold et al. Characterization and Metrology of Medium Dielectric Constant Gate Dielectric Films
JP2994606B2 (en) Analysis method of insulating sample by Auger electron spectroscopy
Jungk et al. Determination of Optical Constants: Au
Alnot et al. Study of Reactive Ion Etching of the Si3 N 4/GaAs Interface in CF 4 Plasmas by X‐Ray Photoelectron Spectroscopy and X‐Ray Photoelectron Diffraction
Madden et al. Surface chemical characterization by Auger signal decomposition: Silicon nitride
Ito et al. X-Ray Photoelectron and Electron Energy Loss Studies of Si-SiO2 System: Angular Variation
Schmidt et al. New approach to preparing smooth Si (100) surfaces: Characterization by spectroellipsometry and validation of Si/SiO2 interfaces properties in metal‐oxide‐semiconductor devices